

Final Project

- Schedule, Organization
- Choosing a topic
- Example projects
- Grading
- Design Suggestions

Verilog Files

- ISE sets TABs as 3 spaces and displays correctly within ISE. However, most text viewers treat TABs as 7 spaces.
- To reformat, open the file with emacs and replace all TABs with three spaces using the replace-string command:

ESC-x	// open command line for entry		
replace-string	<pre>// enter "replace-string" (emacs self completes)</pre>		
TAB	// enter TAB key		
[] [] []	// press the space bar 3 times		

save the file.

Final Project: Schedule

- Choose project teams (email gim ASAP)
 - Teams of two or three. A single person project requires approval of lecturer.
- Project Abstract (due Fri Oct 20, submit on-line)
 - Start discussing ideas now with 6.111 staff
 - About 1 page long, a list of team members, and a one paragraph description of the project itself.
- Proposal Conference with staff mentor (by Fri, Oct 27)
 - Bring your proposal with you *and* submit on-line
- Block Diagram Conference with mentor (by Fri, Nov. 3)
 - Review major components and overall design approach
 - Specify the device components you need to acquire (*small* budget allocated for each project if component does not exist in the stock room). Get approval and will contact John Sweeney to obtain the parts.

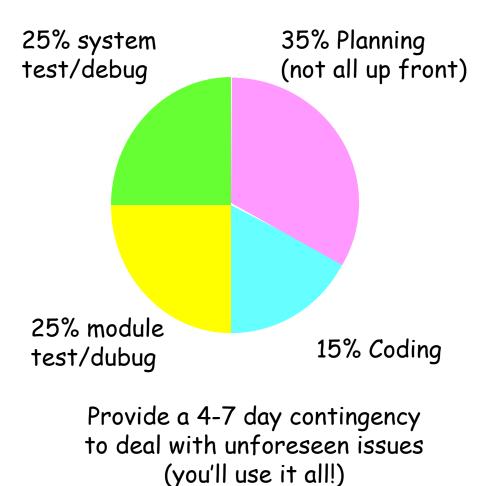
Schedule (cont'd.)

- Project Design Presentation to class (Nov 7 & 9 2:30-4p)
 - Each group will make a 10-15 min electronic presentation (~10 slides) dividing presentation among team members
 - Submit PDF on-line, will be posted on website
 - Example: F2011 Recursive Augmented Reality
 - Required attendance (3% grade)
- Project Checkoff Checklist to staff (by Nov 17)
 - Each group in discussion with mentor creates a checklist of deliverables (i.e., what we can expect each team member to demonstrate). Submit PDF on-line. Three groups:
 - Commitment minimum goals; complexity 2x lab 4 "Stuff we need in order to have not failed completely."
 - Expected needed for successful project "Stuff we need in order to succeed"
 - Stretch goal stands out in complexity, innovation, risks "Stuff we need in order to be awesome"

Schedule (cont'd.)

- Final Project Demo/Checkoff/Videotape (Dec 11 & 12)
 - Videotaped and posted on-line with your permission
- Final Project Report (Wed, Dec 13 5PM)
 - Submit PDF on-line, will be posted on website
 - Sorry, <u>no late checkoffs or reports</u> will be accepted

2017 End of Term Crunch


	Oct 16	L11: Project kickoff; proposals and presentations	L12: Memories: on-chip, SRAM, DRAM, Flash
			Project abstract due Lab #5 checkoff
		L13: Potpourri: FFT, FPGAs, RFID, Tools	L14: Image Processing - Let's go to Fenway!
	Oct 23	Proposal Conferences	Proposal Conferences
		Work on Project Proposal	Work on Project Proposal
	Oct 30	L15: VLSI and power	Project Block Diagram Meeting
		Project Proposal	by 11/03 (Fri) by 5pm
	Nov 06	Project Design Presentations (2:30-5PM room TBD) - attendance required	Project Design Presentations (2:30-5PM room TBD) - attendance required
	Nov 13	Project Checklist Meeting with Staff	Final project
	100 15	Revised Project Proposals due 11/17 (Fri) by 5pm	Project Checklist Meeting with Staff by 11/18 (Fri) by 5pm
	Nov 20	Final project Short week	Thanksgiving
	Nov 27	Final project integrtion and debugging - finishing touches! Two weeks remaining!	
	Dec 04	Final project - finishing touches!	Final project - polishing!
	Dec 11	Project Checkoff/Video recording Mon/Tue Return tool kits Tue	Wed project Report due 12/13@ 5PM (Wed) Tie up loose ends

Team Organization

- Most importantly, you need one
- Key decisions made jointly
 - Requirements
 - High level design
 - Schedule
 - Who will work on what, who'll take the lead
 - Response to slippage
- Lower level design exchanged for examination
 - Everyone responsible for everything
 - Design reviews tremendously helpful
 - Try it, you'll like it
- Communicate with each other early and often

Controlling Schedule

- First, you must have one
- Need verifiable milestones
- Some non-verifiable milestones
 - 90% of coding done,
 - 90% of debugging done,
 - Design complete
- Need 100% events
 - Module 100% coded,
 - Unit testing complete
- Need critical path chart
 - Know effects of slippage
 - Know what to work on when

Choosing A Topic

- You only have 6 weeks total (once your proposal abstract is turned in) to do this project.
 - It is important to complete your project.
 - It is very difficult to receive an "A" in the class without having something working for the final project.
- The complexity for each team member should 3 times the complexity of the lab assignments.
- Some projects include analog building blocks or mechanical assemblies (infrared, wireless, motors, etc.). However, keep in mind that this is a digital design class and your design will be evaluated on its digital design aspects.
- Complexity, risk and innovation factor.
 - We will give credit to innovative applications, design approaches
 - More complex is not necessarily better
- Look through previous projects for inspiration (see website)

Sample Projects

- Live Action Mario Kart
 - Brad Gross, Jono Matthews, Nate Rodman
- Conductor Hero
 - Natalie Cheung, Ned Twigg, Yuta Kuboyama
- Digital Sonar
 - Zhen Li, Bryan Morrissey, Brian Wong
- A Hardware-based Image Perspective Correction System – Matthew Hollands, Patrick Yang
- Self Parking Car
 - Kevin Hsiue, Frank Ni

Final Project Ideas

• Gadgets, digital systems

- FPGA Function Generator with laser display
- Multimeter with voice output
- Analog Voltmeter
- FPGA Fitbit
- Virtual pool with sound
- Remote control hand movement
- Virtual golf
- Camera based arcade game
- Motion tracker alarm system

- Graphics/Video
 - Star Wars Virtual Light Saber
 - 3D fly by
 - Movement tracker/playback
 - Real time animation with camera
 - Airplane console
 - Wire frame editor/display
 - Camera with blue screen
 - Virtual postcard
 - 3D display (two cameras tough!)
 - Automatic keystone correction
- Audio, music, lighting
 - Music synthesizer
 - FPGA phone system
 - DJ Control system
 - Light panel control system
 - Virtual surround sound
 - Time stretching audio or Time domain harmonic scaling (not for faint of heart)

Some Suggestions

• Be ambitious!

- But choose a sequence of milestones that are increasingly ambitious (that way at least part of your project will work and you can debug features incrementally).
- But don't expect 400Mhz operating frequencies, etc.
- It's motivating if there's something to see or hear
 - Video and graphics projects are fun (and with the labkit basic video input and output are pretty straightforward which means you can concentrate on the processing)
 - Audio/Music is low-bandwidth, so it's easy to do interesting processing in real-time (real-time is harder with video).
- Memories are often the limiting factor
 - Figure out how you'll use memory blocks early-on
- Be prepared for unpleasant surprises. Unlike the labs, there may be no solution for a particular design approach!

More Suggestions

- Be modular!
 - Figure out how test your modules incrementally (good for debugging and checkoff!)
 - Be clear about what information is passed between modules (format, timing)
- Don't be caught by the mañana principle
 - Six weeks goes by quickly: have a weekly task list.
 - How does a project run late: one day at a time!
 - Effort is not the same as progress: "Written but not tested" only means you've made a start
 - Tasks will take longer than you think
 - Final integration will uncover bugs/thinkos so test module-to-module interactions as early as you can

Design Suggestions

- Use hierarchical design
 - Partition your design into small subsystems that are easier to design and test.
 - Design each sub-system so they can be tested individually.
 - When appropriate, use Major/Minor FSMs.
- Use the same clock edge for all edge-triggered flip-flops
 - Beware of clock skew, don't gate the clock
 - If you have multiple clock domains, think very carefully about how you transfer information from one to another
- Avoid problems from 'glitches'.
 - Always assume that combinational logic glitches
 - Never drive a critical asynchronous control signal (register clock, write enable) from the output of combinational logic.
 - Ensure a stable combinational output before it is sampled by CLK.
 - When needed, create glitch-free signals by registering outputs.

Design Suggestions (cont'd.)

- Avoid tri-state bus contention by design
- Synchronize all asynchronous signals
 - Use two back-to-back registers
- Use asynchronous memories properly
 - Avoid high Z address to SRAM when CE is asserted.
 - Avoid address changes when WE is true.
 - Make sure your write pulse is glitch free.
- Use care when incorporating external devices
 - Use bypass capacitors on external components to deal with noise
 - I/O pads are slow, not all signals have the same delay
- Chip-to-chip communication
 - Beware of noise (inductance)
 - Might need to synchronize signals
 - Can also use "asynchronous" protocols

Project Grading (35% Total)

- Deadlines and effort (8 %)
- Problem Definition and Relevance, Architecture, Design methodology (10%)
 - What is the problem
 - Why is it important or interesting
 - System architecture and partitioning
 - Design choices and principles used
 - Style of coding
 - All of the above should be stated in the project and report
- Functionality (8 %)
 - Did you complete what you promised (i.e., graded by the checklist)
- Complexity, Innovation, Risk (9 %)

Warning!

- Designing and simulating is easy
- Integrating into real hardware FPGA is difficult
- Plan on unexpected (expected) problems.
- Examples:
 - Works in simulation
 - Works with slower clock

Project Grading

- Functionality grading
 - It works in simulation: grade 0%
 - Unable to demo/test because my partners' module isn't working: grade 0%
- General project grading guidelines
 - approximately 2x hardest lab: grade 10-19
 - demonstrates a superior understanding to digital systems and implementing complex systems - perhaps with multiple time domains, interface to external devices, flash memory, audio, etc. 20-29
 - a top notch project that really stands outs with complexity, innovation and risk 30-35

Presentation & Report Grading (13%)

- Project Proposal (2%)
- Class Presentation (6%)
- Final report (5% technical)

Required Attendance (3%)

 Design presentations 2:30 - 4:00p Tue Nov 7, Thur Nov 9

Report Grading Rubic

- For technical grading, I assign a max of 5 points as follows:
 - Technical content of overview/motivation: 0, 0.5, 1
 - Logical, readable diagrams and timing (if appropriate) 0, 0.5, 1
 - Enough details so the project can be replicated by a fellow student 0, 0.5, 1
 - Discussion on tricky circuits/challenges/measurements of interesting signals (if appropriate) 0, 0.5, 1
 - Lessons learned, advice for the future projects, 0, 0.5, 1

Electronic Design Studio (EDS)

Bridgeport NC Milling Machine

Laser cuter – PSL6.75 with 75W laser Part size: 32" x 18" x 9" Cut by "printing"