Lecture 15

Potpourri: Bluetooth, Clocking, Power, FFTs, etc...

Moving Forward

- Project Proposal Due by today 5pm
- 11/07 2:30-5pm and 11/09 2:30-4pm are Presentation Days:
- Attendance Mandatory

Bluetooth vs. Bluetooth Low Energy (BLE)

- Bluetooth was created in ~1994
- Originally supposed to be a drop-in replacement to RS232,only wireless, and you can still see vestiges of that heritage in documentation and some of its protocols.
- Works on ISM Band (2.4 GHz...shares with Wifi)

Bluetooth is like USB, many flavors, speeds, etc... Is a Multi-layered stack

- Every device has a unique* 48-bit identifier (like a MAC Address)
- Handshakes and pairing layer
- Public key encryption (192 bit DHKE), followed by 128bit on latter versions
- Actual bits are sent using PSM...either QDPSK or even 8DPSK through a Gaussian filter (don't hop from phase to phase instantaneously), and frequency hopping!:
- Meaning bits are encoded using phase of carrier wave (improves throughput but requires more complex send/receive circuitry)
- (QDPSK: four phases allows two bits at once)
- (8DPSK: eight phases allows three bits at once)
*Actually unique to the particular device, not type of device like in i2C. Ideally no two devices will share this.
10/3 They thought ahead 2^48 gives us 280 trillion possibilities, so up to 46,000 bluetooth headsets per person

Drop-in modules exist

- Because of its initial goal of being a RS232 serial replacement, there are modules which literally take in UART (at 115.2 kbps let's say) and will convert to
bluetooth and send and receive/convert back to UART
- Add a second one that is mated to it on the other end, and you can get a wireless RS232 link.
- Additional feature to maybe add to projects if helpful

10/31/17

Power

While we're not really focussing on this in final projects, maybe think about this as another way to characterize your device's performance

Problem: Energy Consumption

- It is getting better, but there's no Moore's Law for Batteries
- We need to understand where power goes and manage it

https://forum.cosmoquest.org//showthread.php?166243-Energy-Density

The Energy Problem

Digital Power Consumption

- $\quad P$: total power consumed
- $\alpha_{0 \rightarrow 1}$: fraction of gates switching
- C : Capacitance of gates
- V : Operating voltage $\left(V_{d d}\right)$
- f : frequency of operation
- $I_{\text {leak }}$: Leakage Current:
- Sub-threshold leakage
- Gate-Leakage

10/31/17
10

What do we have control over?

- Dynamic Power usage is more closely tied to how we use the system:
- Design, data structures, etc...
- Clock
- Temperature
- Etc...
- Static Power usage is more closely tied to actual system fabrication and capabilities, but our usage of it can also factor in

Given Fixed Hardware: Power Reduction Strategies

$$
\mathrm{P}=\alpha_{0->1} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2} f
$$

- Reduce Transition Activity or Switching Events
- Reduce Capacitance (e.g., keep wires short)
- Reduce Power Supply Voltage
- Frequency is sometimes fixed by the application, though this can be adjusted to control power

Optimize at all levels of design hierarchy

System Level Power Reduction Strategies

- System level
- Airplane mode: switch off cell phone/text activity.
- Display brightness control
- Variable transmit power level
- Minimize CPU cycles (encryption costs!)
- Chip level
- Workload based clock frequency/clock gating
- Power gating
- Dynamic voltage scaling (DVS)
- Multi Vdd $_{\text {dd }}$

The Transition Activity Factor

Assume inputs (A, B) arrive
at f and are uniformly
distributed (not guaranteed at all)
What is the average
power dissipation?

$$
\alpha_{0->1}=3 / 16
$$

$$
\mathrm{P}=\alpha_{0->1} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2} f
$$

Power Consumption Can Be Data Dependent

- We don't think about this at the C and up level, but at the bit level it can really matter!
- Is your data encoded in a way such that lots of bits flip lots of the time? (lots of charge/discharge cycles!)
- Are common transitions using the fewest bit changes?
- Glitches are no longer an annoyance, but leeches sucking our vital life fluids (power) from our bodies (electrical devices)

Number Representation:
Two's Complement vs. Sign Magnitude

Consider a 16 bit bus where inpuls toggles IWaphich representation is more energy efficient

Hamming Distance

- Reduce Hamming Distance between sequences...don't count up with states using regular binary... use a Gray code perhaps
- Counting to 8 in regular 3bit binary involves 14 total bit changes
- Counting to 8 in 3bit Gray involves 8 total bit changes(big savings)

$\begin{array}{ll}000 \\ 001 & 1\end{array}$ 010

Gray code 3-bit 4-bit 0000000 0010001 0110011 0100010 $110 \quad 011$ 1110111 1010101 $100 \quad 0100$ 2-bit 1100 00110 \begin{tabular}{l|l|}
\hline 01 \& 111

\hline 11 \& 1110

\hline 10 \& 1010

\hline

10 \& 1010

\hline 1-bit \& 1011
\end{tabular} - 1001

Bus Coding to Reduce Activity

- Minimize bit transitions on high capacitance busses

Time Sharing is a Bad Idea (From a power perspective)

Time Sharing Increases Switching Activity

Not just a 6-1 Issue: "Cool" Software

float a [256], b[256]; float pi=3.14;
for ($\mathrm{i}=0 ; \mathrm{i}<255 ; \mathrm{i}+\mathrm{+}$) $\mathrm{a}[\mathrm{i}]=\sin (\mathrm{pi} * \mathrm{i} / 256)$; $\mathrm{b}[\mathrm{i}]=\cos \left(\mathrm{pi}^{*} \mathrm{i} / 256\right)$;
$512(8)+2+4+8+16+32+64+128+256$ $=4607$ bit transitions
float a [256], b[256];
float $p=3.14$;
for ($\mathrm{i}=0 ; \mathrm{i}<255 ;$; $+\mathrm{+}$) $\{\mathrm{a}[\mathrm{i}]=\sin (\mathrm{pi} * i / 256) ;\}$ for $(i=0 ; i<255 ; i++)\{b[i]=\cos (p i * i / 256) ;\}$

2(8) $+2(2+4+8+16+32+64+128+256)$ $=1030$ transitions

Clock Gating is a Good Idea!
(For energy conservation only...)

100's of different clocks in a microprocessor

Temperature

- While some input power gets used for information/computation, etc... a lot is ultimately lost as heat
- As temperature rises, carrier mobility will drop off quickly

- As mobility drops off, current delivered drops off, systems can't charge/discharge as quickly, we run into trouble

$\square 2_{29}^{29}$

Intel Pentium 4 Thermal Guidelines

- Pentium 4 @ 3.06 GHz dissipates 81.8 W !
(i7 Haswell 3.2 GHz 65 W)
- Maximum $T_{C}=69^{\circ} \mathrm{C}$
- $\mathrm{R}_{\mathrm{CA}}<0.23^{\circ} \mathrm{C} / \mathrm{W}$ for 50 C ambient
- Typical chips dissipate 0.5-1W (cheap packages without forced air cooling)

Courtesy of Intel (Ram Krishnamurthy)

Processor and	
Processors with	
2 GHz	52.4
2.20 GHz	55.1
226 GHz	56.0
2.40 GHz	57.8
2.50 GHz	59.3
2.53 GHz	59.3
Processors with	
2 GHz	54.3
2.20 GHz	57.1
2.26 GHz	58.0
2.40 GHz	59.8
2.50 GHz	61.0
2.53 GHz	61.5
2.60 GHz	62.6
2.66 GHz	66.1
2.80 GHz	68.4
Processors with multiple VIDs	
2 GHz	54.3
${ }_{2}^{2206 \mathrm{GHz}}$	57.1
${ }_{2.40 \mathrm{GHz}}^{2.86 \mathrm{chz}}$	58.0 59.8
${ }_{2.50 \mathrm{GHz}}^{2.40 \mathrm{GHz}}$	59.8 61.0
2.53 GHz	61.5
2.50 GHz	62.6
2.66 GHz	66.1
${ }_{\substack{2.0606 \mathrm{GHz}}}^{2.80}$	${ }^{68.4}$

Junction (Silicon) Temperature

$T_{j}-T_{a}=R_{\theta J A} P_{D}$
$\mathrm{R}_{\theta A \mathrm{~A}}$ is the thermal resistance between silicon and Ambient

Realistic Scenario

$R_{\theta C A}=R_{\theta C S}+R_{\theta S A}$
is minimized by facilitating heat transfer (bolt case to extended metal surface - heat sink)

Thermal Resistance of Recent Cores (i5 Sandy vs. Ivy)

Thermal Shutdown

What happens when the CPU cooler is removed?

www.tomshardware.de www.tomshardware.com

Other Considerations

Static Power

Low-Power Digital: Sub-Threshold Operation

Exploit Sub-threshold Operation ($V_{D D}<V_{T}$) for Sensor Circuits
10/31/1

Power Consumed
Sandy Bridge Power

Digital Power Consumption

- P : total power consumed
- $\alpha_{0 \rightarrow 1}$: fraction of gates switching
- C : Capacitance of gates
- V : Operating voltage $\left(V_{d d}\right)$
- f : frequency of operation
- $I_{\text {leak }}$: Leakage Current:
- Sub-threshold leakage
- Gate-Leakage

10/31/17
Vss

How much?

Types of Static Leakage:

Sub-Threshold Leakage:

The fact that no transistor turns off below its threshold voltage

Gate Leakage:
Where an electron or hole just tunnels through the FET gate

Leakage has Gotten so bad

- How bad is it?
- In some contexts, static loss starts to dominate dynamic loss
- This is a really big deal since the primary loss mechanism is beyond the control of implementation design, etc...

Leakaqe Current: Moore's Law Meets Static Power
http://www.ruf.rice.edu/~mobile/elec518/readings/DevicesAndCircuits/kim03leakage.pdf

Aside: Shmoo Plot

- Sometimes hear plots of various performance specs on semiconductors called "Shmoo" plots
- Called that because they plots look like Shmoos, weird bowling-pin like creatures from Lil Abner, even though they never do
- Anyways sometimes these comparison plots are called Shmoos
${ }^{10 \%}$ Wikipedia finally explained this to me...pre-semiconductor, Shmoo plots looked like Shmoos with magnetic things

Trigate

- One of the first departures from planar semiconductor fabrication since we started doing it as humans in the early 1950s.
- Was in the pipeline since right around 2000, and finally started coming out in 2014
- Cuts static loss (sub-threshold loss in particular) by 50\%

Sandy Bridge vs. Ivy Bridge (32nm vs. 22 nm core i5)

- Sandy Bridge was older model transistor
- Ivy Bridge was 3D transistor

10/31/17
42

Sandy Bridge vs. Ivy Bridge (32 nm vs. 22 nm core i5)

- Intel fell way behind schedule 70 再 getting their 22 nm tech into production, but its trigate devices in IVB, have drastically cut down static power loss

http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison/

The Threat of Static Power Loss

- If your primary loss mechanism becomes static phenomena, then there will become a point where a cranking the clock could be beneficial!
- Run as fast as possible with the best hardware as possible (32 bit MCU if appropriate vs. 8 bit or something)
- Then sleep! (the static monster won't get you if you're in sleep)
- Not necessarily the right solution, particularly as new transistor models come in and keep static loss at bay, but you never know.

High Frequencies

- Very hard to get a crystal oscillator to operate above $\sim 200 \mathrm{MHz}$ (7th harmonic of resonance of crystal itself, which usually is limited to about 30 MHz due to fabrication limitations)
- Where does the 2.33 GHz clock of my iPhone come from then?
- Frequency Multipliers!

Where do we get frequencies?

- Most frequencies come from Crystal Oscillators made of quartz
- Equivalent to very High-Q LRC tank circuits
- https://en.wikipedia.org/wiki/Crystal oscillator frequencies
- Incorporate into circuit like that below and boom, you've got a square wave of some specified frequency dependent largely on the crystal

http://www.z80.info/uexosc.htm https://en.wikipedia.org/wiki/Crystal_6scillator

Voltage Controlled Oscillator

- It is very easy to make voltage-controlled oscillators that run up to 1 GHz or more.
- Why don't we just:

- Pick the voltage V_{i} that is needed to get the frequency we want f_{o} ? That's gotta be specified right?

- Same reason we don't see op amps in open loop out in the wild...they are too unstable...gotta place them in negative feedback

Phase Locked Loop

- Place the unstable, but capable VCO in a feedback loop.
- This type of circuit is a phase-locked loop variant

10/31/17
49

Phase, Frequency Detector

Phase Locked Loop

- Circuit that can track an input phase of a system and reproduce it at the output

10/31/17

Phase Detector

- Can be a simple XOR gate
- If near the desired frequency already this can work...if it is too far out, it won't and can be very unreliable since phase and frequency are not the same thing, it will lock onto harmonics, etc...
- Instead use a PFD:
- Phase/Frequency Detector:

PD

Phase-Frequency Detection

- Detects both change and which clock signal is consistently leading the other one
- Using MOSFETs you charge/discharge a capacitor accordingly which also with some resistors low-pass filter's the signal
- The output voltage is then roughly proportional to the frequency error!

PFD, Charge Pump, LP Filter

- So this circuit can make $f_{0}=f_{\text {ref }}$ That doesn't help us!
- How can we make a higher frequency?

10/31/17

Use a Clock Divider in Feedback Path!

- A clock divider in feedback path gives us clock gain!

Use a Clock Divider in Feedback Path!

10/31/17
57

Hardware vs. Software

Clock Generation Uses Power!

- In general with everything, if you don't need it, don't use it.
- Human eye can't tell difference between these two dimmers

Running Blue LED at 50% duty cycle at 100 Hz Based off of 12 MHz clock
Consuming 0.35 W

Running Blue LED at 50% duty cycle at 4000 Hz Based off of 480 MHz clock Consuming 0.5 W

Alternative Energy Sources

- Energy Harvesting - movement
- Energy Harvesting - thermoelectric generator
- Ambient RF
- Grapes
- Gastric fluids

Trends: Energy Scavenging

Low-Profile Wearable Body-Powered
Thermoelectric Generator

- Low profile, lightweight, conformal.
- Utilization of small temperature difference
- Utilization of natural convection for cooling

Credit: Krishna Settaluri MIT 2010

Body-Powered, Flex EKG System

Ambient RF

Prudential Center
FM Stations:
WZLX 100.7, WBMX 104.1, WMJX 106.7, and WXKS-FM 107.9, WBOS 92.9 WBQT 96.9, and WROR-FM 105.7.
Power output:
22,000 watts
Recovered:
~ 0.2 milliwatt

Grape Juice Voltage

Zinc screw
Newman's Own Grape Juice

Inifinite Power! If we ignore

Gastric Fluid Powered

7 Fig. 3. Pholo of GMB prototype.
Hikaru Jimbo, Norinisa Miki
Gastric-fluid. utilizing micro battery for microm medical devices

Using $4 \mathrm{~mm} \times 4 \mathrm{~mm}$
electrodes $(\mathrm{Zn} / \mathrm{Cu})$, electrodes $(\mathrm{Zn} / \mathrm{Cu})$,
10 uW of average power
from in brief $<30 \mathrm{~min}$) from in brief (< 30 min)
in vivo measurements

Energy harvesting

- Thermo-electric generator
- Thermoelectric material converts temperature difference into voltage

40 K temp difference
$1.8 \mathrm{~V} @ 368 \mathrm{~mA}$

- Thexis
bq25504 Ulitra Low-Power Boost Converter With Battery Management for Energy
Features Harvester Applications
- Uitra Low Power weh High Efficoncy DC.OC
- Continuuas Energy Harvesting Fiom Low-Inpur
Sourcos $\mathrm{V}_{\mathrm{w}} 280 \mathrm{mV}$ (Iypical)
(Typucan)

Trackng (MPPT)
Integrated DYnamixic Maxmum Power Poont Variety O Energy Generation Scurcocos
Input Vottage Rogulatoon Provents Coltopsin
- Energy Storage
 Capactors, or Conventoonal Capacatios
- Battery Charging and Protecton
User Programmabbic Undornottogo an
Overothoge Lovets

Bateyn Status Output
- Botroy Good Output Pn

3 Description
The beqs50. device is the first of a new family of

PART NUMEER Device Intormation

Audio Feature Extraction

- Most features are best recognized in the frequency domain
- Use Discrete Fourier Transform
- Algorithm used: Fast Fourier Transform (FFT)
- Input: N data values acquired at sample frequency ω_{s}
- Nyquist rate is $\omega_{s} / 2$
- Output: N complex values representing DFT coefficients in the frequency range $-\omega_{s} / 2$ to $+\omega_{s} / 2$.
- Each value covers a frequency range of ω_{5} / N
- Indices $(\mathrm{N} / 2, \mathrm{~N}-1)$ are for frequencies $-\omega_{s} / 2+(\mathrm{i}-\mathrm{N} / 2)^{*}\left(\omega_{s} / \mathrm{N}\right)$
- If N is even, output is symmetric, so we can calculate magnitude using only positive frequencies. Magnitude $\approx \sqrt{r^{2}+i^{2}}$
- if is even, output
- Example

Audio data from AC97 sampled at 8 kHz
2048 data points => 2048 -point FFT
2048 complex results, each result covers $8 \mathrm{k} / 2048=4 \mathrm{~Hz}$ range

10/31/17

Fast Fourier Transforms

- FFTs are really central to a lot of DSP
- Software FFTs are *relatively* easy to do
- Implementing one in an FPGA from the ground up is a bit less intuitive, but it can be done, and since it can do much of its operations in parallel it has a niche in a lot of real-time applications
- Great review article below (sort of step-by-step build) which should be accessible if you've seen/done/thought about implementing FFTs before in something like C for example... will post on Course site

Slade, George. (2013). The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation.

Data Memory Blocks

FFT example - Labkit

- IP wizard will build a N-point FFT module
- WARNING: they're big!
- In theory, there are two operating modes (select at build time)
- "pipelined" where you get a complex value out for every sample you send the module - runs
- popelined wh
- "burst" where you load up N samples, wait a while and get your answer while loading the set of
- To use FFT, use sample Verilog
- Demo: audio spectrum analyzer
- Uses "pipelined" mode
- 44 page datasheet

10/31/17
 "burst" whes.
samples.

FFT - Nexys4 DDR

- IP core uses AXI4 protocol
- 97 page datasheet

10/31/17

FFT of AC97 data

To process AC97 samples:

- use Pipelined mode (input one sample in each cycle, get one sample out each cycle). - FFT expects one sample each cycle, so hook READY to CE so that FFT only cycles once per AC97
use Unscaled mode, do scaling yourself
- Number of output bits $=$ (input width) + NFFT +1
- NFFT is $\log _{2}$ (size of FFT)
- let number of FFT points = P, assume 48 kHz sample rate
there are P frequency bins
- positive freqs in bins 0 to ($\mathrm{P} / 2-1$)
- negative freqs in bins ($\mathrm{P} / 2$) to ($\mathrm{P}-1$)
- each bin covers ($48 \mathrm{k} / \mathrm{P}$) Hz
- Use XK _INDEX to tell which bin's data you're getting out
- Typically you want magnitude $=$ sqrt(xk_re^2 $+x k _i \mathrm{i}^{\wedge} 2$)

Tools

- Labkit hardware with sample Verilog
- NTSC Camera - display BW images
- ZBT Memory - high speed memory two 512Kx36 banks
- Alphanumeric data with hex display
- Compact Flash - 128Mbits non-volatile memory
- Nexys4 hardware with sample Verilog
- VGA Camera
-SD card read/write
- Application support
- Sound -Matlab script: convert wav files to AC97 8bit COE file Images - Matlab script: convert BMP COE field
- USB PC-Labkit data transfer
- git - Shared project team repository with version control
- hg - Shared project team repository with version control for people who want to be different 10/31/17

Special Sessions

- Thu: tutorials (in lab; optional)
- labkit NTSC camera 2:30p Gim
- labkit flash memory 2:45p Gim
- using images and COE files 3pm Gim
- chroma keying 8p Diana
- PC interfacing 9p Diana
- Nexys4 camera (8:30p) Weston
- Device Interfacing (3:15p) Joe
- Other sources of information:
- general computer vision and image processing ideas James

XADC, Vivado block designs, or ILA - Mitchell, Joe
motors, and in particular servos - Elizabeth

- FIR filters / generated coefficients and "tested" the filters - Madeleine

Iterative SQRT module

```
// takes integer square root iteratively
module sqrt #(parameter NBITS =8, // max 32
    Mnput wire MBITS = (NB
        input wire ck, start,
        input wire [NBITS-1:0] data,
        output wire done);
    reg busy; bit;
    wire [MBITS-1:0] trial = answer | (1 << bit);
    always @(posedge c1k) begin
    always @(posedge clk) begin
            if (bit ==0) busy <= 0;
            else bit <= bit - 1;
        if (trial*trial <= data) answer <= trial
        (start) begin
            busy <= 1;
            l
    #end
end
assign done = ~busy;

\section*{How to Make Your Projects Work}
- What are the power requirements?
- Labkit: \(3.3 \mathrm{~V}, 5 \mathrm{~V},+12,-12\)
- Nexys4: 3.3V
- Characterize external components before designing your system
- Understand input/output voltage specs
- Understand behavior of unused input/control lines
- Understand tri-state control lines
- Synchronize external signals to system clock.
- Exercise with care: grounds - in particular high current devices
- Look at waveforms on a scope for external signals \(>1 \mathrm{Mhz}\)
- Do NOT assume plug/play except for speakers, microphones, NTSC camera
- Verilog modules except for Labs 3-5 are provided "As-is". No warranty expressed or implied.```

