
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2017

Lecture PSet #6 of 8
Due: Wed 10/4/2017 upload by 23:59

This LPset requires ISE. The LPset is based on an actual FPGA implementation for a low power
wireless ECG monitor attached to a patient and transmitted to a receiver at a nurse base station.
The Interleaver Module was part of an earlier lpset. This problem is focused part of the FEC
(Forward Error Correction) encoder algorithm.

A typical transmitted data packet is show below.

The preamble bits and sync word are used by the receiver for synchronization. For this problem,
you will only be concerned with the three blocks of data consisting of the Length Field, Address
Field and Data Field. FEC is forward error correction, a technique that allows a receiver to
correct errors in a received packet by convolving the data and sending the parity bits. More on
FEC in Lpset #7.

Cyclic Redundancy Check (CRC) is used to detect errors in data transmission and is capable of
detecting all single and double errors and many multiple errors with a small number of bits. CRC
is generated by a modulo 2 division with a generator polynomial. The remainder is the CRC. For
our application, the generator polynomial is CRC16 (x16 + x15 + x2 + 1) with the CRC register
initialized to all 1’s prior to calculating the CRC. [CRC16 is the generator polynomial for data
packets in the USB: http://www.usb.org/developers/docs/whitepapers/crcdes.pdf.] Initializing to
all 1's ensures that leading 0s in front of a packet are protected by the CRC. The figure below
shows the shift register implementation for the CRC.

 x16 r[15] r[14] + r[15] + x16

In the shift register implementation, each “r” is a register, all clocked with a common clock. The
common clock is NOT shown. The small round circles with the plus sign in the diagram are
adders implemented with XOR gates. As shown, for register r15, the input is the sum of
r[14], r[15] and data input x16; and the output is r[15] .

You can see from the location of the XOR gates (input to r15, r2 and r0, equivalent to a
generator polynomial 0x8005) in the shift register configuration how CRC16
 (x16 + x15 + x2 + 1) is implemented. The data input is x16 with the most significant bit (MSB)
shifted in first. With each clock pulse, the next data bit is provided to x16. Using this hardware
will give the following result:

Input: [4 bytes] 03 01 02 03
Appended with CRC: [6 bytes] 03 01 02 03 30 3A

In this example the first six data bits sent to x16 are six zero followed by two ones [03]. After
32 bits are shifted in, the value in r[15:0] is the CRC [30 3A].

The CRC calculation is such that sending the data and appended CRC (6 bytes) through the same
hardware used to generate the CRC will give a CRC of [00]. (Engineers are clever!)

Problem: Write a Verilog module that takes the data, run it through the CRC generator and
calculates the CRC. Be sure to name the module lpset6.v. – it’s the name the testbench is
expecting. The input start pulses high for one clock cycle when data is available. When CRC
calculation is completed, done is asserted with r[15:0] containing the CRC for the incoming data.
Since the data input has the CRC appended, the resultant CRC is [00]. Be sure to initialize
r[15:0] to 16’hFFFF at the start. For performance, done must be assert as soon as the all 48 bits
are processed (i.e. same clock edge).

http://www.usb.org/developers/docs/whitepapers/crcdes.pdf

 data input 48'h03_01_02_03_30_3A

Getting started:
Step 1: Using ISE, create a new Verilog module with inputs and outputs as shown above.
Step 2: The Verilog module: when start is asserted (one clock pulse wide), reset your FSM;
reset counters and other registers; and load any initial values. With each following clock pulse,
begin the CRC calculation. Assert done when 48 bits are processed. The module should use
only one clock domain always @(posedge clock).
Step 3: Using ISE and the attached test bench (also posted on the course website) verify your
design with a simulation using the process outlined in Lab 2 exercise 1(b). The test bench
includes a 5ns clock. Note the syntax [@posedge] for a test bench is slightly different than a
Verilog module. The input data is 48'h03_01_02_03_30_3A and sent one bit at time. The first
eight bits sent to the Verilog module are six zero followed by two ones corresponding to
hex [03]. You may modify the test bench if needed for your implementation (generally not the
case). In the actual FPGA ECG implementation, the data length is variable and processed one
byte at a time.
Step 4: Take a screen shot showing r[15:0] after 32 bits are shifted in and a screen shot showing
r[15:0] when done is asserted. Use hex radix for r[15:0]. Include the Verilog and screen shots in
one pdf file. Upload to the course website.

 Lpset grading rubric

 Grading
1 Easy to read & formatted Verilog (See "Verilog Editors" tab for help.)
1 Correct use of blocking/non-blocking assignments
1 Comments in Verilog when needed
3 Functional Verilog & test bench
2 Screen Shot 1 r[15:0] after 32 bits are shifted in
2 Screen Shot 2 r[15:0] when done is asserted

10 Total Grade

In simulation, state values are unknown unless explicitly set. (Unknown values are shown in red
during simulation. Outputs not defined are shown in blue.) For a simulation to run correctly,
state variables must be initialized or set to some value at some point in the simulation. This can
be accomplished by using a reset (recommended) or other input. For the CRC you can use the
start pulse to initialize the CRC:

Verilog
Module

clock

data (serial)

start

16

r[15:0]

done

In simulation, by default, only inputs and outputs from the unit under test are displayed in the
Wave window. It may be useful to display internal wires in your module that are not inputs nor
outputs, for example, a bit counter. After running the initial simulation, to display the internal
wires, click “uut” (unit under test) in the Workspace window (#1). This will display the internal
signals in the Object window (#2). Drag the desired signals to the Wave window (#3).

To display the additional signals, rerun the simulation. In the Transcript window, type

 restart -f // force a restart
 run 2000ns // run simulation for 2000ns (longer if needed)

`timescale 1ns / 1ps
///
//
// lpset CRC test bench 9/29/2017
//
///

module crc_tf;

 // Inputs
 reg clock;
 reg data_clk;
 reg start;
 reg data;

 // Outputs
 wire done;
 wire [15:0] r;

 // Instantiate the Unit Under Test (UUT)
 lpset6 uut (
 .clock(clock),
 .start(start),
 .data(data),
 .done(done),
 .r(r)
);

 // this is the input data
 reg [47:0] input_data = 48'h03_01_02_03_30_3A;
 integer i; // required for "for" loop

 initial begin // system clock
 forever #5 clock = !clock;
 end

 initial begin // data_clk, ensures setup time met
 #2
 forever #5 data_clk = !data_clk;
 end

 initial begin
 // Initialize Inputs
 clock = 0;
 data_clk = 0;
 start = 0;
 data = 0;

 // Wait 100 ns for global reset to finish
 #100;

 // Add stimulus here
 start=1;
 #10 start = 0;
 #5;
 //forever #5 data_clk = !data_clk;
 for (i=0; i<48; i=i+1)
 begin
 data = input_data[47];
 // at each clock, left shift the data
 // note syntax for test bench "for" loop - no "always"
 // note the blocking assignment (immediate)
 @(posedge data_clk) input_data = {input_data[46:0],1'b0};
 end

 $stop; // Pause simulation
 end

endmodule

A link to the test bench is posted on the course website.

You can verify your design with different inputs by comparing your results with a CRC
calculator website http://www.sunshine2k.de/coding/javascript/crc/crc_js.html.

Select CRC-16, use custom CRC parameterization:
 Uncheck “Input reflected”, uncheck “Result reflected”
 Polynomial 0x8005
 Initial value 0xFFFF
 Final XOR value 0x0000
 CRC input data (bytes) 0x03 0x01 0x02 0x03 0x30 0x3a

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

