

Arithmetic Circuits & Multipliers

- · Addition, subtraction
- · Performance issues
 - -- ripple carry
 - -- carry bypass
 - -- carry skip
- -- carry lookahead
- Multipliers

Reminder: Lab #3 due tonight!

Pizza Wed 6p

6.111 Fall 2017 Lecture 8

Sign extension

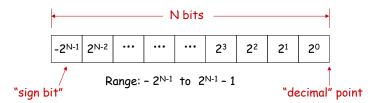
Consider the 8-bit 2's complement representation of:

$$42 = 00101010$$
 $-5 = \sim 00000101 + 1$ $= 11111010 + 1$ $= 11111011$

What is their 16-bit 2's complement representation?

$$42 = 000000000101010$$

Signed integers: 2's complement



8-bit 2's complement example:

$$11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -128 + 64 + 16 + 4 + 2 = -42$$

If we use a two's complement representation for signed integers, the same binary addition mod 2ⁿ procedure will work for adding positive and negative numbers (don't need separate subtraction rules). The same procedure will also handle unsigned numbers!

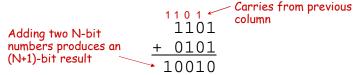
By moving the implicit location of "decimal" point, we can represent fractions too:

$$1101.0110 = -2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} = -8 + 4 + 1 + 0.25 + 0.125 = -2.625$$

6.111 Fall 2017 Lecture 8 2

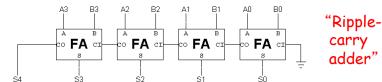
Adder: a circuit that does addition

Here's an example of binary addition as one might do it by "hand":



If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers...



6.111 Fall 2017 Lecture 8 3 6.111 Fall 2017 Lecture 8

"Full Adder" building block

The "half adder" circuit has only the A and B inputs

A	В	C	s	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C$$

$$CO = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$= (\overline{A} + A)BC + (\overline{B} + B)AC + AB(\overline{C} + C)$$

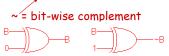
$$= BC + AC + AB$$

6.111 Fall 2017

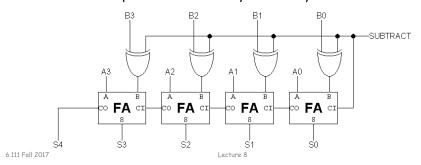
Tule 0

Subtraction: A-B = A + (-B)

Using 2's complement representation: -B = -B + 1



So let's build an arithmetic unit that does both addition and subtraction. Operation selected by *control input*:



Condition Codes

Besides the sum, one often wants four other bits of information from an arithmetic unit:

Z (zero): result is = 0

big NOR gate

N (negative): result is < 0

 S_{N-1}

C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001 from last FA

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111

$$V = A_{N-1}B_{N-1}\overline{S_{N-1}} + \overline{A_{N-1}}\overline{B_{N-1}}S_{N-1}$$

$$V = COUT_{N-1} \oplus CIN_{N-1}$$

To compare A and B, perform A-B and use condition codes:

Signed comparison:

LT $\mathbb{N} \oplus \mathbb{V}$ LE $\mathbb{Z} + (\mathbb{N} \oplus \mathbb{V})$ EQ \mathbb{Z} NE $\sim \mathbb{Z}$ GE $\sim (\mathbb{N} \oplus \mathbb{V})$ GT $\sim (\mathbb{Z} + (\mathbb{N} \oplus \mathbb{V}))$

Unsigned comparison:

LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

Condition Codes in Verilog

Z (zero): result is = 0

N (negative): result is < 0

C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111 wire signed [31:0] a,b,s;
wire z,n,v,c;
assign {c,s} = a + b;
assign z = ~|s;
assign n = s[31];
assign v = a[31]^b[31]^s[31]^c;

Might be better to use sum-ofproducts formula for V from previous slide if using LUT implementation (only 3 variables instead of 4).

Modular Arithmetic

The Verilog arithmetic operators (+,-,*) all produce full-precision results, e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a "word size" (many computers use 32 or 64 bits) and all arithmetic results are truncated to that number of bits, i.e., arithmetic is performed modulo $2^{\text{word size}}$.

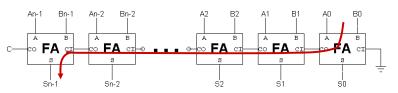
Using a fixed word size can lead to *overflow*, e.g., when the operation produces a result that's too large to fit in the word size. One can

- •Avoid overflow: choose a sufficiently large word size
- •<u>Detect</u> overflow: have the hardware remember if an operation produced an overflow trap or check status at end
- •Embrace overflow: sometimes this is exactly what you want, e.g., when doing index arithmetic for circular buffers of size 2^N .
- •<u>"Correct"</u> overflow: replace result with most positive or most negative number as appropriate, aka *saturating arithmetic*. Good for digital signal processing.

6.111 Fall 2017 Lecture 8

Speed: tpD of Ripple-carry Adder

$$C_O = AB + AC_I + BC_I$$



Worst-case path: carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001.

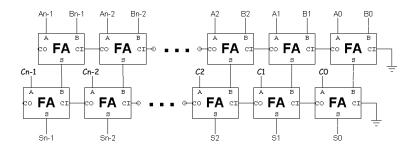
$$t_{PD} = (N-1)^* \underbrace{(t_{PD,OR} + t_{PD,AND})}_{CI \text{ to } CO} + \underbrace{t_{PD,XOR}}_{CI_{N-1} \text{ to } S_{N-1}} \approx \Theta(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

⊕(N) is read "order N": means that the latency of our adder grows at worst in proportion to the number of bits in the operands.

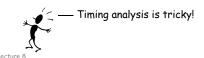
6.111 Fall 2017 Lecture 8

How about the t_{PD} of this circuit?



Is the t_{PD} of this circuit = 2 * $t_{PD,N-BIT\,RIPPLE}$?

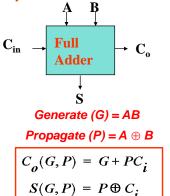
Nope! tpD of this circuit = tpD.N-BIT RIPPLE + tpD.FA!!!



Alternate Adder Logic Formulation

How to Speed up the Critical (Carry) Path? (How to Build a Fast Adder?)

A	В	C_{i}	S	C_{o}	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate



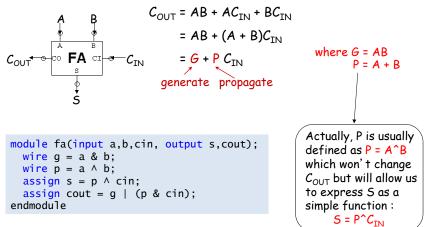
Note: can also use P = A + B for C_o

6,111 Fall 2017

11

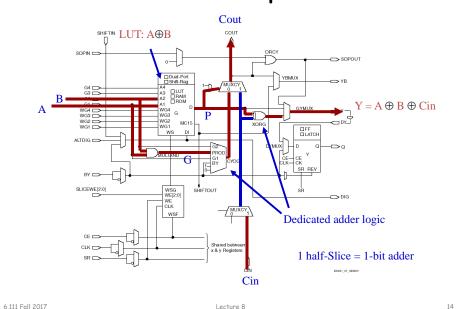
Faster carry logic

Let's see if we can improve the speed by rewriting the equations for $\mathcal{C}_{\text{OUT}}\!\!:$

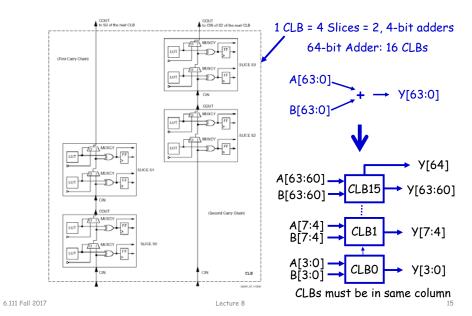


6.111 Fall 2017 Lecture 8 13

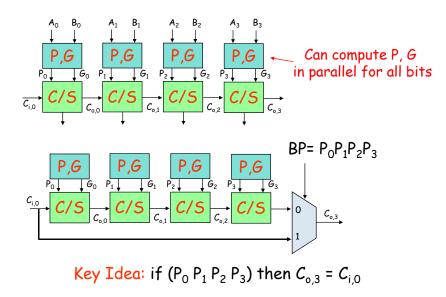
Virtex II Adder Implementation



Virtex II Carry Chain

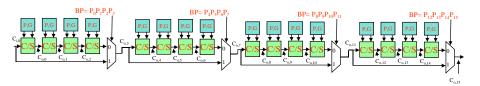


Carry Bypass Adder



6.111 Fall 2017 Lecture 8

16-bit Carry Bypass Adder



What is the worst case propagation delay for the 16-bit adder?

Assume the following for delay each gate:

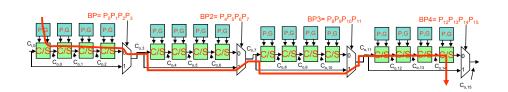
P, G from A, B: 1 delay unit

P, G, C_i to C_o or Sum for a C/S: 1 delay unit

2:1 mux delay: 1 delay unit

6.111 Fall 2017 Lecture 8

Critical Path Analysis



For the second stage, is the critical path:

$$BP2 = 0$$
 or $BP2 = 1$?

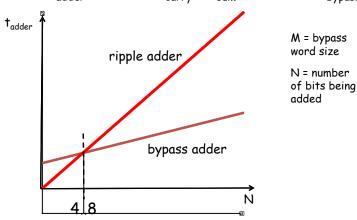
Message: Timing analysis is very tricky -Must carefully consider data dependencies for *false paths*

6.111 Fall 2017 Lecture 8 18

Carry Bypass vs Ripple Carry

Ripple Carry: $t_{adder} = (N-1) t_{carry} + t_{sum}$

Carry Bypass: $t_{adder} = 2(M-1) t_{carry} + t_{sum} + (N/M-1) t_{bypass}$



Carry Lookahead Adder (CLA)

• Recall that $C_{OUT} = G + P C_{IN}$ where G = A&B and $P = A^B$

• For adding two N-bit numbers:

$$\begin{split} C_{N} &= G_{N-1} + P_{N-1}C_{N-1} \\ &= G_{N-1} + P_{N-1}G_{N-2} + P_{N-1}P_{N-2}C_{N-2} \\ &= G_{N-1} + P_{N-1}G_{N-2} + P_{N-1}P_{N-2}G_{N-3} + \dots + P_{N-1}\dots P_{0}C_{IN} \end{split}$$

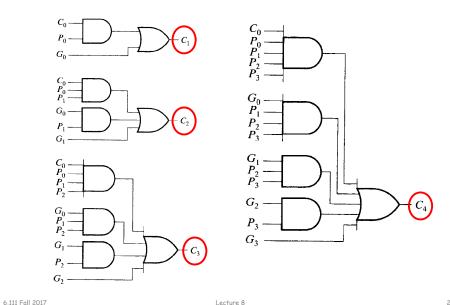
C_N in only 3 gate delays*:
1 for P/G generation, 1 for ANDs, 1 for final OR
*assuming gates with N inputs

• Idea: pre-compute all carry bits as $f(Gs,Ps,C_{IN})$

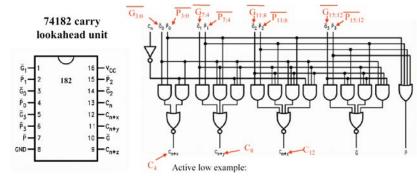
6.111 Fall 2017 Lecture 8 19 6.111 Fall 2017 Lecture 8

17

Carry Lookahead Circuits



The 74182 Carry Lookahead Unit



- high speed carry lookahead generator
- used with 74181 to extend carry lookahead beyond 4 bits
- correctly handles the carry polarity of the 181

$$\begin{split} C_{n+x} &= \overline{\overline{G0} \cdot \overline{P0} + \overline{G0} \cdot \overline{C_n}} \\ &= \overline{\overline{G0} \cdot \overline{P0} \cdot \overline{\overline{G0} \cdot \overline{C_n}}} \\ &= (G0 + P0) \cdot (G0 + C_n) = G0 + P0C_n \end{split}$$

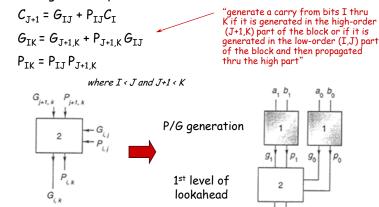
$$\begin{array}{l} \triangleright C_4 = G_{3:0} + P_{3:0}C_n \\ C_{n+y} = C_8 = G_{7:4} + P_{7:4}G_{3:0} + P_{7:4}P_{3:0}C_{1.0} = G_{7:0} + P_{7:0}C_n \\ C_{n+z} = C_{12} = G_{11:8} + P_{11:8}G_{7:4} + P_{11:8}P_{7:4}G_{3:0} + P_{11:8}P_{7:4}P_{3:0}C_n \\ = G_{11:0} + P_{11:0}C_n \end{array}$$

24

6.111 Fall 2017 Lecture 8 22

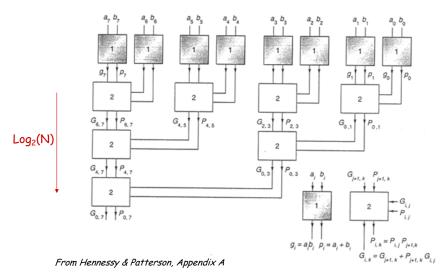
Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:



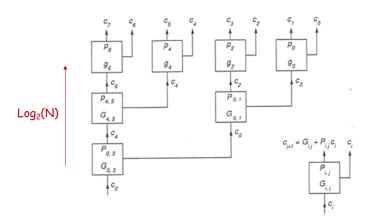
Hierarchical building block

8-bit CLA (P/G generation)



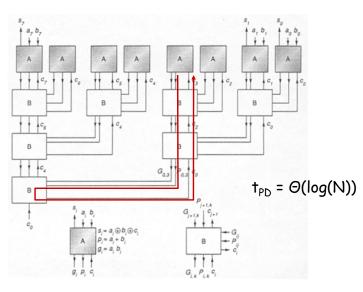
6.111 Fall 2017 Lecture 8 23 6.111 Fall 2017 Lecture 8

8-bit CLA (carry generation)



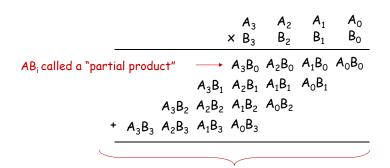
6.111 Fall 2017 Lecture 8 25

8-bit CLA (complete)



6.111 Fall 2017 Lecture 8

Unsigned Multiplication



Multiplying N-bit number by M-bit number gives (N+M)-bit result

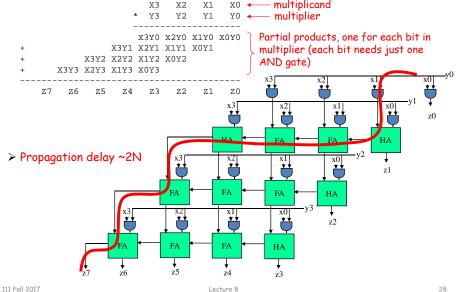
Easy part: forming partial products (just an AND gate since B_T is either 0 or 1) Hard part: adding M N-bit partial products

Lecture 8

27

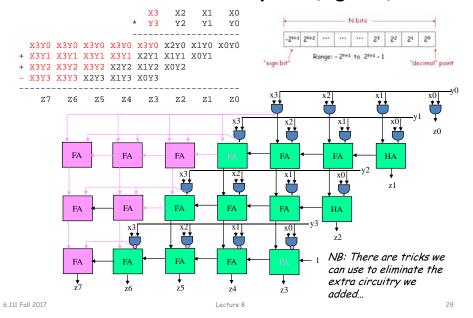
6.111 Fall 2017

Combinational Multiplier (unsigned)



6,111 Fall 2017 Lecture 8

Combinational Multiplier (signed!)



2's Complement Multiplication

(Baugh-Wooley)

Step 1: two's complement operands so high order bit is -2N-1. Must sign extend partial products and subtract the last one

					х3	X2	X1	X0
					* Y3	Y2	Y1	Y0
	X3Y0	X3Y0	X3Y0	X3Y0	X3Y0	X2Y0	X1Y0	X0Y0
+	X3Y1	X3Y1	X3Y1	X3Y1	X2Y1	X1Y1	X0Y1	
+	X3Y2	X3Y2	X3Y2	X2Y2	X1Y2	X0Y2		
-	X3Y3	X3Y3	X2Y3	X1Y3	X0Y3			
	Z 7	Z 6	Z 5	Z4	Z 3	Z2	Z1	z_0

Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement + 1).

```
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
    + X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
    + X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
                1 1 1
6 111 Fall 2017
```

Step 3: add the ones to the partial products and propagate the carries. All the sign extension bits go away!

```
X3Y0 X2Y0 X1Y0 X0Y0
         X3Y1 X2Y1 X1Y1 X0Y1
    X2Y2 X1Y2 X0Y2 X0Y2
X3Y3 X2Y3 X1Y3 X0Y3
  1 1 1 1
```

Step 4: finish computing the constants...

```
X3Y0 X2Y0 X1Y0 X0Y0
              X3Y1 X2Y1 X1Y1 X0Y1
       X2Y2 X1Y2 X0Y2 X0Y2
X3Y3 \overline{X2Y3} \overline{X1Y3} \overline{X0Y3}
```

Result: multiplying 2's complement operands takes just about same amount of hardware as multiplying unsigned operands!

30

32

Baugh Wooley Formulation - The Math

no insight required

Assuming X and Y are 4-bit twos complement numbers:

$$X = -2^3x_3 + \sum_{i=0}^{2} x_i 2^i$$
 $Y = -2^3y_3 + \sum_{i=0}^{2} 2^i$

The product of X and Y is:

$$XY = x_3 y_3 2^6 - \sum_{i=0}^{2} x_i y_3 2^{i+3} - \sum_{j=0}^{2} x_3 y_j 2^{j+3} + \sum_{i=0}^{2} \sum_{j=0}^{2} x_i y_j 2^{i+j}$$

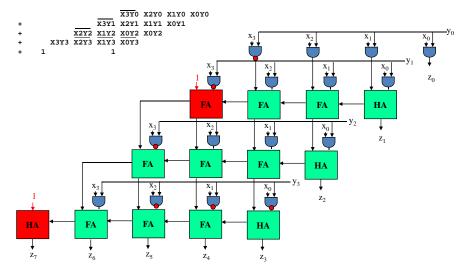
For twos complement, the following is true: $-\Sigma x_i \hat{z}^i = -2^4 + \Sigma x_i \hat{z}^{i-1} + 1$

$$-\sum x_i \overset{?}{=} = -2^4 + \sum x_i \overset{?}{=} -1$$

The product then becomes:

$$\begin{aligned} &\mathsf{XY} = \mathsf{x}_3 \mathsf{y}_3 2^6 + \sum_{i=0}^2 \mathsf{x}_i \mathsf{y}_3 2^{i+3} + 2^3 - 2^6 + \sum_{j=0}^2 \mathsf{x}_3 \mathsf{y}_j 2^{j+3} + 2^3 - 2^6 + \sum_{i=0}^2 \mathsf{x}_i \mathsf{y}_j 2^{i+j} \\ &= \mathsf{x}_3 \mathsf{y}_3 2^6 + \sum_{i=0}^2 \mathsf{x}_i \mathsf{y}_3 2^{i+3} + \sum_{j=0}^2 \mathsf{x}_3 \mathsf{y}_j 2^{j+3} + \sum_{i=0}^2 \sum_{j=0}^2 \mathsf{x}_i \mathsf{y}_j 2^{i+j} + 2^4 - 2^7 \\ &= -2^7 + \mathsf{x}_3 \mathsf{y}_3 2^6 + \overline{(\mathsf{x}_2 \mathsf{y}_3 + \mathsf{x}_3 \mathsf{y}_2)} 2^5 + \overline{(\mathsf{x}_1 \mathsf{y}_3 + \mathsf{x}_3 \mathsf{y}_1 + \mathsf{x}_2 \mathsf{y}_2 + 1)} 2^4 \\ &+ \overline{(\mathsf{x}_0 \mathsf{y}_3 + \mathsf{x}_3 \mathsf{y}_0 + \mathsf{x}_1 \mathsf{y}_2 + \mathsf{x}_2 \mathsf{y}_1)} 2^3 + (\mathsf{x}_0 \mathsf{y}_2 + \mathsf{x}_1 \mathsf{y}_1 + \mathsf{x}_2 \mathsf{y}_0)} 2^{2^{-1}} \\ &+ (\mathsf{x}_0 \mathsf{y}_1 + \mathsf{x}_1 \mathsf{y}_0)} 2^{1} + (\mathsf{x}_0 \mathsf{y}_0)} 2^0 \end{aligned}$$

2's Complement Multiplication



6,111 Fall 2017 Lecture 8

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

```
wire [9:0] a,b;
wire [19:0] result = a*b;  // unsigned multiplication!
```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:

```
wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!
```

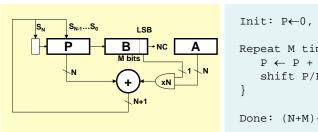
Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the >>> (arithmetic right shift) operator. To get signed operations all operands must be signed.

To make a signed constant: 10'sh37C

6.111 Fall 2017 Lecture 8 33

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N-bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:



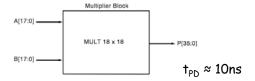
```
Init: P←0, load A and B

Repeat M times {
    P ← P + (B<sub>LSB</sub>==1 ? A : 0)
    shift P/B right one bit
}

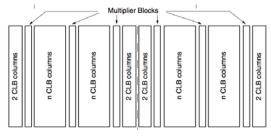
Done: (N+M)-bit result in P/B
```

Multiplication on the FPGA

Hardware multiplier block: two 18-bit twos complement (signed) operands

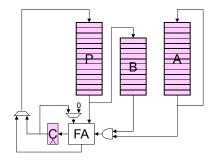


In the XC2V6000: 6 columns of mults, 24 in each column = 144 mults



6.111 Fall 2017 Lecture 8 34

Bit-Serial Multiplication



```
Init: P = 0; Load A,B

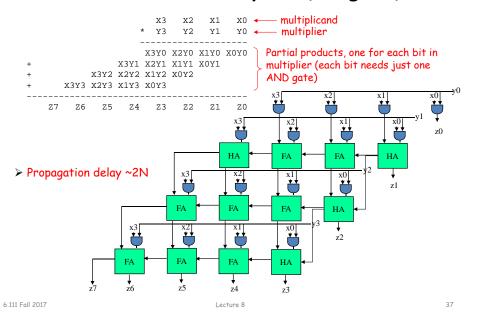
Repeat M times {
    Repeat N times {
        shift A,P:
        Amsb = Alsb
        Pmsb = Plsb + Alsb*Blsb + C/0
    }
    shift P,B: Pmsb = C, Bmsb = Plsb
}

(N+M)-bit result in P/B
```

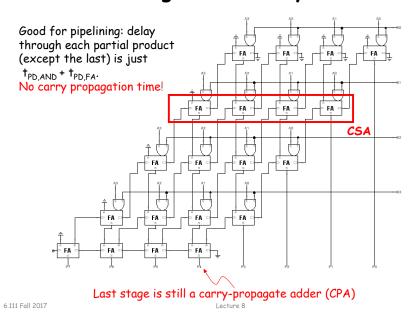
36

6.111 Fall 2017 Lecture 8 35 6.111 Fall 2017 Lecture 8

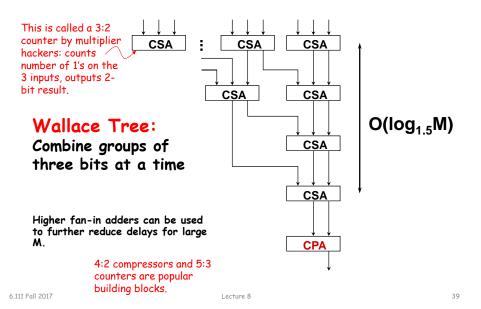
Combinational Multiplier (unsigned)



Useful building block: Carry-Save Adder



Wallace Tree Multiplier



Wallace Tree * Four Bit Multiplier

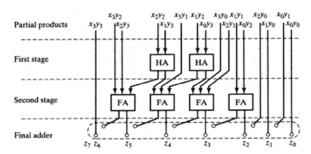


Figure 11-35 Wallace tree for four-bit multiplier.

*Digital Integrated Circuits
J Rabaey, A Chandrakasan, B Nikolic

40

6.111 Fall 2017 Lecture 8

Multiplication by a constant

- If one of the operands is a constant, make it the multiplier (B in the earlier examples). For each "1" bit in the constant we get a partial product (PP) - may be noticeably fewer PPs than in the general case.
 - For example, in general multiplying two 4-bit operands generates four PPs (3 rows of full adders). If the multiplier is say, 12 (4'b1100), then there are only two PPs: 8*A+4*A (only 1 row of full adders).
 - But lots of "1"s means lots of PPs... can we improve on this?
- If we allow ourselves to subtract PPs as well as adding them (the hardware cost is virtually the same), we can re-encode arbitrarily long contiguous runs of "1" bits in the multiplier to produce just two PPs.

$$...0111110... = ...1000000... - ...000010... = ...0100010...$$

where $\overline{1}$ indicates subtracting a PP instead of adding it. Thus we've reencoded the multiplier using 1,0,-1 digits – aka *canonical signed digit* – greatly reducing the number of additions required.

6.111 Fall 2017 Lecture 8 41

Booth recoding

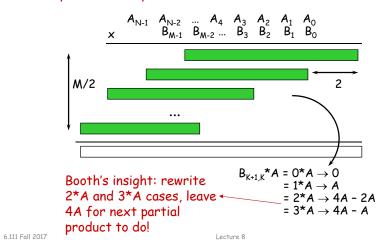
On-the-fly canonical signed digit encoding!

current bit pair from previous bit pair $B_K B_{K-1}$ action 0 add 0 0 0 add A 0 add A 0 add 2*A 0 sub 2*A 0 sub A -2*A+A sub A add 0

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding 4*A in the previous stage is like adding A in this stage!

Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!



Summary

42

- Performance of arithmetic blocks dictate the performance of a digital system
- Architectural and logic transformations can enable significant speed up (e.g., adder delay from $\mathcal{O}(N)$ to $\mathcal{O}(\log_2(N))$
- Similar concepts and formulation can be applied at the system level
- Timing analysis is tricky: watch out for false paths!
- Area-Delay trade-offs (serial vs. parallel implementations)

6.111 Fall 2017 Lecture 8 43 6.111 Fall 2017 Lecture 8 44

Lab 4 Car Alarm - Design Approach

- Read lab/specifications carefully, use reasonable interpretation
- Use modular design don't put everything into labkit.v
- Design the FSM!
 - Define the inputs
 - Define the outputs
 - Transition rules
- · Logical modules:
 - fsm.v
 - timer.v // the hardest module!!
 - siren.v
 - fuel_pump.v
- Run simulation on each module!
- Use hex display: show state and time

Fuel pump

• Use logic analyzer in Vivado

6.111 Fall 2013 Lecture 8 45 6.111 Fall 2017

Car Alarm - CMOS Implementation

- Operating voltage 8-18VDC
- Operating temp: -10C +65C
- Attitude: sea level
- Shock/Vibration
- Notes
 - Protected against 24V power surges
 - CMOS implementation
 - CMOS inputs protected against 200V noise spikes
 - On state DC current <10ma
 - Include T_PASSENGER_DELAY and Fuel Pump Disable
 - System disabled (cloaked) when being serviced.

Car Alarm - Inputs & Outputs

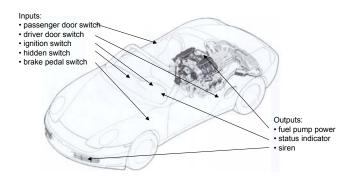


Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

6.111 Fall 2017 Lecture 8 46

Debugging Hints - Lab 4

 Implement a warp speed debug mode for the one hz clock. This will allow for viewing signals on the logic analyzer or Modelsim without waiting for 27/25 million clock cycles. Avoids recomplilations.

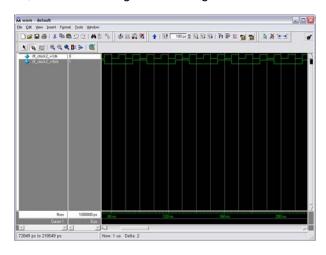
```
assign warp_speed = sw[6];
always @ (posedge clk) begin
  if (count == (warp_speed ? 3 : 26_999_999)) count <= 0;
  else count <= count +1;
  end
assign one_hz = (count == (warp_speed ? 3 : 26_999_999));</pre>
```


Cloaking

One Hz Ticks in Modelsim

To create a one hz tick, use the following in the Verilog test fixture:

```
always #5 clk=!clk;
always begin
#5 tick = 1;
#10 tick = 0;
#15;
end
initial begin
// Initialize Inputs
clk = 0;
tick = 0; . . .
```



6,111 Fall 2013 Lecture 8 49

For Loops, Repeat Loops in Simulation

```
integer i; // index must be declared as integer
integer irepeat;
// this will just wait 10ns, repeated 32x.
// simulation only! Cannot implement #10 in hardware!
      irepeat =0;
      repeat(32) begin
      #10;
      irepeat = irepeat + 1;
      end
// this will wait #10ns before incrementing the for loop
   for (i=0; i<16; i=i+1) begin
      #10; // wait #10 before increment.
      // @(posedge clk);
      // add to index on posedge
      end
// other loops: forever, while
```

6.111 Fall 2013 Lecture 8 50

Edge Detection

reg signal_delayed;

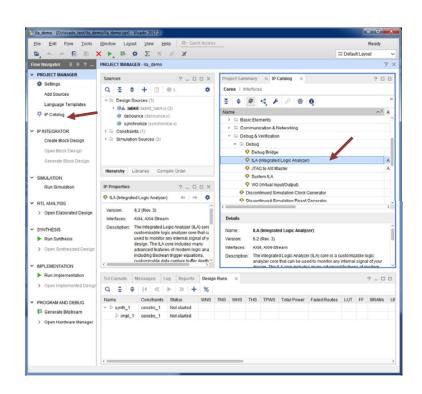
```
always @(posedge clk)
signal_delayed <= signal;
```

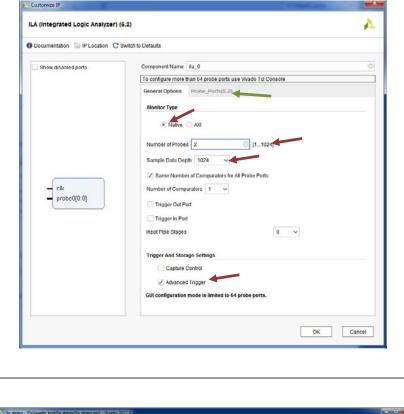
assign rising_edge = signal && !signal_delayed; assign falling_edge = !signal && signal_delayed;

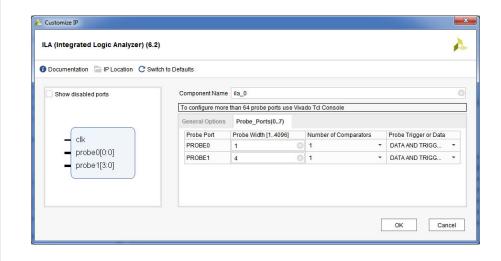
Vivado ILA

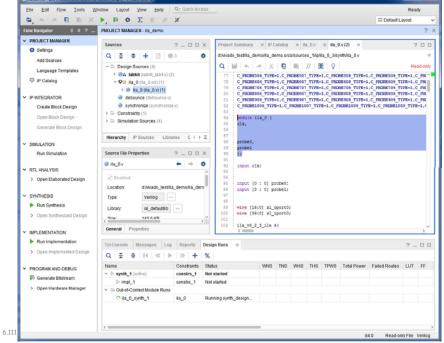
- Integrated Logic Analyzer (ILA) IP core
 - logic analyzer core that can be used to monitor the internal signals of a design
 - includes many advanced features of modern logic analyzers
 - · Boolean trigger equations,
 - edge transition triggers ...
 - no physical probes to hook up!
- Bit file must be loaded on target device. Not simulation.
- Tutorial http://web.mit.edu/6.111/www/f2017/handouts/labs/ila.html

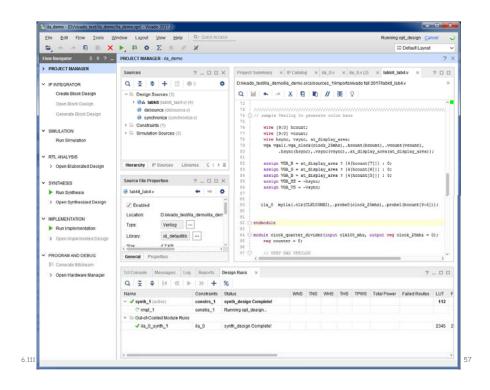
6.111 Fall 2013 Lecture 8 51 6.111 Fall 2017 Lecture 8 52

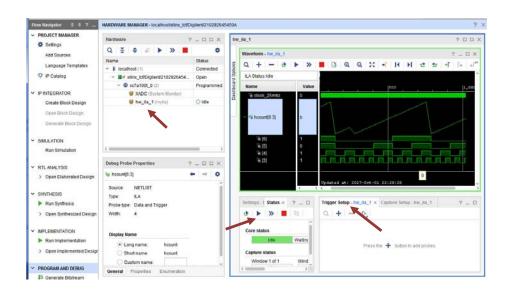












Student Comments

- "All very reasonable except for lab 4, Car Alarm. Total pain in the ass."
- "The labs were incredibly useful, interesting, and helpful for learning. Lab 4 (car alarm) is long and difficult, but overall the labs are not unreasonable."

6.111 Fall 2017 Lecture 8 59