Arithmetic Circuits \& Multipliers

- Addition, subtraction
- Performance issues
-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead
- Multipliers

Reminder: Lab \#3 due tonight!
Pizza Wed 6p

Signed integers: 2's complement

8-bit $2^{\prime} s$ complement example:

$$
11010110=-2^{7}+2^{6}+2^{4}+2^{2}+2^{1}=-128+64+16+4+2=-42
$$

If we use a two's complement representation for signed integers, the same binary addition mod 2^{n} procedure will work for adding positive and negative numbers (don't need separate subtraction rules). The same procedure will also handle unsigned numbers!

By moving the implicit location of "decimal" point, we can represent fractions too:
$1101.0110=-2^{3}+2^{2}+2^{0}+2^{-2}+2^{-3}=-8+4+1+0.25+0.125=-2.625$

Adder: a circuit that does addition

Here's an example of binary addition as one might do it by "hand":

	1101	Carries from previous
	1101	

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers...

"Full Adder" building block

The "half adder"
circuit has only the A and B inputs

A	B	C	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
S & =A \oplus B \oplus C \\
C O & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& =(\bar{A}+A) B C+\overline{(B}+B) A C+A B \overline{(C}+C) \\
& =B C+A C+A B
\end{aligned}
$$

6.111 Fall 2017

Subtraction: $A-B=A+(-B)$

Using 2' s complement representation: $-B=\sim B+1$

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input.
6.111 Fall 2017

Condition Codes

Besides the sum, one often wants four other bits of information from an arithmetic unit:

Z (zero): result is $=0$
big NOR gate
N (negative): result is < 0

$$
S_{N-1}
$$

C (carry): indicates an add in the most significant position produced a carry, e.g., $1111+0001$

$$
\text { from last } F A
$$

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., $0111+0111$

$$
\begin{aligned}
& V=A_{N-1} B_{N-1} \overline{S_{N-1}}+\overline{A_{N-1}} \overline{B_{N-1}} S_{N-1} \\
& V=\operatorname{COUT}_{N-1} \oplus C I N_{N-1}
\end{aligned}
$$

To compare A and B, perform $A-B$ and use condition codes:

Signed comparison:
LT N \oplus V
LE Z+(N $\oplus \mathrm{V})$
EQ Z
NE ~Z
$\mathrm{GE} \sim(\mathrm{N} \oplus \mathrm{V})$
$\mathrm{GT} \sim(\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V}))$
Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

Condition Codes in Verilog

Z (zero): result is = 0
N (negative): result is < 0
C (carry): indicates an add in the most significant position produced a carry e.g., $1111+0001$

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., $0111+0111$

[^0]
Modular Arithmetic

The Verilog arithmetic operators (+,-,*) all produce full-precision results, e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a "word size" (many computers use 32 or 64 bits) and all arithmetic results are truncated to that number of bits, i.e., arithmetic is performed modulo 2 word size.

Using a fixed word size can lead to overflow, e.g., when the operation produces a result that's too large to fit in the word size. One can

- Avoid overflow: choose a sufficiently large word size
- Detect overflow: have the hardware remember if an operation produced an overflow - trap or check status at end - Embrace overflow: sometimes this is exactly what you want, e.g., when doing index arithmetic for circular buffers of size 2 N . " "Correct" overflow: replace result with most positive or mos \dagger negative number as appropriate, aka saturating arithmetic. Good for digital signal processing.

Speed: $\dagger_{\text {PD }}$ of Ripple-carry Adder

Worst-case path: carry propagation from LSB to MSB, e.g., when adding $11 . . .111$ to 00... 001 .

$$
\dagger_{P D}=(N-1)^{\star} \underbrace{\dagger_{P D, O R}+\dagger_{P D, A N D}}_{C I \text { to } C O})+\underbrace{\dagger_{P D, X O R}}_{C I_{N-1} \text { to } S_{N-1}} \approx \Theta(N)
$$

$$
\mathbf{t}_{\text {adder }}=(\mathbf{N}-1) \mathrm{t}_{\text {carry }}+\mathbf{t}_{\text {sum }}
$$

$\Theta(N)$ is read "order N" means that the latency of our adder grows at worst in proportion to the number of bits in the operands.

How about the $t_{P D}$ of this circuit?

Is the $t_{\text {PD }}$ of this circuit $=2 * t_{\text {PD,N-BIT RIPPLE }}$?

Nope! $\dagger_{\text {PD }}$ of this circuit $=\dagger_{\text {PD,N-BIT RIPPLE }}+\dagger_{P D, F A}!!!$

Alternate Adder Logic Formulation

How to Speed up the Critical (Carry) Path? (How to Build a Fast Adder?)

\boldsymbol{A}	\boldsymbol{B}	$C_{\boldsymbol{i}}$	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Generate (G) $=A B$
Propagate $(P)=A \oplus B$
$C_{o}(G, P)=G+P C_{i}$

$$
S(G, P)=P \oplus C_{i}
$$

Faster carry logic

Let's see if we can improve the speed by rewriting the equations for $C_{\text {OUT }}$:

Virtex II Carry Chain

Virtex II Adder Implementation

Carry Bypass Adder

Key Idea: if $\left(P_{0} P_{1} P_{2} P_{3}\right)$ then $C_{0,3}=C_{i, 0}$

16-bit Carry Bypass Adder

What is the worst case propagation delay for the 16 -bit adder?

Assume the following for delay each gate:
P, G from $A, B: 1$ delay unit
P, G, C_{i} to C_{0} or Sum for a C/S: 1 delay unit 2:1 mux delay: 1 delay unit

Critical Path Analysis

For the second stage, is the critical path:

$$
B P 2=0 \text { or } B P 2=1 ?
$$

Message: Timing analysis is very tricky -
Must carefully consider data dependencies for false paths

Carry Lookahead Adder (CLA)

- Recall that $C_{\text {OUT }}=G+P C_{\text {IN }} \quad$ where $G=A \& B$ and $P=A^{\wedge} B$
- For adding two N -bit numbers:

$$
\begin{aligned}
C_{N} & =G_{\mathrm{N}-1}+P_{\mathrm{N}-1} C_{\mathrm{N}-1} \\
& =G_{\mathrm{N}-1}+P_{\mathrm{N}-1} G_{\mathrm{N}-2}+P_{\mathrm{N}-1} P_{\mathrm{N}-2} C_{\mathrm{N}-2} \\
& =G_{\mathrm{N}-1}+P_{\mathrm{N}-1} G_{\mathrm{N}-2}+P_{\mathrm{N}-1} P_{\mathrm{N}-2} G_{\mathrm{N}-3}+\ldots+P_{\mathrm{N}-1} \ldots P_{0} C_{\mathrm{IN}}
\end{aligned}
$$

C_{N} in only 3 gate delays*:
1 for P / G generation, 1 for ANDs, 1 for final OR
*assuming gates with N inputs

- Idea: pre-compute all carry bits as $f\left(G s, P s, C_{\text {IN }}\right)$

Carry Lookahead Circuits

| C_{0} |
| :--- | :--- |
| P_{0} |
| $P_{P_{1}}$ |
| P_{2} |

Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:

$$
\begin{array}{ll}
C_{J+1}=G_{I J}+P_{I J} C_{I} & \begin{array}{l}
\text { "generate a carry from bits I thru } \\
\text { Kif it is generated in the high-order } \\
\text { (J+1,K) part of the block or if it is } \\
\text { generated in the low-order (I,J) part } \\
\text { of the block and then propagated } \\
\text { thru the high part" }
\end{array} \\
G_{I K}=G_{J+1, K}+P_{J+1, K} G_{I J} & \begin{array}{l}
\text { (}
\end{array} \quad \begin{array}{l}
\text { IK }
\end{array} \quad P_{I J} P_{J+1, K}
\end{array}
$$

where $I<J$ and $J+1<K$

Hierarchical building block

8-bit CLA (P/G generation)

8-bit CLA (carry generation)

Unsigned Multiplication

$+A_{3} B_{3} A_{2} B_{3} A_{1} B_{3} A_{0} B_{3}$

Multiplying N-bit number by M-bit number gives ($N+M$)-bit result \dagger
Easy part: forming partial products
(just an AND gate since B_{I} is either 0 or 1)
Hard part: adding M N-bit partial products

8-bit CLA (complete)

Combinational Multiplier (unsigned)

Combinational Multiplier (signed!)

X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
$+\mathrm{X} 3 \mathrm{Y} 2 \mathrm{X} 3 \mathrm{Y} 2 \mathrm{X} 3 \mathrm{Y} 2 \mathrm{X} 2 \mathrm{Y} 2 \mathrm{X} 1 \mathrm{Y} 2 \mathrm{X} 0 Y 2$

- Х3Y3 Х3Y3 X2Y3 X1Y3 X0Y3

6.111 Fall 2017

Baugh Wooley Formulation -The Math no insight required

Assuming X and Y are 4-bit twos complement numbers:

$$
X=-2^{3} x_{3}+\sum_{i=0}^{2} x_{i} 2^{i} \quad Y=-2^{3} y_{3}+\sum y_{i=0}^{2} y_{i}^{i}
$$

The product of X and Y is:

$$
X Y=x_{3} y_{3} 2^{6}-\sum_{i=0}^{2} x_{i} y_{3} 2^{i+3}-\sum_{j=0}^{2} x_{3} y_{j} 2^{j+3}+\sum_{i=0}^{2} \sum_{j=0}^{2} x_{i} y_{j} 2^{i+j}
$$

For twos complement, the following is true:

$$
-\Sigma x_{i=0}^{2_{i=0}^{i}}=-2^{4}+\sum x_{i=0}^{2} \sum_{i=-}^{i-+}
$$

The product then becomes:

$$
\begin{aligned}
X Y= & x_{3} y_{3} 2^{6}+\sum_{i=0}^{2} x_{i} y_{3} 2^{i+3}+2^{3}-2^{6}++_{i=0}^{2} \sum x_{3} y_{j} 2^{j+3}+2^{3}-2^{6}+{ }_{i=0}^{2} \sum_{j=0}^{2} \sum x_{i} y_{j} i^{i+j} \\
= & x_{3} y_{3} 2^{6}+\sum_{i=0}^{2} x_{i} y_{3} 2^{i+3}+\sum_{i=0}^{2} \bar{x}_{3} y_{j} 2^{j+3}+\sum_{i=0}^{2} \sum_{i=0}^{2} x_{i} y_{j} 2^{i+j}+2^{4}-2^{7} \\
= & \left.-2^{7}+x_{3} y_{3} 2^{6}+\overline{\left(x_{2} y_{3}\right.} \overline{+x_{3}} y_{2}\right) 2^{5}+\left(x_{1} y_{3} \overline{+x_{3}} y_{1}+x_{2} y_{2}+1\right) 2^{4} \\
& +\left(x_{0} y_{3}+\bar{x}_{3} y_{0}+x_{1} y_{2}+x_{2} y_{1}\right) 2^{3}+\left(x_{0} y_{2}+x_{1} y_{1}+x_{2} y_{0}\right) 2^{21} \\
& +\left(x_{0} y_{1}+x_{1} y_{0}\right) 2^{1}+\left(x_{0} y_{0}\right) 2^{0}
\end{aligned}
$$

2's Complement Multiplication

(Baugh-Wooley)

Step 1: two's complement operands so high order bit is $-2^{2}-1$. Must sign extend partial products and subtract the last one
$\begin{array}{llll} & \mathrm{X} 3 & \mathrm{X2} & \mathrm{X} 1 \\ \mathrm{Y} 0 \\ \mathrm{Y} 3 & \mathrm{Y} 2 & \mathrm{Y} 1 & \mathrm{Y} 0\end{array}$
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
$+{ }^{23 Y 1 ~ X 3 Y 1 ~ X 3 Y 1 ~ X 3 Y 1 ~ X 2 Y 1 ~ X 1 Y 1 ~ X 0 Y 1 ~}$

+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
$-\quad$ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
$\begin{array}{llllllll}\text { 77 } & \text { Z6 } & \text { z5 } & \text { z4 } & \text { z3 } & \text { Z2 } & \text { z1 } & \text { Z0 }\end{array}$
Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement +1).

хзү0 хзү0 хзY0 хзY0 хзY0 х2Y0 X1Y0 xөY0

$+{ }^{+}$X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
$+\overline{\mathrm{X} 3 \mathrm{Y} 3} \overline{\mathrm{X} 3 \mathrm{Y} 3} \frac{1}{\mathrm{X} 2 \mathrm{Y} 3} \overline{\mathrm{X} 1 \mathrm{Y} 3} \overline{\mathrm{X} 0 \mathrm{Y} 3}$

```
\(\}-B=\sim B+1\)
```

\qquad
6.111 Fall 2017

Lecture 8
Step 3: add the ones to the partia products and propagate the carries. All the sign extension bits go away!

$\overline{\mathrm{X} 3 \mathrm{Y0}} \mathrm{X} 2 \mathrm{Y} 0 \mathrm{X} 1 \mathrm{Y0} \mathrm{X0Y0}$

 $\overline{\mathrm{X} 3 \mathrm{Y} 1} \mathrm{X} 2 \mathrm{Y} 1 \mathrm{X} 1 \mathrm{Y} 1 \mathrm{X0Y} 1$$+\quad \overline{\mathrm{X} 2 \mathrm{Y}} \mathrm{X1Y} 2 \mathrm{X0Y2}$ X0Y2

$\begin{array}{lllll} & 1 & 1 & 1\end{array}$

Step 4: finish computing the constants.

2's Complement Multiplication

Multiplication in Verilog

You can use the "夫" operator to multiply two numbers:

```
wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!
```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:

```
wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!
```

Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the >>> (arithmetic right shift) operator. To get signed operations all operands must be signed.

To make a signed constant: 10'sh37C

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N -bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:

```
Init: \(P \leftarrow 0\), load \(A\) and \(B\)
Repeat M times \{
\(P \leftarrow P+\left(B_{L S B}==1\right.\) ? A : 0)
shift \(P / B\) right one bit
\}
```


Done: ($\mathrm{N}+\mathrm{M}$)-bit result in P / B

Multiplication on the FPGA

Hardware multiplier block: two 18-bit twos complement (signed) operands

In the XC2V6000: 6 columns of mults, 24 in each column $=144$ mults

Bit-Serial Multiplication


```
Init: P = 0; Load A, B
Repeat M times {
    Repeat N times {
        shift A,P:
        Amsb = Alsb
        Pmsb = Plsb + Alsb*Blsb + C/0
    }
    shift P,B: Pmsb = C, Bmsb = Plsb
}
(N+M)-bit result in P/B
```


Combinational Multiplier (unsigned)

$$
\begin{array}{lllll}
& \text { X3 } & \text { X2 } & \text { X1 } & \text { X0 } \longleftarrow \text { multiplicand } \\
* & \text { Y3 } & \text { Y2 } & \text { Y1 } & \text { Y0 } \\
\text { multiplier }
\end{array}
$$

X3Y0 X2Y0 X1Y0 X0Y0 Partial products, one for each bit in X3Y1 X2Y1 X1Y1 X0Y1 X3Y2 X2Y2 X1Y2 X0Y2
$+\quad$ X3Y2 X2Y2 X1Y2
$+\quad$ X3Y3 X2Y3 X1Y3 X0Y3
+
$>$ Propagation delay $\sim 2 N$

AND gate)

6.111 Fall 2017

Useful building block: Carry-Save Adder

Good for pipelining: delay through each partial product (except the last) is just
$\dagger_{P D, A N D}+\dagger_{P D, F A}$.

Last stage is still a carry-propagate adder (CPA)

Wallace Tree Multiplier

Wallace Tree * Four Bit Multiplier

Figure 11-35 Wallace tree for four-bit multiplier.

Multiplication by a constant

- If one of the operands is a constant, make it the multiplier (B in the earlier examples). For each "1" bit in the constant we get a partial product (PP) - may be noticeably fewer PPs than in the general case.
- For example, in general multiplying two 4-bit operands generates four PPs (3 rows of full adders). If the multiplier is say, 12 (4 'b1100), then there are only two PPs: $8^{\star} A+4^{\star} A$ (only 1 row of full adders).
- But lots of "1"s means lots of PPs... can we improve on this?
- If we allow ourselves to subtract PPs as well as adding them (the hardware cost is virtually the same), we can re-encode arbitrarily long contiguous runs of "1" bits in the multiplier to produce just two PPs.

$$
. . .011110 \ldots=. . .100000 \ldots-. . .000010 \ldots=. . .01000 \overline{10} \ldots
$$

where $\overline{1}$ indicates subtracting a PP instead of adding it. Thus we've reencoded the multiplier using 1,0,-1 digits - aka canonical signed digitgreatly reducing the number of additions required.

Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!

Booth recoding

On-the-fly canonical signed digit encoding!

current bit pair		from previous bit pair	
	B_{K+1}	B_{K}	B_{K-1}
0	0	0	action
0	0	1	add 0
0	1	0	add A
0	1	1	add 2* A
1	0	0	sub 2* A
1	0	1	sub A
1	1	0	sub A
1	1	1	add 0

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding 4* A in the previous stage is like adding A in this stage!

Summary

- Performance of arithmetic blocks dictate the performance of a digital system
- Architectural and logic transformations can enable significant speed up (e.g., adder delay from $O(N)$ to $O\left(\log _{2}(N)\right)$
- Similar concepts and formulation can be applied at the system level
- Timing analysis is tricky: watch out for false paths!
- Area-Delay trade-offs (serial vs. parallel implementations)

Lab 4 Car Alarm - Design Approach

- Read lab/specifications carefully, use reasonable interpretation
- Use modular design - don't put everything into labkit.v
- Design the FSM!
- Define the inputs
- Define the outputs
- Transition rules
- Logical modules:
- fsm.v
- timer.v // the hardest module!!
- siren.v
- fuel_pump.v
- Run simulation on each module!
- Use hex display: show state and time
- Use logic analyzer in Vivado

Car Alarm - CMOS Implementation

- Design Specs
- Operating voltage 8-18VDC
- Operating temp: $-10 C+65 C$

- Attitude: sea level
- Shock/Vibration
- Notes
- Protected against 24 V power surges
- CMOS implementation
- CMOS inputs protected against 200V noise spikes
- On state DC current <10ma
- Include T_PASSENGER_DELAY and Fuel Pump Disable
- System disabled (cloaked) when being serviced.

Car Alarm - Inputs \& Outputs

Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

- Implement a warp speed debug mode for the one hz clock. This will allow for viewing signals on the logic analyzer or Modelsim without waiting for 27/25 million clock cycles. Avoids recomplilations.
assign warp_speed = sw[6];
always @ (posedge clk) begin
if (count == (warp_speed ? $\left.3: 26 _999 _999\right)$) count $<=0$
else count <= count +1 ;
end
assign one_hz = (count == (warp_speed ? 3 : 26_999_999)) ;

One Hz Ticks in Modelsim

To create a one hz tick, use the following in the Verilog test fixture:

For Loops, Repeat Loops in Simulation

integer i; // index must be declared as integer

integer irepeat
$/ /$ this will just wait 10 ns , repeated 32 x .
// simulation only! Cannot implement \#10 in hardware!
irepeat $=0$;
repeat(32) begin
\#10;
irepeat $=$ irepeat +1 ;
end
// this will wait \#10ns before incrementing the for loop
for ($\mathrm{i}=0 ; \mathrm{i}<16 ; \mathrm{i}=\mathrm{i}+1$) begin
\#10; // wait \#10 before increment.
// @(posedge clk)
// add to index on posedge
end
// other loops: forever, whil

Edge Detection

reg signal_delayed;

always @(posedge clk)
 signal_delayed <= signal;

assign rising_edge $=$ signal $\& \&!$ signal_delayed; assign falling_edge $=!$ signal $\& \&$ signal_delayed;

- Dosumentazon EIPLCation C sment to Detaus

\square show alasolece ponts

OK Cancel

Student Comments

- "All very reasonable except for lab 4, Car Alarm. Total pain in the ass. "
- "The labs were incredibly useful, interesting, and helpful for learning. Lab 4 (car alarm) is long and difficult, but overall the labs are not unreasonable."

[^0]: wire signed [31:0] a,b,s; wire $\mathrm{z}, \mathrm{n}, \mathrm{v}, \mathrm{c}$;
 assign $\{c, s\}=a+b ;$
 assign $\mathrm{z}=\sim \mid \mathrm{s}$;
 assign $\mathrm{n}=\mathrm{s}[31]$; assign $v=a[31] \wedge b[31] \wedge s[31] \wedge c$; N
 Might be better to use sum-ofproducts formula for V from previous slide if using LUT implementation (only 3 variables instead of 4).

