
10/18/16

1

Interfacing	to	External	Devices
Notes	and/or	Reference
6.111	October	18,	2016

Huge	Amount	of	Self-Contained	Devices

• Sensors
• A-to-D	converters
• D-to-A
• Memory
• Microcontrollers
• Etc…

• We	need	ability/fluency	to	extract	info	from	and	work	with	them

10/18/16

2

Case	Study

• 9	axis	IMU	(Inertial	Measurement	Unit)
• Accelerometer
• Gyroscope
• Magnetometer

• One	of	the	only	real	MEMS	(MicroElectroMechanical Systems)	
applications	that	has	gone	full-scale	(others	might	be	TI’s	DMD,	
gyroscopes,	microphones,	some	microfluidics,	Si	resonators,	
Piezoelectrics from	Inkjets,	etc…)

Accelerometers

• First	MEMS	accelerometer:	1979
• Position	of	a	proof	mass	is	capacitively sensed	and	decoded	to	
provide	acceleration	data

Proof Mass
SpringSpring

Measure	
Capacitance	via	
Impedance	
Divider𝑎" → Δ𝑑

SEM	of	two-axis	accelerometer

𝑑

10/18/16

3

Uses	of	Acceleration	Measurements:
• Acceleration	can	be	used	to	detect	motion	
• (pedometer,	drop	detection):

• Use	gravity	and	trig	to	find	orientation:

𝜃' = tan,-
𝑎"
𝑎.

−𝑎"

−𝑎.

𝑔

𝑎1 = 𝑎.2 + 𝑎'2 + 𝑎"2
�

Accelerometer	directions	
+X,	+Y,	+Z

Chip

Problems
• Accelerometers	have	huge	amounts	of	high-frequency	noise
• To	fix,	usually	Low	Pass	Filter	the	raw	signal
• This	cuts	down	on	frequency	response	though	L

𝜃'[𝑛] = 𝜃'[𝑛 − 1]𝛽	+ 1 − 𝛽 tan,-
𝑎"[𝑛 − 1]
𝑎.[𝑛 − 1]

0 < 𝛽 < 1

𝜃' Angle	estimate	around	y	axis

Filter	Coefficient𝑎.
𝑎"

X	acceleration

z	acceleration

10/18/16

4

Bring	in	Gyroscopes

• Provide	Direct	Angular	Velocity	
which	we	can	integrate	to	get	angle	
• Very	little	high-frequency	noise,	but	
lots	of	low	frequency	noise (Gyros	
drift	like	crazy)

Gyro	readings	are	“around”	the	
axis	they	refer	to	(use	right-hand	

rule):
time	(seconds)

an
gl
e	
(a
rb
.	u
ni
ts
)

An
gu
la
r	v

el
oc
ity

	(a
rb
.	u
ni
ts
)

Gyro	Operation
Proof Mass

SpringSpring

Measure	
Capacitance	via	
Impedance	
Divider

Resonating

Measure	
Capacitance	via	

Impedance	
Divider

Rotation	of	Device

• Resonating	Proof	Mass
• Electrostatic	Drive
• Piezoelectric	Drive

• Turning	out-of-plane:
• Proof-mass	fights	turn
• Detect	deviation	via	capacitance

• Do	this	for	all	three	axes

Changes	in	capacitance	
measured	at	different	
points

Scale	not	accurate/nor	design	details

10/18/16

5

• Because	of	Drift	(low	frequency	noise/offset)	you	
want	to	avoid	doing	much	long-term	integration	
• Having	beta	less	than	unity	ensures	any	angle	that	
comes	from	gyro	reading	will	eventually	disappear,	
but	in	short	term	it	will	dominate	
• Depending	on	time	step:

How	to	use	Gyro	Readings:

𝜃' 𝑛 = 𝛽𝜃' 𝑛 − 1 + 𝑇𝑔'[𝑛 − 1]

0 < 𝛽 < 1 Filter	Coefficient

𝑇 Time	Step

𝑔' Gyro	y	reading

𝛽 ≈ 0.95 starting	point

What	to	do?

• Using	only	accelerometer,	leaves	us	blind	to	motion/change	in	the	
short	term	but	fine	in	the	long-term

• Using	only	gyroscope,	leaves	us	blind	in	the	long	term,	but	good	in	
the	short	term

• What	to	do?

10/18/16

6

Merge	the	signals

• Complementary	Filter:

• Could	also	do	Kalman Filter	(LQE)	if	desired	(or	others)

𝜃' 𝑛 = 𝛽 𝜃' 𝑛 − 1 + 𝑇𝑔'[𝑛 − 1] + 1 − 𝛽 tan,-
𝑎"[𝑛 − 1]
𝑎.[𝑛 − 1]

0 < 𝛽 < 1 Filter	Coefficient

𝑇 Time	Step

𝑔' Gyro	y	reading 𝑎.
𝑎"

X	acceleration

z	acceleration𝛽 ≈ 0.95	good	starting	point

How	to	get	Access	to	the	signals	in	first	place?

• Some	accelerometers	are	analog	out	(can	therefore	read	them	with	
an	A-to-D	converter)	(ADXL335,	for	example)
• These	have	limited	functionality…and	also	it	is	analog	so	there’s	the	
whole	noise	issue....which	is	not	nice
• Most	flavors	of	sensors	are	digital

10/18/16

7

MPU-9250
• 3-axis	Accelerometer	(16-bit	readings)
• 3-axis	Gyroscope	(16-bit	readings)
• 3-axis	Magnetic	Hall	Effect	Sensor	(Compass)	(16	bit	readings)
• SPI	or	I2C	communication	(!)…no	analog	out
• On-chip	Filters	(programmable)
• On-chip	programmable	offsets
• On-chip	programmable	scale!
• On-chip	sensor	fusion	possible	(with	quaternion	output)!
• Interrupt-out	(for	low-power	applications!)
• On-chip	sensor	fusion	and	other	calculations	(can	do	orientation	math	on-
chip	or	pedometry even)
• So	cheap	they	usually	aren’t	even	counterfeited!	J

Board:	$8.00	from	Ebay
Chip:	$5.00	in	bulk

Common	Device-Device	Communication	Protocols

• Parallel	(not	so	much	anymore)

• Serial	(UART)	(still	common	in	some	communication	and	GPS	devices)

• SPI	(Serial	Peripheral	Interface)	very	common

• I2C	(Inter-Integrated	Circuit	Communication)	very	common

10/18/16

8

Serial	(UART)
• Stands	for	Universal	Asynchronous	Receiver	Transmitter
• Requires	agreement	ahead-of-time	between	devices	regarding	things	
like	clock	rate	(BAUD),	etc…
• Two	wire	communication
• Cannot	really	share

• (every	pair	of	devices	needs	own	pair	of	lines)
• Data	rate	really	<	115.2Kbps

TX/RX

RX/TX

Device 1 Device 2

SPI

• Stands	for	Serial-Peripheral	Interface
• Four	Wires:

• MOSI:	Master-Out-Slave-In
• MISO:	Master-In-Slave-Out
• SCK:	Clock
• CE/CS	(Chip	Enable	or	Chip	Select)

• SCK	removes	need	to	agree	ahead	of	time	on	data	rate	(from	UART)
• High	Data	Rates:	(1MHz	up	to	~70	MHz	clock	(bits))

MOSI
MISOMaster Slave

SCK
CE0/CS0

10/18/16

9

SPI

• Can	share	MOSI/MISO	Bus
• Addition	of	multiple	slaves	requires	
additional	select	wires
• Hardware/firmware	for	SPI	is	pretty	easy	to	
implement:
• Wires	are	uni-directional
• Classic	“duh”	sort	of	approach	to	digital	
communication,	but	very	robust.

MOSI
MISOMaster Slave1

SCK
CE0/CS0

Slave2

CE1/CS1

i2C

• Stands	for	Inter-Integrated	Circuit	communication
• Invented	in	1980s
• Two	Wire,	One	for	Clock,	one	for	data	(both	directions)
• Usually	100kHz	or	400	kHz	clock	(newer	versions	go	to	3.4	MHz)

SDA

SCL

Master Slave

10/18/16

10

On	i2C	Multiple	Devices	Require	Same	#	of	
Wires

SDA

SCL

Master Slave1

Slave2

• Devices	come	with	their	own	
ID	numbers	(originally	a	7	bit	
value	but	more	modern	ones	
have	10	bits)…allows	
potentially	up	to	2^7	devices	or	
2^10	on	a	bus	(theoretically	
anyways)

• ID’s	are	specified	at	build,	
usually	several	to	choose	from	
and	you	select	them	by	pulling	
external	pins	HI	or	LOW

More	to	story	(need	pull-up	resistors)

4.7kΩ

3.3V

SDA

SCL

Master Slave1

3.3V

4.7kΩ

• i2C	uses	an	open	drain
• Meaning	both	Master	and	Slave	
are	either:
• LOW
• High-Impedance

• Need	external	pull-up	resistors

10/18/16

11

Tri-State

• inout cannot	be	a	reg ever,	ever…it	is	closer	to	a	
wire...usual	way	to	work	with	them	is	the	
following:

inout sda;

reg sda_val;

assign thing = sda_val? 1’bz: 1’b0;

In	verilog…

As	a	result:

Mode Master Slave

Master	Transmit HiZ (HI) or	LOW HiZ (listening)

Slave ACK/NACK HiZ (listening) HiZ (HI)	or	LOW

Slave	Transmit HiZ (listening) HiZ (HI)	or	LOW

Master	ACK/NACK HiZ (HI)	or	LOW HiZ (listening)

SDA	in

VGS

4.7kΩ

3.3V

SDA

inout sda;
reg sda_val;
assign sda = sda_val? 1’bz: 1’b0;

Wanna write	to	SDA?

sda_val <= 0; //or 1 if desired :wq

Wanna read	to	SDA?

sda_val <= 1;
//wait clock cycle…
some_reg <= sda; //read from input

10/18/16

12

i2C	Operation

• Data	is	conveyed	on	SDA	(Either	from	Master	or	Slave	depending	on	
point	during	communication)
• SCL	is	50%	duty	cycle
• SDA	generally	changes	on	falling	edge	of	SCL	(isn’t	required)
• SDA	sampled	at	rising	edge	of	SCL
• Master	is	in	charge	of	setting	SCL	frequency	and	driving	it

Meanings	I:	(Start,	Stop,	Sampling)

SCL:

SDA:

Master	Claims	Bus	(START)
By	pulling	SDA	LOW	while	SCL	is	HIIdle	State

SDA	and	SCL	sit	HI

Data	from	SDA	sampled	@	posedge of	SCL

Data/State	on	SDA	transitions
@	negedge of	SCL*

*not	specified	but	probably	easiest	spot	to	do

Master	Releases	Bus	(STOP)
By	pulling	SDA	HI	while	SCL	is	HI

HI

LO

HI

LO

10/18/16

13

Meanings	II		Address

• First	thing	sent	by	Master	is	7	bit	address	(10	bit	in	more	modern	
i2C…has	some	leading	11111’s	in	it..don’t worry	about	that)

• If	a	device	on	the	bus	possesses	that	address,	it	acknowledges	
(ACK/NACK=0)	and	it	becomes	the	slave

• All	other	devices	(other	than	Master/Slave)	will	ignore	until	STOP	
signal	appears	later	on.

Meanings	III	(Read/Write	Bit)

• After	sending	address,	a	Read/Write	Bit	is	specified	by	Master	on	
SDA:	
• If	Write	(0)	is	specified,	the	next	byte	will	be	a	register	to	write	to,	and	
following	bytes	will	be	information	to	write	into	that	register
• If	Read	(1)	is	specified,	the	Slave	will	start	sending	data	out,	with	the	Master	
acknowledging	after	every	byte	(until	it	wants	data	to	not	be	sent	anymore)

10/18/16

14

Meanings	IV	(ACK/NACK)

• After	every	8	bits,	it	is	the	listener’s	job	to	acknowledge	or	not	
acknowledge	the	data	just	sent	(called	an	ACK/NACK)
• Transmitter	pulls	SDA	HI	and	listens	for	next	reading	(@posedge of	
SCL):
• If	LOW,	then	receiver	acknowledges	data
• If	remains	HI,	no	acknowledgement

• Transmitter/Receiver	act	accordingly

Meanings	V
• For	Master	to	write	to	Slave:

• START
• Send	Device	Address	(with	Write	bit)
• Send	register	you	want	to	write	to	
• Send	data…until	you’re	satisfied
• STOP

• For	Master	to	read	from	Slave:
• START
• Send	Device	Address	(with	Write	bit)
• Send	register	you	want	to	read	from
• ReSTART communication
• Send	Device	Address	(With	Read	bit)
• Read	in	bits
• After	every	8	bits,	it	is	Master’s	job	to	acknowledge	Slave…continued	acknowledgement	leads	
to	continued	data	out	by	Slave.		

• Not-Acknowledge	says	“no	more	data	to	Slave”
• STOP	leads	to	Master	ceasing	all	communication

10/18/16

15

Implementing	i2C	on	FPGA	with	MPU9250:
• Made	master	i2C	controller	in	Verilog
• Used	MPU9250	Data	sheet:	42	pages	(basic	functionality,	timing	
requirements,	etc…)
• MPU9250	Register	Map:	55	pages

State-Machine	
Implementation	of	
i2C	Master

• Continuously	reads	2	bytes	
starting	at	the	0x3B	register						(X	
accelerometer	data)
• Print	out	value	in	hex	in	LEDs
• 34	States
• Clocked	at	200kHz,	and	creates	
100	kHz	SCL
• Change	SDA	on	falling	edge	of	
SCL
• Sample	SDA	on	rising	edge	of	SCL

10/18/16

16

State-Machine	
Implementation	of	
i2C	Master
• Redundant	states	(repeated	
READ/WRITE,	ADDRESS,	ACK/NACK,	
etc…)

• ARM	manual	describes	~20	state	FSM	

• Included	code	on	site	for	
reference/starting	point

• Diagram:	on	next	page	for	reference

…200	more	lines

IDLE START1
ADDRESS1

ADDRESS2

READWRITE1

REGISTER1

REGISTER2

ACKNACK1A

ACKNACK1C

IDLE

ACKNACK2AACKNACK2C

IDLE

STOP

READ2

READ1

START2

ADDRESS3

ADDRESS4

READWRITE2

ACKNACK3A

ACKNACK3C

IDLE

READ3

READ4
ACK4

NACK

NACK

ACK

NACK

ACK

NACK
ACK

7x

7x
8x

8x

8x

10/18/16

17

Communication	Part

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4
MPU9250

…
SCL

SDA

Communication	Part	

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4 MPU9250

Device	Address	(0x68)
Write=0

Acknowledge=0

Device	Register	(0x3B)

Acknowledge=0

Device	Address	(0x68)

Read=1

Data	Read	InStart

…
SCL

SDA

ReStart

10/18/16

18

Communication	Part	

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4 MPU9250

…
SCL

SDA

“I	claim	this	bus”

“Hey,	0x68…”

“I	wanna tell	
you	something”

“I’m	here.	Sounds	good”

“Look	at	your	
0x6B	register”

“OK”

“Different	thought”

“Hey,	0x68…”

“Read	to	me	
from	where
you’re	looking”

“For	sure”

“0x6D”

”More,	please”

MPU9250	(Slave)	DialogNexys4	(Master)	Dialog

Communication	in	Real-Life: Data	being	sent	from	MPU9250

Triggered	on	leaving	IDLE	state	

SCL	=	Purple

SDA	=	Yellow

10/18/16

19

Running and	reading	X	acceleration:

16’hFD88	=	16’b1111_1101_1000_1000		(2’s	complement)
Flip	bits	to	get	magnitude:	16’b0000_0010_0111_0111
=-315
Full-scale	(default	+/- 2g)		
-315/(2**15)*2g	=	-0.02g	Jmakes	sense

16’h4088	=	16’b0100_0000_1000_1000		(2’s	complement)
Leave	bits	to	get	magnitude:	16’b0100_0000_1000_1000
=+16520
Full-scale	(default	+/- 2g)
-16520/(2**15)*2	=	+1.01g			Jmakes	sense!

Horizontal: Vertical:

HOOKUP

Clock-Stretching	(Cool	part	of	i2C!!!)

SCL:

• Normally	Master	drives	SCL,	but	since	Master	drives	SCL	high	by	going	
hiZ,	it	leaves	the	option	open	for	Slave	to	step	in	and	prevent	SCL	
from	going	high	by	setting	SCL	LOW

Master	wanted	to	pull	SCL	HI	but	slave	
prevents	by	going	LOW	

(red	never	happens)

Once	Slave	goes	HiZ again,	Master	
picks	back	up	on	SCL

• Allows	Slave	a	way	to	buy	time/slow	down	things	(if	it	requires	
multiple	clock	cycles	to	process	incoming	data	and/or	generate	
output)

😻

10/18/16

20

Final	Thoughts…What	about	SPI	or	Serial?

• If	you	can	implement	i2C,	the	others	are	easier.
• SPI	is	also	a	little	less	standardized
• Generally	with	communication	protocols,	the	more	wires,	the	easier	
the	protocol/less	overhead
• SPI	(four	wires)
• Serial	TX/RX	(little	bit	more	complicated,	but	not	too	bad)

• Check	out	the	example	i2C	code	from	this	lecture…see	if	you	can	add	
clock-stretching!	(not	required)

