6.111 Serial Data Demo

Miren Bamforth - Fall 2015

Serial and Parallel Links

Parallel Link

L L

. = ~,
- .
DATA B f) DATA
Bl >1 1 2 >

SerialLink {T 1
THCIK ;ﬂ_

Currently pushing 10-206b/s ...

Intro to Serial Data

Serial Communications

« Sending information one bit at a time vs. many bits in parallel

— Serial: good for long distance (save on cable, pin and connector cost,
easy synchronization). Requires “serializer" at sender, "deserializer”
at receiver

— Parallel: issues with clock skew, crosstalk, interconnect density, pin
count. Used to dominate for short-distances (eg, between chips).

— BUT modern preference is for parallel, but independent serial links
(eg, PCI-Express x1,x2,x4 x8 x16) as a hedge against link failures.
* A zillion standards

— Asynchronous (no explicit clock) vs. Synchronous (CLK line in addition
to DATA line).

— Recent trend to reduce signaling voltages: save power, reduce
transition times

— Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire, PS/2, AC97
— Networking: RS232, Ethernet, T1, Sonet

— Computer Peripherals: USB, FireWire, Fiber Channel, Infiniband,
SATA, Serial Attached SCSI

Intro to Serial Data

HOW STANDARDS PROUFERATE:
(GEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

1?7 RiDICULOVS! GOON:
WE NEED 1o DEVELOP
STUATION: || e e T | | GITUATION:
THERE ARE USE CASES. vy THERE ARE
4 COMPETING L O) ' |5 COMPETING
STANDPRDS. STANDPRDS.

Intro to Serial Data

RS232 (aka “serial port”)

+ Labkit: simple bidirectional data connection with computer.
* Characteristics

— Large voltages => special interface chips
(1/mark: -12V to -3V, 0/space: 3V to 12V)

— Separate xmit and rcv wires: full duplex

— Slow transmission rates (1 bit time = 1 baud); most interfaces
support standardized baud rates: 1200, 2400, 4800, 9600, 19.2K,
38.4K, 57.6K, 115.2K

— Format
« Wire is held at 1/mark when idle
Start bit (1 bit of "0" at start of transmission)
Data bits (LSB first, can be 5 to 8 bits of data)
Parity bit (none, even, odd)
Stop bits (1, 1.5 or 2 bits of 1/mark at end of symboal)
* Most common 8-N-1: eight data bits, no parity, one stop bit

L]

Intro to Serial Data

RS232 interface

* Transmit: easy, just build
FSM to generate desired
waveform with correct bit
timing
* Receive:
- Want to sample value in -
middle of each bit time '
— Oversample, eg, at 16x
baud rate
— Look for 1->0 transition at
beginning of start bit
— Count to 8 to sample start

bit, then repeatedly count S —
to 16 to sample other bits
Figure from
— Check format (start, data, N B peback o s i

parity, stop) before
accepting data.

Intro to Serial Data

SPI (Serial Peripheral Interface)

» Simple, 3-wire intferface + devices selects

— SCLK generated by master (1-70MHz). Assert data on one edge,
sample data on the other. Default state of SCLK and assignment of
edges is often programmable.

— Master Out Slave In (MOSI) data shif ted out of master register
into slave register

— Master In Slave Out (MISO) data shifted out of slave register and
into master register

— Selects (usually active low) determine which device is active.
Assertion of ten triggers an action in the slave, so master waits some
predetermined time then shifts data.

SCLK ———»{ BCLK

Wasi 1| MOSI 5P Master Slave
= MISD 4 e MISD Slave
= -) sy
583
2 —» SCLK M5
) st a7 [e]tflsTs]s]e]"] —» L]
-t p;éac Shave (]
IR
| BCLK
—»| MDSI 5P " ——
Siave Figures from Wikipedia

Intro to Serial Data

I2C (Inter-Integrated Circuit)

2 open-drain wires (SCL = clock, SDA = data)
Multiple-master, each transmission addresses a particular device, many
devices have many different sub-addresses (internal registers)
Format (all addresses/data send MSB first):
- Sender: Start [S] bit (SDAW while SCL high)
— Sender: One or more 8-bit data packets, each followed by 1-bit ACK
« Data changed when SCL low, sampled at SCLAg
» Receiver: Active-low ACK generated after each data packet
— Sender: Stop [P] bit (SDA# while SCL high)
SCL and SDA have pullup resistors, senders only drive low, go high-
impedance to let pullups make line high (so multiple drivers okay!)

— Receiver can hold SCL low to stretch clock timing, sender must wait until SCL
goes high before moving to next bit.

— Multiple senders can contend using SDA for arbitration

Tir Wiad
SDA
— T —F———— 5L
uC ADC DAC ucC =g =l N . s
Master || Slave || Slave || Slave =T \WTUWTR B I

Figures from Wikipedia

Intro to Serial Data

USB (Universal Serial Bus)

« 2-wire (D+,D-) for high-speed, bidirectional polled transmission
between master and addressable endpoints in multiple devices.
Full speed (12Mbps) and High speed (480Mbps) data rates.

* Multi-level tiered-star topology (127 devices, including hubs)

« FTDI UM245R USB-to-FIFO module for bidirectional data
transfer using a handshake protocol, also asynchronous "bit-bang”
mode with selectable baud rates.

— 24-pin DIP module, wire to user pins
— Drivers for Windows workstations in lab

Figures from ftdi.com

Intro to Serial Data

Serial data in summary:
e Serial allows communication with few wires between devices
e Common protocols: UART, SPI, I12C, etc

e Asynchronous vs Synchronous

Intro to Serial Data

http://www.eeherald.com/section/design-guide/esmod7.html

1y Bynchronogs Transmission: -

Transmitter senids bits on falling edge of the clock
Receiver reads hits on tising edge of the clock

¥y v | I | I I I I
Clock —
I I I | I I I I |
| [[| [[[[
Diata | | | |
Al
(e 1) EBit7 | | | | | | | Bit0
: I I | I I I I
Bits 1] 1 | 1 1] 1] 1] a 1

|
| |
I |
I I | I I I I |
| [Hote: - Margy symchronous protocols send WGE first |
I |

Synchronous Serial Data

Asynchronous means no clock...so how
do we know when to look for data bits?

I
—1 sz\lrz\i’

I

I I

| I
Bit7 | | I I

I I

I I

Asynchronous Serial Data

«24ms»l 1 1 0 0 1 0 0 1 0 0 0 O

| 11011110 QI11E

; LSB MSBiLSB MSE:
éi—StarI—r;jd Command i“-t ﬂddress—hi

Predetermined timing specifications are the key to asynchronous serial data!

Lab 5b:
e 2.4ms start bit
o 1.2ms 1 bit
e (0.6ms 0 bit

Asynchronous Serial Data: Lab Sb

STARTING: begin
// sample whenever expired is true to read the start bit
if (expired) begin
if (ir_clean) begin
if (start_counter < 5'b11111) begin
start_counter <= start_counter + 1;
end
end
else if (!ir_clean && ir_prev) begin
if (start_counter > 5'b11100) begin
state <= READING;
bit_counter <= 4'de;
start <= 1'bl;

end

else begin
start_counter <= 5'beeeee;
state <= IDLE;

end

end
ir_prev <= ir_clean;
end
end

Asynchronous Serial Data: Lab Sb

The DMX512 protocol is characterized as a asynchronous serial data stream that runs at 250 kHz. As a
result, each “bit” will be 4 ps long. DMX512 has one start bit (low), eight bits of data, 2 stop bits and no

parity.
MTBF
MTBP .
IDLE BREAK Start Bit Siar R
MAB
Bits 8 Data Bits
Bits
;. ______
I -
¥ ; DATA=
I
Start Code Channel 1 Channels
2-256...
Figure 4. DMX512 Timing Diagram
Table 1. DMX512 Timing Chart
Min Typ Max Unit

Break 88 88 1000000 us
Mark After Break (MAB) 8 us
Frame Width 44 us
Start/Data/Stop bits 4 us
Mark Time Between Frames (MTBF) 0 N/A 1000000 us
Mark Time Between Packets (MTBP) 0 N/A 1000000 us

Asynchronous Serial Data: DMX512

http://www.ti.com/lit/an/sprabr9/sprabr9.pdf

// always block controls dmx output
always @(posedge clk) begin
if (reset) begin
state <= BREAK;
end
else begin
case(state)
BREAK: begin
// hold low for 88 us to 1 sec
// choose 18@ us which is approx. 2760 cycles at 27MHz
if (break_counter < BREAK_COUNTER_MAX) begin
// dmx_out is low during break
dmx_out <= LOW;
break_counter <= break_counter + 1;
end
else begin
// once we have waited for long enough, go to next state
state <= MAB;
break_counter <= BREAK_COUNTER_MIN;
dmx_out <= HIGH;

end
end
MAB: begin
// hold high for 8us to 1 sec
// choose 1@ us which is approx. 27@ cycles at 27MHz
if (mab_counter < MAB_COUNTER_MAX) begin
// dmx is high during mark after break
dmx_out <= HIGH;
mab_counter <= mab_counter + 1;
end
else begin
// once we have waited long enough, go to next state
state <= START_CODE;
mab_counter <= MAB_COUNTER_MIN;
// keep it high for now; the next state will change it
dmx_out <= HIGH;
// reset 4us counter too
four_us_counter <= FOUR_US_COUNTER_MIN;
end
end

START_CODE: begin
// The start code is formatted like the channel data with a

// value of zero. In order, its bits are: ©_2000_geee_11.
1/ The first bit is the start bit (low) and the last two
// bits are stop bits (high).

// The total start code is 44us, so each bit is held for 4us

1t (four_us_counter == FOUR_US_COUNTER_MAX) begin
sc_counter <= sc_counter + 1;
four_us_counter <= FOUR_US_COUNTER_MIN;

end

else four_us_counter <= four_us_counter + 1;

// dmx_out control

if (sc_counter < 4'd9) begin
// bits @ to 8 are low
dmx_out <= LOW;

end

else if (sc_counter == 4'd9) begin
// bit 9 is high
dmx_out <= HIGH;

end

else if (sc_counter == 4'd18) begin
// bit 1@ is high
// go to the next state
dmx_out <= HIGH;
sc_counter <= SC_COUNTER_MIN;
state <= MTB_FRAMES;

end
end
MTB_FRAMES: begin

// The mark between frames is up to 1 second long

// choose 18 us which is approx. 270 cycles at 27MHz

if (mtbframes_counter < MTBFRAMES_COUNTER_MAX) begin
// dmx is high during mark time between frames
dmx_out <= HIGH;

// request the data for the next channel data output now
if (mtbframes_counter == MTBFRAMES_COUNTER_MIN) begin

// if we have sent all of the frames already, go to

1/ the mtb_packets state

if (addr_count == ADDR_COUNT_MAX) begin
mtbframes_counter <= MTBFRAMES_COUNTER_MIN;
addr_count <= ADDR_COUNT_MIN;
state <= MTB_PACKETS;

end
else begin
request_pulse <= HIGH;
request_addr <= addr_count;
addr_count <= addr_count + 1;
mtbframes_counter <= mtbframes_counter + 1;
end
end
else begin

Asynchronous Serial Data: DMX512

reguest pulse <= LOW;

http://www.ti.com/lit/an/sprabr9/sprabr9.pdf

Some useful links:

RS-232: http://www.arcelect.com/rs232.htm

UART, 12C, SPI guide (ignore the device-specific info): hitps://tessel.
i0/blog/108840925797/a-web-developers-guide-to-communication-protocols

USB: http://www.beyondlogic.org/usbnutshell/usb1.shtml

DMX512: http://www.elationlighting.com/pdffiles/dmx-101-handbook.pdf

Serial Data Resources

http://www.ti.com/lit/an/sprabr9/sprabr9.pdf

http://www.arcelect.com/rs232.htm
https://tessel.io/blog/108840925797/a-web-developers-guide-to-communication-protocols
https://tessel.io/blog/108840925797/a-web-developers-guide-to-communication-protocols
https://tessel.io/blog/108840925797/a-web-developers-guide-to-communication-protocols
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.elationlighting.com/pdffiles/dmx-101-handbook.pdf

