
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2016

Lecture PSet #5
Due: Tue, 09/29/16

This Lecture PSet requires ISE. You can use the lab systems or download ISE WebPACK
Design Software from Xilinx. The download is huge but is useful for writing Verilog and
running simulation outside of the lab. The Lecture PSet must be submitted online as one
pdf. Handwritten solutions will not be accepted except as noted.

Problem 1. FSMs are often used to generate sequences of waveforms necessary to
communicate with a component. Memory chips (DRAMs) required several control
signals to be asserted in a particular sequence to perform a memory read. Memory is
arranged in a grid of columns and rows. Column and row addresses are shared on one
address bus. Row address is presented on the address bus and RAS (Row Address Strobe)
is used to strobe in the row address. Some time later, row address is removed and column
address is present and CAS (Column Address Strobe) is used to strobe in the column
address. The following figure shows a control module and the waveforms it must generate
in response to a read request:

The module sits idle with RAS=1, MUX=0 and CAS=1 until it detects REQ=1 on the
rising edge of CLK. In the first cycle of the request it should assert RAS=0, in the second
cycle MUX=1 and in the third cycle CAS=0. These signals are held during the fourth
cycle and return to their idle values in the fifth cycle. The module then waits for a new
request; it ignores requests made while in the middle of processing the last request.

(A) Draw a state transition diagram for a FSM that will generate the appropriate sequence

of signals. (Use may draw the diagram using software or import a photo of a hand
drawn diagram). [2 points]

(B) Write the Verilog (using ISE) for the module, choosing a state encoding and providing
the appropriate combinational logic for generating the next state and output signals.
But there's a hitch (this is the real world)! Using combinatorial logic to create RAS,
MUX and CAS control signals could result in glitches . This is undesirable for
memories. Select a state encoding that will generate glitch free RAS, MUX and
CAS signals. There are at least two solutions to this problem. Attach your Verilog.
[4 points]

(C) Explain how RAS, MUX and CAS are glitch free. [3 points]

(C) Verify your design by running a simulation using the process outlined in Lab 2

exercise 1(b). (With ISE Webpack, the simulator is ISim.) Note that req is asserted
some time before the rising edge of clk. Attach your test bench and a screenshot of
the simulation. Your screenshot should be similar this one. [1 points]

