
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2017

Lecture PSet #3 of 8
Due: Tue, 09/19/2017

Note: Please type or write legibly

Problem 1. [This problem was based on a research project at MIT.] For many
communications systems, a forward error correcting (FEC) code such as a convolution
code, is used during transmission. This will allow the receiver to correct erroneous bits
when errors occur randomly in a coded sequence. [More on FEC in future lpsets.]
However, the bursty nature of noise will often wipe out large number of adjacent data bits
- defeating the convolution code. A simple solution is to interleave the data bits of a four
byte packet so that adjacent data bits are spaced out in the transmitted sequence. Instead
of sending all 8 bits of the byte 0, the low order bit pair of bytes 3, 2, 1, and 0 (starting at
the LSB end) are transmitted followed by the next set of bit pairs until all bits are
transmitted. This is implemented in many satellite communication systems1.

1 from http://www.ti.com/lit/an/swra113a/swra113a.pdf

(A) Implement a Verilog module that will interleave 4 bytes as shown.

module interveaver(
 input [7:0] byte0, // data = 8’h00
 input [7:0] byte1, // data = 8’h0E
 input [7:0] byte2, // data = 8’h8C
 input [7:0] byte3, // data = 8’h0C
 output [7:0] out0,
 output [7:0] out1,
 output [7:0] out2,
 output [7:0] out3
);

 assign out0 =
 assign out1 =
 assign out2 =
 assign out3 =

endmodule

There are multiple implementations. To receive credit your interleaver must encode this
input [00 0E 8C 03] to the following output [C8 3C 00 20]. This will ensure
compatibility with the deinterleaver. [This Verilog was actually used in a research
project at MIT.]

(B) Write the Verilog for a deinterleaver. Any interesting observation?

Problem 2 [For full credit, Verilog must be syntactically correct.]

For each of the parts below write one or more statements of Verilog that implement the
desired functionality. Your Verilog just has to produce the same values for its outputs – it
doesn’t have to replicate the schematic logic gate-for-gate (in fact, you should not use
those “structural” constructs). Be sure to include the appropriate declarations for any
wires or regs used in your code.

(A) A circuit that divides an 8-bit input operand by 16 and produces a 4-bit value.

(B) A circuit to compute the 17-bit sum of two 16-bit operands

(C) Implement a 4-bit priority encoder (a circuit which examines its seven inputs (I0, I1,
I2, I3) and outputs a 2-bit binary number indicating the highest-priority input which has a
value of “1”, where I3 has the highest priority and I0 the lowest) with “dataflow” (assign)
constructs.

(D) Implement a 4-bit priority encoder with “sequential” (always) construct and “case”
statement.

(see other side)

Problem 3. [For full credit, Verilog must be syntactically correct.]

Using the Verilog parameterized module mechanism it’s possible to write modules whose
operations depends on parameters specified when the module is instantiated.

(A) Write a parameterized parity check module which takes as input a bus whose size is
set by a parameter. The module has a single output which is 0 if the number of 1’s in
the input vector is even and 1 otherwise.

(B) How would one instantiate an instance of your module to compute parity check on the
16-bit data bus DATA[15:0]?

