
Logic Synthesis
• Primitive logic gates, universal gates
• Truth tables and sum-of-products
• Logic simplification
• Karnaugh Maps, Quine-McCluskey
• General implementation techniques: 

muxes and look-up tables (LUTs)
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Reminder: Lab #1 due this Thursday!



Lab Hours
Lab hours:    eds.mit.edu/labs
Sun 1-11:45p, M-R 9-11:45p,  F 9-5p
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Late Policies

• Lab 1 check-offs  – sign-up on checkoff queue in lab – FIFO during 
staffed lab hours.   Note bench number…

• Please don’t assume that you can wait until the last minute!
• No check-offs Saturday
• Checkoff must start no later than 9PM
• Lab grade = Checkoff + Verilog grade (equal weighting)
• Late labs:  

• 20%/day late penalty (no penalty for Saturday)
• Max penalty 80% reduction.
• Penalty waived for first 5 slack days.This covers illness, 

interviews, overload, etc. without S^3 involvement.
• A missing lab will result in a failing grade. We’ve learned that if 

you’re struggling with the labs, the final project won’t go very well.

• Lpset – must be submitted on time.
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Conflicts
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Schematics & Wiring

• IC power supply connections generally not 
drawn. All integrated circuits need power!

• Use standard color coded wires to avoid 
confusion.

– red: positive 
– black: ground or common reference point
– Other colors:  signals

• Circuit flow, signal flow left to right
• Higher voltage on top, ground negative voltage 

on bottom
• Neat wiring helps in debugging!
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Wire Gauge

• Wire gauge:  diameter is inversely 
proportional to the wire gauge number. 
Diameter increases as the wire gauge 
decreases. 2, 1, 0, 00, 000(3/0) up to 7/0.

• Resistance
– 22 gauge .0254 in  16 ohm/1000 feet
– 12 gauge .08 in    1.5 ohm/1000 feet
– High voltage AC used to reduce loss

• 1 cm cube of copper has a resistance of 1.68 
micro ohm (resistance of copper wire scales 
linearly : length/area)



CMOS Forever?
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CMOS Forever?
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Timing Specifications
Propagation delay (tPD): An upper bound on the delay 

from valid inputs to valid 
outputs (aka “tPD,MAX”)

Design goal:
minimize
propagation
delay

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH
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Contamination Delay
an optional, additional timing spec

VOUT > tCD> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need 
tCD?

Usually not… it’ll be 
important when we 
design circuits with 
registers (coming 
soon!)

If tCD is not 
specified, safe to 
assume it’s 0.

Contamination delay(tCD): A lower bound on the delay 
from invalid inputs to invalid 
outputs (aka “tPD,MIN”)
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The Combinational Contract

A B
A  B
0  1
1  0

tPD propagation delay
tCD contamination delay

A
B

Must be ___________

Must be ___________

Note:
1. No Promises during 
2. Default (conservative) spec: tCD = 0

< tPD

> tCD
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Functional Specifications

Output “1” if at 
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after 
seeing valid inputs

input A

input B

input C

output Y

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An concise, unambiguous technique for giving the functional 
specification of a combinational device is to use a truth table to 
specify the output value for each possible combination of input values 
(N binary inputs -> 2N possible combinations of input values).

3 binary inputs
so 23 = 8 rows in our truth table
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Here’s a Design Approach

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

1. Write out our functional spec as a truth 
table

2. Write down a Boolean expression with 
terms covering  each ‘1’ in the output:

This approach creates equations of a 
particular form called

SUM-OF-PRODUCTS

Sum (+): ORs
Products (•): ANDs

Y  A  B C  A  B C  A  B C  A  B C

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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S-O-P Building Blocks

INVERTER:  A 

A Z
0 1
1 0

AND:  A  B

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

OR:  A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

Bubble indicates
inversion
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Straightforward Synthesis

We can use
SUM-OF-PRODUCTS

to implement any logic
function.

Only need 3 gate types:
INVERTER, AND, OR

Propagation delay:
• 3 levels of logic
• No more than 3 gate delays assuming gates with an arbitrary 

number of inputs.  But, in general, we’ll only be able to use gates 
with a bounded number of inputs (bound is ~4 for most logic 
families).
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Y  A  B C  A  B C  A  B C  A  B C



ANDs and ORs with > 2 inputs

 A  B C

 A  B C  D

 A  B C  D

Which one should I use?

Chain: Propagation delay increases 
linearly with number of inputs

Tree: Propagation delay increases 
logarithmically with number of inputs
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SOP w/ 2-input gates

INV AND2 OR2
tPD 8ps 15ps 18ps
tC
D

1ps 3ps 3ps

Previous example restricted to 2-input gates:
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Y  A  B C  A  B C  A  B C  A  B C

Using the timing specs given to the 
left, what are tPD and tCD for this 
combinational circuit?

Hint: to find overall tPD we need to 
find max tPD considering all paths 
from inputs to outputs.



More Building Blocks

NAND (not AND)

 A  B

NOR (not OR)

 A  B

XOR (exclusive OR)

 A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS gates are naturally inverting so we want to use NANDs and NORs 
in CMOS designs…

XOR is very useful when implementing 
parity and arithmetic logic.  Also used 
as a “programmable inverter”: if A=0, 
Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with 
chains or trees of 2-input XORs.

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

A B Z
0 0 1
0 1 0
1 0 0
1 1 0
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NAND – NOR Internals
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Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs 
(or, equivalently, NORs).  Note that chaining/treeing 
technique doesn’t work directly for creating wide fan-in 
NAND or NOR gates.  But wide fan-in gates can be 
created with trees involving both NANDs, NORs and 
inverters.

=
=

=

=
=

=
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SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of 
De Morgan’s laws:

NAND form:

NOR form:

So the following “SOP” circuits are all equivalent (note the use 
of De Morgan-ized symbols to make the inversions less 
confusing):

A  B  A  B

A  B  A  B

=

=

AND/OR form NAND/NAND form NOR/NOR form
All these “extra” inverters may seem less 
than ideal but often the buffering they 
provide will reduce the capacitive load on 
the inputs and increase the output drive.

This will be handy in Lab 1 since 
you’ll be able to use just 7400’s 
to implement your circuit!

De Morgan-ized NAND symbol

De Morgan-ized NOR symbol

De Morgan-ized
Inverter
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Logic Simplification

• Can we implement the same function with fewer gates? Before 
trying we’ll add a few more tricks in our bag.

• BOOLEAN ALGEBRA:
OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:
De Morgan’s Law:
Reduction:

a 11 a  0  a a  a  a
aaaaaa  001

a  b  b  a a  b  b  a
(a  b)  c  a  (b  c) (a  b)  c  a  (b  c)
a  (b  c)  a  b  a  c a  b  c  (a  b)  (a  c)
a  a 1 a  a  0
a  a  b  a a  a  b  a  b a  (a  b)  a a  (a  b)  a  b

a  b  a  b  b (a  b)  (a  b)  b
a  b  a  b a  b  a  b

Key to simplification: equations that match the pattern of the LHS 
(where “b” might be any expression) tell us that when “b” is true, the 
value of “a” doesn’t matter.  So “a” can be eliminated from the equation, 
getting rid of two 2-input ANDs and one 2-input OR.
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Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:

Using the identity

  AA

For any expression α and variable A:

Y  A  B C  A  B C  A  B C  A  B C

Y  A  B C  A  B C  A  B C  A  B C

Y  B C  A C  A  B

The tricky part: some terms participate in more than one 
reduction so can’t do the algebraic steps one at a time!

6.111 Fall 2017 24Lecture 2



Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right 
edge.   It’s really just a flattened out cube. 

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled in 
with the values from our truth table:

K-Map: a truth table arranged so that terms which differ by exactly one 
variable are adjacent to one another so we can see potential  reductions 
easily.

Why did he
shade that
row Gray?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1
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On to Hyperspace

Here’s a 4-variable K-map:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables – K-maps are hard to draw and 
use in three dimensions (5 or 6 variables) and we’re not equipped 
to use higher dimensions (> 6 variables)!

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1
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Finding Subcubes

We can identify clusters of “irrelevent” variables by circling 
adjacent subcubes of 1s. A subcube is just a lower dimensional 
cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Three 2x1 subcubes Three 2x2 subcubes
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Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

We’re done!

AB
00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

Y  A C  B C  A  B

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Z  B  D B C  A C
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Morse Code to ASCII Exercise

• Morse code – variable length encoding, 6 bits max
– Letter “e”  
– Period    

• ASCII (American Standard Code for Information Interchange)
- 8 bit binary representation of text

• How many bits are required to represent any morse code input?
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Two-Level Boolean Minimization
Two-level Boolean minimization is used to find a sum-of-products 
representation for a multiple-output Boolean function that is 
optimum according to a given cost function.  The typical cost 
functions used are the number of product terms in a two-level 
realization, the number of literals, or a combination of both. The 
two steps in two-level Boolean minimization are:

•Generation of the set of prime product-terms for a given function.

•Selection of a minimum set of prime terms to implement the 
function.

We will briefly describe the Quine-McCluskey method which was 
the first algorithmic method proposed for two-level minimization 
and which follows the two steps outlined above.  State-of-the-art 
logic minimization algorithms are all based on the Quine-McCluskey
method and also follow the two steps above.

6.111 Fall 2017 31Lecture 2



Prime Term Generation
Start by expressing your Boolean function using 0-
terms (product terms with no don’t care care entries).   
For compactness the table for example 4-input, 1-
output function F(w,x,y,z) shown to the right includes 
only entries where the output of the function is 1 and 
we’ve labeled each entry with it’s decimal equivalent.

W X Y Z  label
0 0 0 0    0
0 1 0 1    5
0 1 1 1    7
1 0 0 0    8
1 0 0 1    9
1 0 1 0   10
1 0 1 1   11
1 1 1 0   14
1 1 1 1   15

Look for pairs of 0-terms that differ in only one bit position and merge 
them in a 1-term (i.e., a term that has exactly one ‘–’ entry).  Next 1-terms 
are examined in pairs to see if the can be merged into 2-terms, etc.  Mark 
k-terms that get merged into (k+1) terms so we can discard them later.

0, 8  -000
5, 7  01-1
7,15  -111
8, 9  100-
8,10  10-0
9,11  10-1

10,11  101-
10,14  1-10
11,15  1-11
14,15  111-

1-terms: 8, 9,10,11  10--
10,11,14,15  1-1-

2-terms:

3-terms: none!

Label unmerged terms: 
these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to 
Srini Devadas
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Prime Term Table
An “X” in the prime term table in row R and column K signifies that the 0-
term corresponding to row R is contained by the prime corresponding to 
column K.

A B C D E
0000  X . . . .
0101  . X . . .
0111  . X X . .
1000  X . . X .
1001  . . . X .
1010  . . . X X
1011  . . . X X
1110  . . . . X
1111  . . X . X

Each row with a single X signifies an essential prime term since any prime 
implementation will have to include that prime term because the 
corresponding 0-term is not contained in any other prime.

A is essential  -000
B is essential   01-1

D is essential   10--

E is essential   1-1-

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum 
set of primes (columns) 
such that there is at least 
one “X” in every row.  This 
is the classical minimum 
covering problem.
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Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

FA

A B

Co Ci

S

The sum S doesn’t have a simple sum-of-products implementation 
even though it can be implemented using only two 2-input XOR 
gates.

Full Adder

C/AB 00 01 11 10 

0 0 0 1 0 

1 0 1 1 1 
 

 

C/AB 00 01 11 10 

0 0 1 0 1 

1 1 0 1 0 
 

 

S

CO

S  A B C  A B C  A B C  A B C  A BCi

CO  A C  B C  A  B
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Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

A

B

C

0

1

schematic Gate
symbol

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree
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Systematic Implementation of
Combinational Logic

Consider implementation of some 
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this 
time let’s use a 4-input mux

Full-Adder
Carry Out Logic

0
1
2
3

A,B

Cout

0
Cin
Cin
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Xilinx Virtex II FPGA

XC2V6000:
• 957 pins, 684 IOBs
• CLB array: 88 cols x 96/col = 8448 CLBs
• 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
• 18x18 multipliers = 6 cols x 24/col = 144 multipliers

Figures from Xilinx Virtex II datasheet6.111 Fall 2017 38Lecture 2



Virtex II CLB

Figures from Xilinx Virtex II datasheet

16 bits of RAM which can be configured as a 16x1 
single- or dual-port RAM, a 16-bit shift register, 
or a 16-location lookup table
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Virtex II Slice Schematic

Figures from Xilinx Virtex II datasheet
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Virtex II Sum-of-products

Figures from Xilinx Virtex II datasheet
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Spartan 6 FPGA
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Spartan 6 SliceM Schematic

Figures from Xilinx 
Spartan 6 CLB datasheet
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Oscilloscope

Menu  driven 
soft key/buttons

Cursor 
controls
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Oscilloscope Controls

• Auto Set, soft menu 
keys

• Trigger 
– channel, 
– slope, 
– Level

• Input
– AC, DC coupling, 
– 10x probe, 
– 1khz calibration 

source,
– probe calibration,
– bandwidth filter

• Signal measurement
– time, 
– frequency, 
– voltage
– cursors
– single sweep

• Image capture
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Gesture  Controlled Drone  
Fall 2014

• Track hands with a camera and 
determine x,y coordinates

• Based on movement of the 
coordinates, recognize gestures.

• Generate real time digital signals 
and convert to analog format for 
transmission to drone – controlling 
pitch, roll, hover

• Innovation: using hand motion and 
recognition of gestures to control 
flight




