
# **Discrete** Time

Let's use an impulse train to sample a continuous-time function at a regular interval T:





### Reconstruction



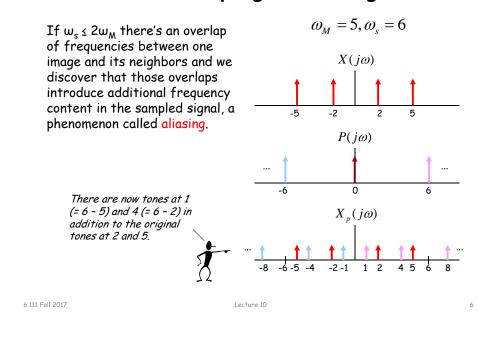
### Sampling Theorem

Let x(t) be a band-limited signal, ie, X(jw)=0 for  $|w| > w_M$ . Then x(t) is uniquely determined by its samples x(nT), n = 0, ±1, ±2, ..., if

ως > 2ω<sub>Μ</sub>

2w<sub>M</sub> is called the "Nyquist rate" and w<sub>s</sub>/2 the "Nyquist frequency"

where


6.111 Fall 2017

 $\omega_s = \frac{2\pi}{T}$ 

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values, then passing the train through an ideal LPF with gain T and a cutoff frequency greater than  $w_M$  and less than  $w_s$ - $w_M$ .

Lecture 10

### Undersampling $\rightarrow$ Aliasing



**Digital Filters** 

 $v[n] = \sum b_{k} x[n-k]$ 

x[n-31

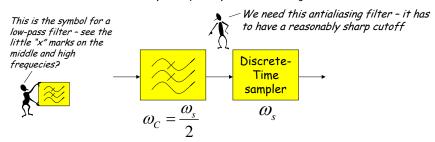
Х

b<sub>3</sub>

k=0

Х

b<sub>2</sub>


Equation for an N-tap finite impulse response (FIR) filter:

X

 $b_1 \rightarrow$ 

# **Antialias Filters**

If we wish to create samples at some fixed frequency  $w_s$ , then to avoid aliasing we need to use a low-pass filter on the original waveform to remove any frequency content  $\geq w_s/2$ .



The frequency response of human ears essentially drops to zero above 20kHz. So the "Red Book" standard for CD Audio chose a 44.1kHz sampling rate, yielding a Nyquist frequency of 22.05kHz. The 2kHz of elbow room is needed because practical antialiasing filters have finite slope...

fs = (3 samples/line)(490 lines/frame)(30 frames/s) = 44.1 kHz

More info: http://www.cs.columbia.edu/~hgs/audio/44.1.html

7

5

Provide next x

every CLK

x[n]

y[n]

6.111 Fall 2017

#### Lecture 10

What components are part of the t<sub>PD</sub> of this circuit?

"shift register"

remembers last

[x[n-N]

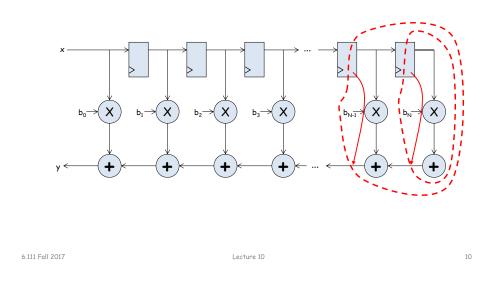
Х

bΝ

N values

x[n-N-1]

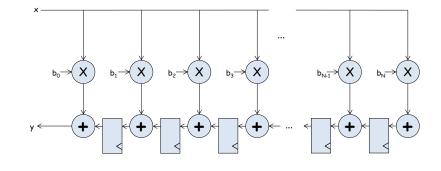
\* X


b<sub>N-1</sub>

# Filter coefficients

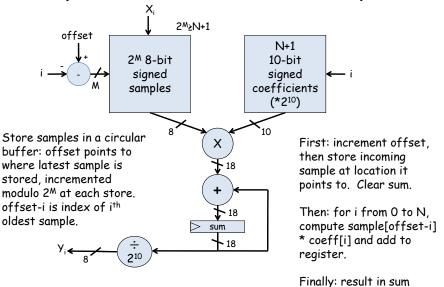
- Use Matlab command: b = fir1(N, $\omega_c/(\omega_s/2)$ )
  - N is the number of taps (we'll get N+1 coefficients). Larger N gives sharper roll-off in filter response; usually want N to be as large as reasonably possible.
  - $\omega_c$  is the cutoff frequency (3kHz in Lab 5)
  - $\omega_s$  is the sample frequency (48kHz in Lab 5)
  - The second argument to the fir1 command is the cutoff frequency as a fraction of the Nyquist frequency (i.e., half the sample rate).
  - By default you get a lowpass filter, but can also ask for a highpass, bandpass, bandstop.
- The b coefficients are real numbers between 0 and 1. But since we don't want to do floating point arithmetic, we usually scale them by some power of two and then round to integers.
  - Since coefficients are scaled by 2<sup>5</sup>, we'll have to re-scale the answer by dividing by 2<sup>5</sup>. But this is easy – just get rid of the bottom S bits!

# Retiming the FIR circuit


Apply the cut-set retiming transformation repeatedly...

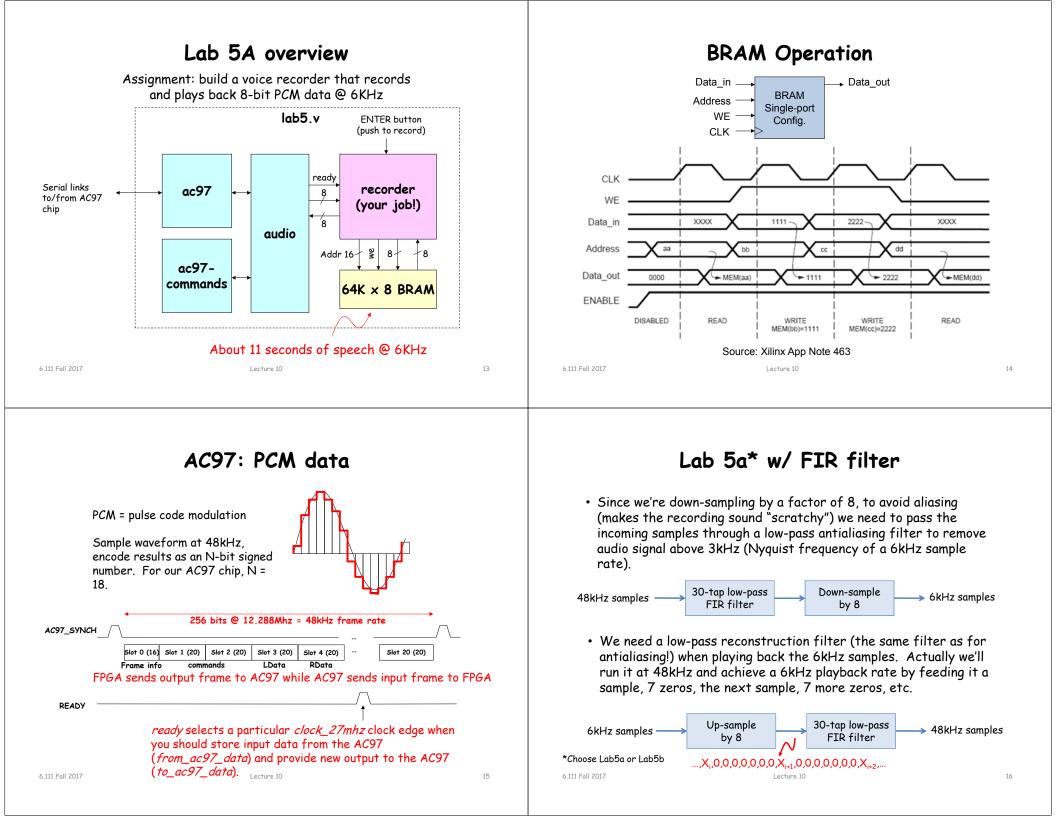


Retimed FIR filter circuit


Lecture 10

"Transposed Form" of a FIR filter




What components are part of the  $t_{\text{PD}}$  of this circuit? How does  $t_{\text{PD}}$  grow as N gets larger?

# N-tap FIR: less hardware, N+1 cycles...

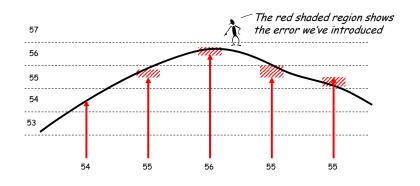


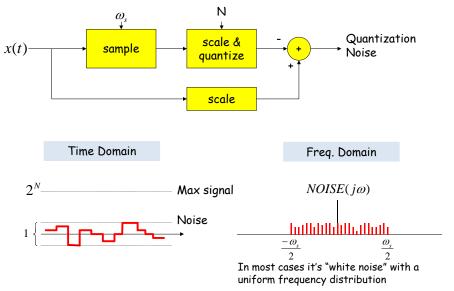
Lecture 10

6.111 Fall 2017



#### If we use N bits to encode the magnitude of one of the discrete-time samples, we can capture 2<sup>N</sup> possible values. 에 18 Non Cale State Tale Made Nag 에 의 의 전 전 전 전 전 원 원 위 1 Non (in A) 코카카카카이 문화하다. So we'll divide up the range of possible sample values into $2^N$ --ALE A MARTINE THE PARTY AND A E mint at +int+ intervals and choose the index of the enclosing interval as the encoding for the sample value. V<sub>MAX</sub> ----sample voltage -1 5 2 4 3 1 2 Read I a a comment 0 1 0 0 VMIN guantized value 1 3 6 13 1-bit 2-bit 3-bit 4-bit


17


# Quantization Error

Lecture 10

**FIR** Filter

Note that when we quantize the scaled sample values we may be off by up to  $\pm \frac{1}{2}$  step from the true sampled values.





Lecture 10

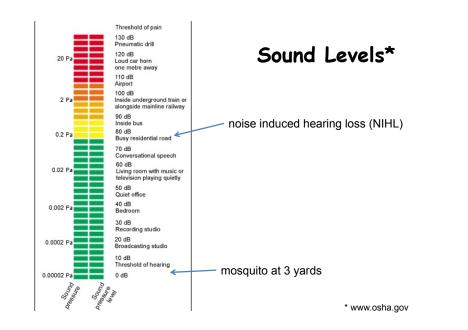
Quantization Noise

**Discrete Values** 

#### 6,111 Fall 2017

6.111 Fall 2017

Lecture 10


19

6.111 Fall 2017

### **Common Decibel Units**

| dB UNIT  | reference                                                                                 | application                                                                                                                                                                     |  |  |
|----------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| dbV      | 1 Volt rms                                                                                | routine voltage measurements [comparisons!]                                                                                                                                     |  |  |
| dBm      | 1 mW into 50Ω [0.224V] or<br>600Ω [0.775V]                                                | radio-frequency [ $50\Omega$ ] or audio [ $600\Omega$ ] power<br>measurements [in England, the dBu is used to<br>mean 0.775V reference without regard to<br>impedance or power] |  |  |
| dB mV    | 1 millivolt rms                                                                           | signal levels in cable systems                                                                                                                                                  |  |  |
| dbW      | 1 Watt                                                                                    | audio power amplifier output [usually into 8, 4, or $2\Omega$ impedances]                                                                                                       |  |  |
| dBf      | 1 femtowatt [10 <sup>-15</sup> watt]                                                      | communications and stereo receiver sensitivity [usually $50\Omega$ , $75\Omega$ unbalanced, or $300\Omega$ balanced antenna input impedances]                                   |  |  |
| dB (SPL) | 0.0002µbar, = 20µPa<br>[=Pascals] [1 bar = 10 <sup>6</sup><br>dynes/cm <sup>2</sup> ~1AT] | Sound Pressure Level measurements: the reference is the "threshold of hearing".                                                                                                 |  |  |





Decibel (dB) - 3dB point

 $dB = 20 \log\left(\frac{V_o}{V_i}\right) \qquad dB = 10 \log\left(\frac{P_o}{P_i}\right)$ 

 $log_{10}(2)=.301$ 

3 dB point = ?

half power point

 $100 \text{ dB} = 100,000 = 10^5$ 

 $80 \, dB = 10,000 = 10^4$ 

 $1.000 = 10^3$ 

 $100 = 10^2$ 


60 dB =

40 dB =

### SNR: Signal-to-Noise Ratio

$$SNR = 10\log_{10}\left(\frac{P_{SIGNAL}}{P_{NOISE}}\right) = 10\log_{10}\left(\frac{A_{SIGNAL}^2}{A_{NOISE}^2}\right) = 20\log_{10}\left(\frac{A_{SIGNAL}}{A_{NOISE}}\right)$$

SNR is measured in decibels (dB). Note that it's a logarithmic scale: if SNR increases by 3dB the ratio has increased by a factor 2. When applied to audible sounds: the ratio of normal speech levels to the faintest audible sound is 60-70 dB.



6.111 Fall 2017

# Oversampling

To avoid aliasing we know that  $w_s$  must be at least  $2w_M$ . Is there any advantage to oversampling, i.e.,  $w_s = K \cdot 2w_M$ ?

Suppose we look at the frequency spectrum of quantized samples of a sine wave: (sample freq. =  $w_s$ )

Let's double the sample frequency to  $2w_s$ .

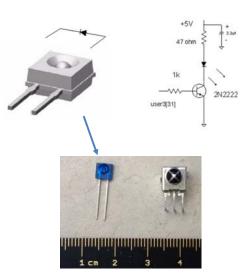
Now let's use a low pass filter to eliminate half the noise! Note that we're not affecting the signal at all...



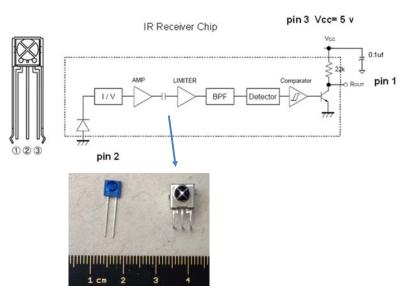


- Data sent via 950nm IR modulated at 40khz.
- Data width: 12, 15 or 20 bit protocol (use 12 bit).
- Start bit: 2400us High: 1200us Low: 600us
- Transmit FSM provided
- Learn/store remote commands

Volume down command Address: 0000\_1 (TV 1) Command: 001\_0011 (19) IR Command bits


6.111 Fall 2017

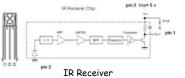
Lecture 10


LSB first

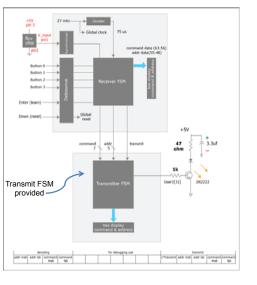
26

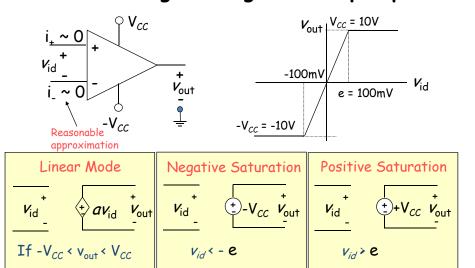
# **IR** Transmitter




#### **RPM7140 IR Receiver**




#### 6.111 Fall 2017


6.111 Fall 2017

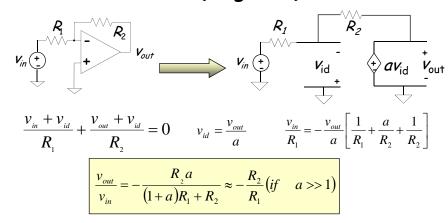
# Lab 5b Block Diagram



- IR receiver demodulates signal and provides input into labkit - powered by 5V from labkit.
- 2N2222 BJT used to power IR transmitter (note bypass caps) – power from labkit
- Command code and channel displayed on hex display






Our Analog Building Block: OpAmp

Very small input range for "open loop" configuration 6.111 Fall 2017 Lecture 10 30

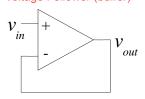
6.111 Fall 2017

# The Power of (Negative) Feedback

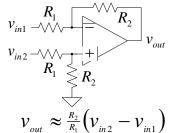
Lecture 10

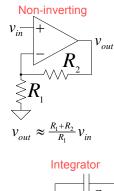


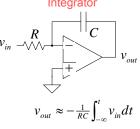
- Overall (closed loop) gain does not depend on open loop gain
- Trade gain for robustness
- Easier analysis approach: "virtual short circuit approach"
  - $v_{+} = v_{-} = 0$  if OpAmp is linear


#### 6.111 Fall 2017

31


29





Lecture 10

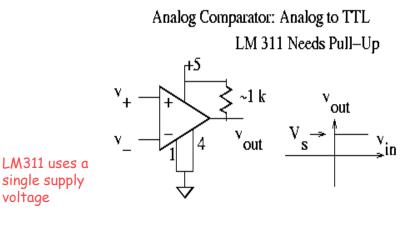











6.111 Fall 2017

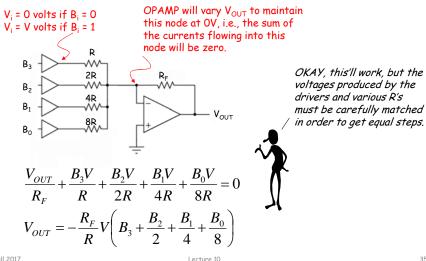
# **OpAmp** as a Comparator

#### Analog Comparator:

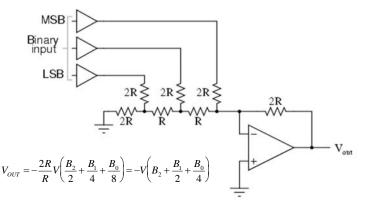
voltage

Is V+ > V-? The Output is a DIGITAL signal

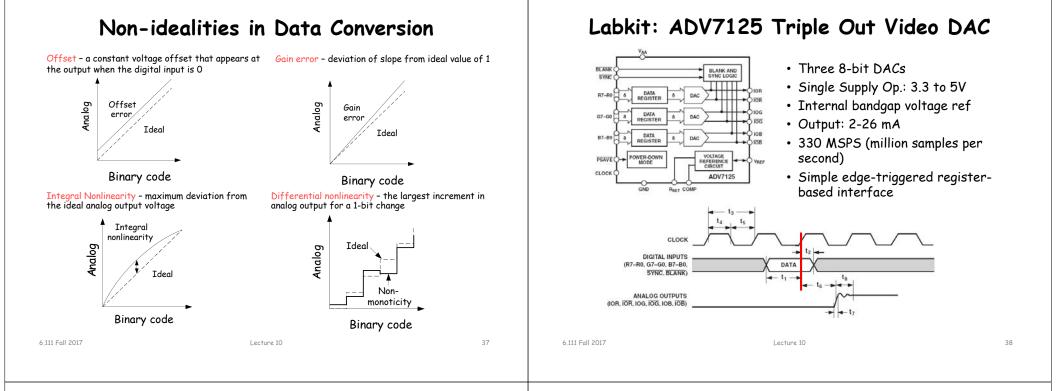



# Digital to Analog

- Common metrics:
  - Conversion rate DC to ~500 MHz (video)
  - # bits up to ~24
  - Voltage reference source (internal / external; stability)
  - Output drive (unipolar / bipolar / current) & settling time
  - Interface parallel / serial
  - Power dissipation
- Common applications:
  - Real world control (motors, lights)
  - Video signal generation
  - Audio / RF "direct digital synthesis"
  - Telecommunications (light modulation)
  - Scientific & Medical (ultrasound, ...)


| 6.111 Fall 2017 | Lecture 10 | 33 | 6.111 Fall 2017 | Lecture 10 | 34 |
|-----------------|------------|----|-----------------|------------|----|
|                 |            |    |                 |            |    |

# DAC: digital to analog converter

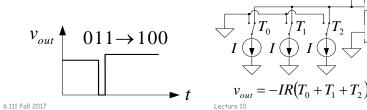

#### How can we convert a N-bit binary number to a voltage?

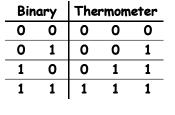


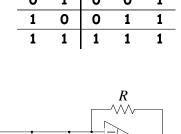
# **R-2R Ladder DAC Architecture**



R-2R Ladder achieves large current division ratios with only two resistor values





# Glitching and Thermometer D/A


 $T_0$ 

 $T_1$ 

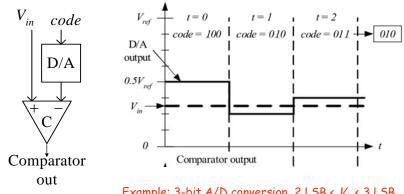
- Glitching is caused when switching times in a D/A are not synchronized
- Example: Output changes from 011 to 100 - MSB'switch is delayed
- Filtering reduces glitch but increases the D/A settling time
- One solution is a thermometer code D/A - requires  $2^{N}$  - 1 switches but no ratioed currents





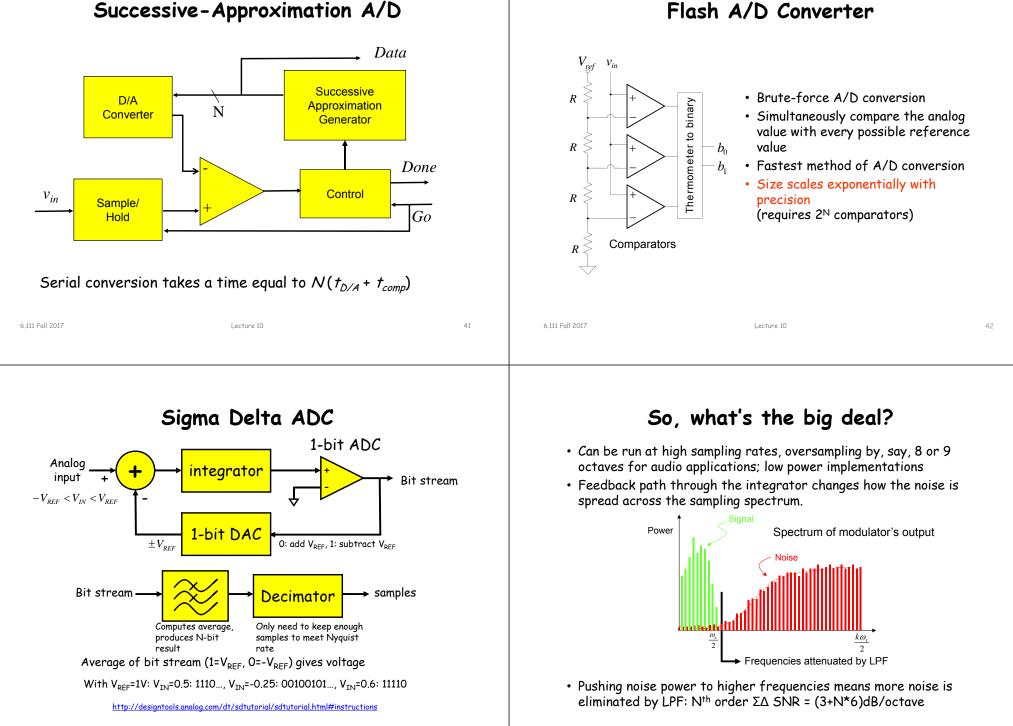


 $T_2$ 


v out

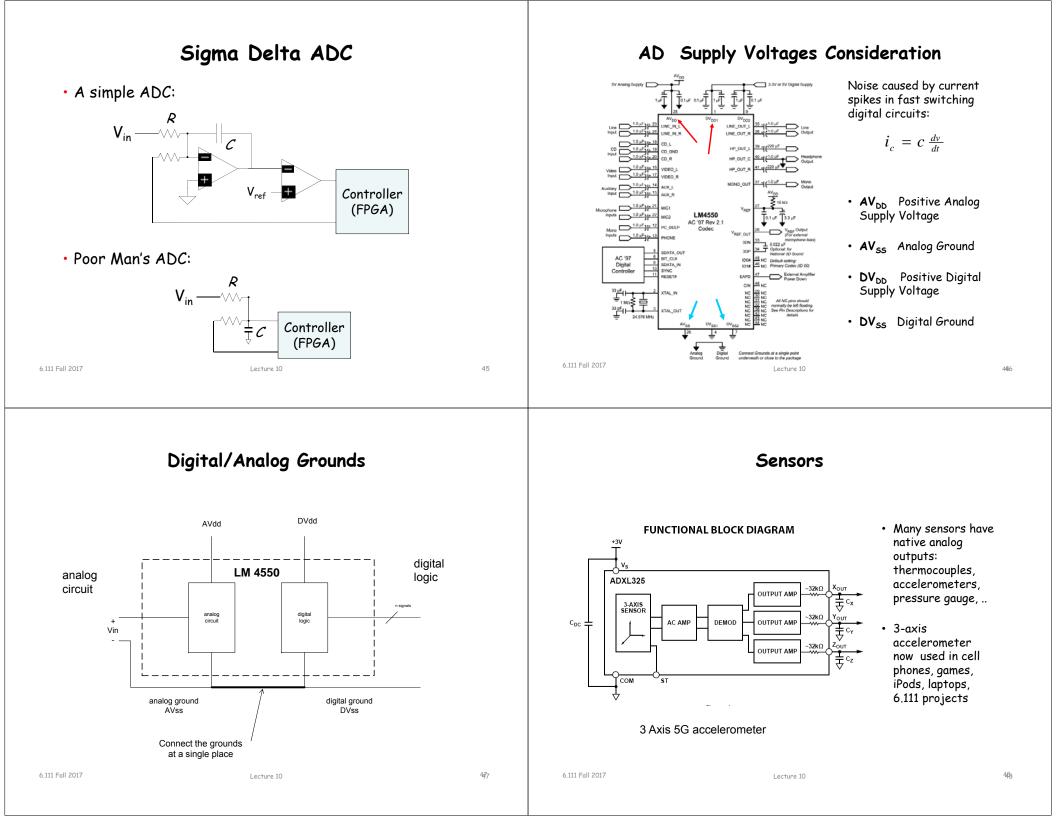
39

# Successive-Approximation A/D


D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator?

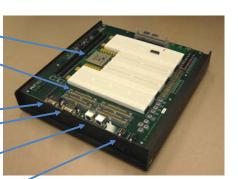
- DAC generates analog voltage which is compared to the input voltage
- If DAC voltage > input voltage then set that bit; otherwise, reset that bit
- This type of ADC takes a fixed amount of time proportional to the bit length



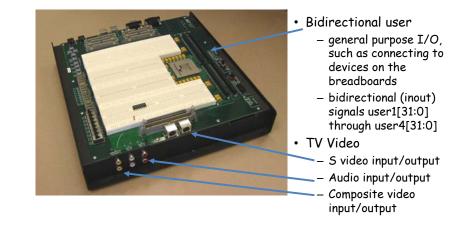

#### Example: 3-bit A/D conversion, 2 LSB < Vin < 3 LSB

Lecture 10




43

6,111 Fall 2017




# Labkit Hardware

- Xilinx FPGA
- Logic analyzer pods
  - 4 banks/pods of 16 data lines
  - (analyzerN\_clock) and a 16-bit data bus (analyzerN\_data[15:0]) N=1,2,3,4
- VGA video output
- RS-232 Serial IO
- PS/2 keyboard and mouse input
- AC97 audio input/output
  - Intel standard for PC audio systems
  - codec's ADCs and DACs operate at a 48kHz sample rate, with 18 bits of precision
- 128Mbits Flash memory, (2) 512k x 36 ZBT SRAM



### Labkit Hardware



| 6.111 Fall 2017 | Lecture 10 | 49 | 6.111 Fall 2017 | Lecture 10 | 50 |
|-----------------|------------|----|-----------------|------------|----|
|                 |            |    |                 |            |    |

# Upload Lab 4 Verilog

- Submit by Monday
- Grading
  - Proper use of blocking and non-blocking assignments
  - <u>Readable Code (reformatted)</u> with comments and consistent indenting [use emacs or vim]
  - Use of default in case statement
  - Use of parameter statements for symbolic name and constants (state==5 vs state==DATA\_READY)
  - Parameterized modules when appropriate
  - Readable logical flow, properly formatted (see "Verilog Editors")
  - No long nested if statements.
  - Score 1 to 3 (3 perfect); 1/2 point off for each occurrence.