
Logic Synthesis
• Primitive logic gates, universal gates
• Truth tables and sum-of-products
• Logic simplification
• Karnaugh Maps, Quine-McCluskey
• General implementation techniques:

muxes and look-up tables (LUTs)

6.111 Fall 2017 1Lecture 2

Reminder: Lab #1 due this Thursday!

Lab Hours
Lab hours: eds.mit.edu/labs
Sun 1-11:45p, M-R 9-11:45p, F 9-5p

6.111 Fall 2017 Lecture 2 2

Late Policies

• Lab 1 check-offs – sign-up on checkoff queue in lab – FIFO during
staffed lab hours. Note bench number…

• Please don’t assume that you can wait until the last minute!
• No check-offs Saturday
• Checkoff must start no later than 9PM
• Lab grade = Checkoff + Verilog grade (equal weighting)
• Late labs:

• 20%/day late penalty (no penalty for Saturday)
• Max penalty 80% reduction.
• Penalty waived for first 5 slack days.This covers illness,

interviews, overload, etc. without S^3 involvement.
• A missing lab will result in a failing grade. We’ve learned that if

you’re struggling with the labs, the final project won’t go very well.

• Lpset – must be submitted on time.

6.111 Fall 2017 3Lecture 2

Conflicts

6.111 Fall 2017 Lecture 2 4

6.111 Fall 2017 5

Schematics & Wiring

• IC power supply connections generally not
drawn. All integrated circuits need power!

• Use standard color coded wires to avoid
confusion.

– red: positive
– black: ground or common reference point
– Other colors: signals

• Circuit flow, signal flow left to right
• Higher voltage on top, ground negative voltage

on bottom
• Neat wiring helps in debugging!

6.111 Fall 2017 6

Wire Gauge

• Wire gauge: diameter is inversely
proportional to the wire gauge number.
Diameter increases as the wire gauge
decreases. 2, 1, 0, 00, 000(3/0) up to 7/0.

• Resistance
– 22 gauge .0254 in 16 ohm/1000 feet
– 12 gauge .08 in 1.5 ohm/1000 feet
– High voltage AC used to reduce loss

• 1 cm cube of copper has a resistance of 1.68
micro ohm (resistance of copper wire scales
linearly : length/area)

CMOS Forever?

6.111 Fall 2017 Lecture 2 7

CMOS Forever?

6.111 Fall 2017 Lecture 2 8

6.111 Fall 2017 Lecture 2 9

* Intel

*

Timing Specifications
Propagation delay (tPD): An upper bound on the delay

from valid inputs to valid
outputs (aka “tPD,MAX”)

Design goal:
minimize
propagation
delay

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

6.111 Fall 2017 Lecture 2 10

Contamination Delay
an optional, additional timing spec

VOUT > tCD> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need
tCD?

Usually not… it’ll be
important when we
design circuits with
registers (coming
soon!)

If tCD is not
specified, safe to
assume it’s 0.

Contamination delay(tCD): A lower bound on the delay
from invalid inputs to invalid
outputs (aka “tPD,MIN”)

6.111 Fall 2017 Lecture 2 11

The Combinational Contract

A B
A B
0 1
1 0

tPD propagation delay
tCD contamination delay

A
B

Must be ___________

Must be ___________

Note:
1. No Promises during
2. Default (conservative) spec: tCD = 0

< tPD

> tCD

6.111 Fall 2017 Lecture 2 12

Functional Specifications

Output “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A

input B

input C

output Y

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An concise, unambiguous technique for giving the functional
specification of a combinational device is to use a truth table to
specify the output value for each possible combination of input values
(N binary inputs -> 2N possible combinations of input values).

3 binary inputs
so 23 = 8 rows in our truth table

6.111 Fall 2017 13Lecture 2

Here’s a Design Approach

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

1. Write out our functional spec as a truth
table

2. Write down a Boolean expression with
terms covering each ‘1’ in the output:

This approach creates equations of a
particular form called

SUM-OF-PRODUCTS

Sum (+): ORs
Products (•): ANDs

Y  A  B C  A  B C  A  B C  A  B C

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

6.111 Fall 2017 14Lecture 2

S-O-P Building Blocks

INVERTER:  A

A Z
0 1
1 0

AND:  A  B

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

OR:  A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

Bubble indicates
inversion

6.111 Fall 2017 15Lecture 2

Straightforward Synthesis

We can use
SUM-OF-PRODUCTS

to implement any logic
function.

Only need 3 gate types:
INVERTER, AND, OR

Propagation delay:
• 3 levels of logic
• No more than 3 gate delays assuming gates with an arbitrary

number of inputs. But, in general, we’ll only be able to use gates
with a bounded number of inputs (bound is ~4 for most logic
families).

6.111 Fall 2017 16Lecture 2

Y  A  B C  A  B C  A  B C  A  B C

ANDs and ORs with > 2 inputs

 A  B C

 A  B C  D

 A  B C  D

Which one should I use?

Chain: Propagation delay increases
linearly with number of inputs

Tree: Propagation delay increases
logarithmically with number of inputs

6.111 Fall 2017 17Lecture 2

SOP w/ 2-input gates

INV AND2 OR2
tPD 8ps 15ps 18ps
tC
D

1ps 3ps 3ps

Previous example restricted to 2-input gates:

6.111 Fall 2017 18Lecture 2

Y  A  B C  A  B C  A  B C  A  B C

Using the timing specs given to the
left, what are tPD and tCD for this
combinational circuit?

Hint: to find overall tPD we need to
find max tPD considering all paths
from inputs to outputs.

More Building Blocks

NAND (not AND)

 A  B

NOR (not OR)

 A  B

XOR (exclusive OR)

 A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS gates are naturally inverting so we want to use NANDs and NORs
in CMOS designs…

XOR is very useful when implementing
parity and arithmetic logic. Also used
as a “programmable inverter”: if A=0,
Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

A B Z
0 0 1
0 1 0
1 0 0
1 1 0

6.111 Fall 2017 19Lecture 2

NAND – NOR Internals

6.111 Fall 2017 Lecture 2 20

Y
Y

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Note that chaining/treeing
technique doesn’t work directly for creating wide fan-in
NAND or NOR gates. But wide fan-in gates can be
created with trees involving both NANDs, NORs and
inverters.

=
=

=

=
=

=

6.111 Fall 2017 21Lecture 2

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of
De Morgan’s laws:

NAND form:

NOR form:

So the following “SOP” circuits are all equivalent (note the use
of De Morgan-ized symbols to make the inversions less
confusing):

A  B  A  B

A  B  A  B

=

=

AND/OR form NAND/NAND form NOR/NOR form
All these “extra” inverters may seem less
than ideal but often the buffering they
provide will reduce the capacitive load on
the inputs and increase the output drive.

This will be handy in Lab 1 since
you’ll be able to use just 7400’s
to implement your circuit!

De Morgan-ized NAND symbol

De Morgan-ized NOR symbol

De Morgan-ized
Inverter

6.111 Fall 2017 22Lecture 2

Logic Simplification

• Can we implement the same function with fewer gates? Before
trying we’ll add a few more tricks in our bag.

• BOOLEAN ALGEBRA:
OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:
De Morgan’s Law:
Reduction:

a 11 a  0  a a  a  a
aaaaaa  001

a  b  b  a a  b  b  a
(a  b)  c  a  (b  c) (a  b)  c  a  (b  c)
a  (b  c)  a  b  a  c a  b  c  (a  b)  (a  c)
a  a 1 a  a  0
a  a  b  a a  a  b  a  b a  (a  b)  a a  (a  b)  a  b

a  b  a  b  b (a  b)  (a  b)  b
a  b  a  b a  b  a  b

Key to simplification: equations that match the pattern of the LHS
(where “b” might be any expression) tell us that when “b” is true, the
value of “a” doesn’t matter. So “a” can be eliminated from the equation,
getting rid of two 2-input ANDs and one 2-input OR.

6.111 Fall 2017 23Lecture 2

Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:

Using the identity

  AA

For any expression α and variable A:

Y  A  B C  A  B C  A  B C  A  B C

Y  A  B C  A  B C  A  B C  A  B C

Y  B C  A C  A  B

The tricky part: some terms participate in more than one
reduction so can’t do the algebraic steps one at a time!

6.111 Fall 2017 24Lecture 2

Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right
edge. It’s really just a flattened out cube.

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled in
with the values from our truth table:

K-Map: a truth table arranged so that terms which differ by exactly one
variable are adjacent to one another so we can see potential reductions
easily.

Why did he
shade that
row Gray?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

6.111 Fall 2017 25Lecture 2

On to Hyperspace

Here’s a 4-variable K-map:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables – K-maps are hard to draw and
use in three dimensions (5 or 6 variables) and we’re not equipped
to use higher dimensions (> 6 variables)!

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

6.111 Fall 2017 26Lecture 2

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling
adjacent subcubes of 1s. A subcube is just a lower dimensional
cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Three 2x1 subcubes Three 2x2 subcubes

6.111 Fall 2017 27Lecture 2

Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

We’re done!

AB
00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

Y  A C  B C  A  B

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Z  B  D B C  A C

6.111 Fall 2017 28Lecture 2

Morse Code to ASCII Exercise

• Morse code – variable length encoding, 6 bits max
– Letter “e” 
– Period   

• ASCII (American Standard Code for Information Interchange)
- 8 bit binary representation of text

• How many bits are required to represent any morse code input?

6.111 Fall 2017 Lecture 2 29

6.111 Fall 2017 Lecture 2 30

Two-Level Boolean Minimization
Two-level Boolean minimization is used to find a sum-of-products
representation for a multiple-output Boolean function that is
optimum according to a given cost function. The typical cost
functions used are the number of product terms in a two-level
realization, the number of literals, or a combination of both. The
two steps in two-level Boolean minimization are:

•Generation of the set of prime product-terms for a given function.

•Selection of a minimum set of prime terms to implement the
function.

We will briefly describe the Quine-McCluskey method which was
the first algorithmic method proposed for two-level minimization
and which follows the two steps outlined above. State-of-the-art
logic minimization algorithms are all based on the Quine-McCluskey
method and also follow the two steps above.

6.111 Fall 2017 31Lecture 2

Prime Term Generation
Start by expressing your Boolean function using 0-
terms (product terms with no don’t care care entries).
For compactness the table for example 4-input, 1-
output function F(w,x,y,z) shown to the right includes
only entries where the output of the function is 1 and
we’ve labeled each entry with it’s decimal equivalent.

W X Y Z label
0 0 0 0 0
0 1 0 1 5
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 1 0 14
1 1 1 1 15

Look for pairs of 0-terms that differ in only one bit position and merge
them in a 1-term (i.e., a term that has exactly one ‘–’ entry). Next 1-terms
are examined in pairs to see if the can be merged into 2-terms, etc. Mark
k-terms that get merged into (k+1) terms so we can discard them later.

0, 8 -000
5, 7 01-1
7,15 -111
8, 9 100-
8,10 10-0
9,11 10-1

10,11 101-
10,14 1-10
11,15 1-11
14,15 111-

1-terms: 8, 9,10,11 10--
10,11,14,15 1-1-

2-terms:

3-terms: none!

Label unmerged terms:
these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to
Srini Devadas

6.111 Fall 2017 32Lecture 2

F = f(W,X,Y,Z)

Prime Term Table
An “X” in the prime term table in row R and column K signifies that the 0-
term corresponding to row R is contained by the prime corresponding to
column K.

A B C D E
0000 X
0101 . X . . .
0111 . X X . .
1000 X . . X .
1001 . . . X .
1010 . . . X X
1011 . . . X X
1110 X
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding 0-term is not contained in any other prime.

A is essential -000
B is essential 01-1

D is essential 10--

E is essential 1-1-

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum
set of primes (columns)
such that there is at least
one “X” in every row. This
is the classical minimum
covering problem.

6.111 Fall 2017 33Lecture 2

F = f(W,X,Y,Z) = XYZ + WXZ + WX + WY

Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

FA

A B

Co Ci

S

The sum S doesn’t have a simple sum-of-products implementation
even though it can be implemented using only two 2-input XOR
gates.

Full Adder

C/AB 00 01 11 10

0 0 0 1 0

1 0 1 1 1

C/AB 00 01 11 10

0 0 1 0 1

1 1 0 1 0

S

CO

S  A B C  A B C  A B C  A B C  A BCi

CO  A C  B C  A  B

6.111 Fall 2017 34Lecture 2

Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

A

B

C

0

1

schematic Gate
symbol

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree

6.111 Fall 2017 35Lecture 2

Systematic Implementation of
Combinational Logic

Consider implementation of some
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

6.111 Fall 2017 36Lecture 2

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this
time let’s use a 4-input mux

Full-Adder
Carry Out Logic

0
1
2
3

A,B

Cout

0
Cin
Cin
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

6.111 Fall 2017 37Lecture 2

Xilinx Virtex II FPGA

XC2V6000:
• 957 pins, 684 IOBs
• CLB array: 88 cols x 96/col = 8448 CLBs
• 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
• 18x18 multipliers = 6 cols x 24/col = 144 multipliers

Figures from Xilinx Virtex II datasheet6.111 Fall 2017 38Lecture 2

Virtex II CLB

Figures from Xilinx Virtex II datasheet

16 bits of RAM which can be configured as a 16x1
single- or dual-port RAM, a 16-bit shift register,
or a 16-location lookup table

6.111 Fall 2017 39Lecture 2

Virtex II Slice Schematic

Figures from Xilinx Virtex II datasheet

6.111 Fall 2017 40Lecture 2

Virtex II Sum-of-products

Figures from Xilinx Virtex II datasheet

6.111 Fall 2017 41Lecture 2

Spartan 6 FPGA

6.111 Fall 2017 Lecture 2 42

Spartan 6 SliceM Schematic

Figures from Xilinx
Spartan 6 CLB datasheet

6.111 Fall 2017 43Lecture 2

44

Oscilloscope

Menu driven
soft key/buttons

Cursor
controls

6.111 Fall 2017

45

Oscilloscope Controls

• Auto Set, soft menu
keys

• Trigger
– channel,
– slope,
– Level

• Input
– AC, DC coupling,
– 10x probe,
– 1khz calibration

source,
– probe calibration,
– bandwidth filter

• Signal measurement
– time,
– frequency,
– voltage
– cursors
– single sweep

• Image capture

6.111 Fall 2017

Gesture Controlled Drone
Fall 2014

• Track hands with a camera and
determine x,y coordinates

• Based on movement of the
coordinates, recognize gestures.

• Generate real time digital signals
and convert to analog format for
transmission to drone – controlling
pitch, roll, hover

• Innovation: using hand motion and
recognition of gestures to control
flight

