6.111 Introductory Digital Systems Laboratory

Fall 2016
Lecture PSet \#2
Due: Thu, 09/15/16
Problem 1. A certain function F has the following truth table:

A	B	C	F(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(A) Write a sum-of-products expression for F .
(B) Write a minimal sum-of-products expression for F (use Karnaugh maps). Show a combinational circuit that implements F using only INV and NAND gates (make sure that you use the right gate symbols with bubbles placed so that inversions are cancelled).
(C) Implement $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ using only the 4-to-1 multiplexer with following signals available as inputs: the constants 0 and 1 ; signals $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or their inversions.
(D) Write a product-of-sums expression for F and minimize using Karnaugh maps

Problem 2.

Consider the following circuit that implements the 2-input function $\mathrm{H}(\mathrm{A}, \mathrm{B})$:

(see other side)
(A) Write a truth table for this circuit
(B) Give a sum-of-products expression that corresponds to the truth table in (A) (the expression does not have to be minimal sum-of-products) and check if it is minimal using a Karnaugh map. If not, provide a minimized sum-of-products.
(C) Using the following table of timing specifications for each component (roughly corresponding to a 45 nm CMOS technology - state of the art circa 2014: 14nm), what are $t_{C D}$ and $t_{P D}$ for the circuit shown above? (Write-out the delays that contribute to each of the two.)

Gate	$t_{C D}[\mathrm{ps}]$	$t_{P D}[\mathrm{ps}]$
I	5	15
ND2	7	25
AN2	8	45
NR2	9	35
OR2	11	55

Problem 3. A certain 3-input function $G(A, B, C)$ has the implementation shown to the right. Give a minimal sum-of-products expression for G.

Problem 4. Implement the 2-bit adder function (i.e., 2-bit binary number AB plus 2-bit binary number CD yields a 3-bit result XYZ) using 4:1 multiplexers.
(A) Give the truth table showing the values for the outputs X, Y and Z given all possible combinations of the inputs A, B, and C, D.
(B) Show how to implement X , Y and Z using the minimal number of 4:1 multiplexers. You can assume you have only the constants 0 and 1 ; the inputs (but not its complements) and 4:1 multipliers. How many $4: 1$ multiplexers are needed?

