L2: Combinational Logic Design

 (Construction and Boolean Algebra)
(Most) Lecture material derived from R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993.

The Inverter

- Large noise margins protect against various noise sources

TTL Logic Style (1970's-early 80's)

MOS Technology: The NMOS Switch

NMOS ON when Switch Input is High

PMOS: The Complementary Switch

PMOS ON when Switch Input is Low

The CMOS Inverter

Switch Model

Possible Function of Two Inputs

There are 16 possible functions of $\mathbf{2}$ input variables:

In general, there are $2^{\left(2^{\wedge n}\right)}$ functions of \mathbf{n} inputs

Common Logic Gates

Gate

NAND

Symbol

Truth-Table

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

Introductory Digital Systems Laboratory

Exclusive (N)OR Gate

XOR
$(X \oplus Y)$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

$Z=X \bar{Y}+\bar{X} Y$ X or Y but not both
("inequality", "difference")

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

$$
\begin{gathered}
Z=\bar{X} \bar{Y}+X Y \\
X \text { and } Y \text { the same } \\
\text { ("equality") }
\end{gathered}
$$

Widely used in arithmetic structures such as adders and multipliers

Generic CMOS Recipe

Note: CMOS gates result in inverting functions!
(easier to build NAND vs. AND)

How do you build a 2-input NOR Gate?

Theorems of Boolean Algebra (I)

- Elementary

1. $X+0=X$
2. $x+1=1$
3. $X+X=X$
4. $(\bar{X})=x$
5. $X+\bar{X}=1$

- Commutativity:

6. $X+Y=Y+X$

- Associativity:

7. $(X+Y)+Z=X+(Y+Z) \quad$ 7D. $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

- Distributivity:

8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \quad 8 \mathrm{D} . \mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$

- Uniting:

9. $X \cdot Y+X \cdot \bar{Y}=X$

9D. $(X+Y) \cdot(X+\bar{Y})=X$

- Absorption:

10. $X+X \cdot Y=X$
10D. $X \cdot(X+Y)=X$
11. $(X+\bar{Y}) \cdot Y=X \cdot Y$
11D. $(X \cdot \bar{Y})+Y=X+Y$

Theorems of Boolean Algebra (II)

- Factoring:

12. $(X \cdot Y)+(X \cdot Z)=$ $X \cdot(Y+Z)$

12D. $(X+Y) \cdot(X+Z)=$ $X+(Y \cdot Z)$

- Consensus:

13. $(X \cdot Y)+(Y \cdot Z)+(\bar{X} \cdot Z)=$

13D. $(X+Y) \cdot(Y \pm Z) \cdot(\bar{X}+Z)=$ $X \cdot Y+\bar{X} \cdot Z$ $(X+Y) \cdot(\bar{X}+Z)$

- De Morgan's:

14. $\overline{(X+Y+\ldots)}=\bar{X} \cdot \bar{Y} \cdot \ldots \quad$ 14D. $\overline{(X \cdot Y \cdot \ldots)}=\bar{X}+\bar{Y}+\ldots$

- Generalized De Morgan's:

15. $\bar{f}(X 1, X 2, \ldots, X n, 0,1,+, \bullet)=f(\overline{X 1}, \overline{x 2}, \ldots, \overline{X n}, 1,0, \bullet,+)$

- Duality
\square Dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0 , and leaving variables unchanged
ㅁ $\mathrm{f}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 0,1,+, \bullet) \Leftrightarrow f(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 1,0, \bullet,+$)

Simple Example: One Bit Adder

- 1-bit binary adder - inputs: A, B, Carry-in \square outputs: Sum, Carry-out

A	B	Cin	S Cout	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
				1

> Sum-of-Products Canonical Form
> $S=\bar{A} \bar{B} C i n+\bar{A} B \overline{C i n}+A \bar{B} \overline{C i n}+A B C$ in Cout $=\bar{A} B C i n+A \bar{B} C i n+A B \overline{C i n}+A B C i n$

- Product term (or minterm)
\square ANDed product of literals - input combination for which output is true
\square Each variable appears exactly once, in true or inverted form (but not both)

Simplify Boolean Expressions

$$
\begin{aligned}
\text { Cout } & =\bar{A} B C \text { in }+A \bar{B} C \text { in }+A B \overline{C i n}+A B C \text { in } \\
& =\bar{A} B C \text { in }+A B C \text { in }+A \bar{B} C \text { in }+A B C \text { in }+A B \overline{C i n}+A B C \text { in } \\
& =(\bar{A}+A) B C \text { in }+A(\bar{B}+B) C \text { in }+A B(\overline{C i n}+C i n) \\
& =B C i n+A C i n+A B \\
& =(B+A) C \text { in }+A B
\end{aligned}
$$

$$
\begin{aligned}
S & =\bar{A} \bar{B} C i n+\bar{A} B \overline{C i n}+A \bar{B} \overline{C i n}+A B C \text { in } \\
& =(\bar{A} \bar{B}+A B) C i n+(A \bar{B}+\bar{A} B) \overline{C i n} \\
& =(\overline{A \oplus B}) \operatorname{Cin}+(A \oplus B) \overline{C i n} \\
& =A \oplus B \oplus C i n
\end{aligned}
$$

Sum-of-Products \& Product-of-Sum

- Product term (or minterm): ANDed product of literals - input combination for which output is true

A	B	c	minterms	
0	0	0	$\bar{A} \bar{B} \bar{C}$	m0
0	0	1	$\bar{A} \bar{B} C$	m1
0	1	0	$\bar{A} B \bar{C}$	m2
0	1	1	$\bar{A} B C$	m3
1	0	0	$A \bar{B} \bar{C}$	m4
1	0	1	$A B C$	m5
1	1	0	$A B \bar{C}$	m6
1	1	1	$A B C$	m7

F in canonical form:

$$
\begin{aligned}
F(A, B, C) & =\sum m(1,3,5,6,7) \\
& =m 1+m 3+m 5+m 6+m 7 \\
F & =\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
\text { canonical form } & \neq m \text { minimal form } \\
F(A, B, C) & =\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B C+A B \bar{C} \\
& =(\bar{A} \bar{B}+\bar{A} B+A \bar{B}+A B) C+A B \bar{C} \\
& =((\bar{A}+A)(\bar{B}+B)) C+A B \bar{C} \\
& =C+A B \bar{C}=A B \bar{C}+C=A B+C
\end{aligned}
$$

short-hand notation form in terms of 3 variables

- Sum term (or maxterm) - ORed sum of literals - input combination for which output is false

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+\bar{C}$	$M 1$
0	1	0	$A+\bar{B}+C$	$M 2$
0	1	1	$A+\bar{B}+\bar{C}$	$M 3$
1	0	0	$\bar{A}+B+C$	$M 4$
1	0	1	$\bar{A}+\bar{B}+\bar{C}$	$M 5$
1	1	0	$\bar{A}+\bar{B}+C$	$M 6$
1	1	1	$\bar{A}+\bar{B}+\bar{C}$	$M 7$

short-hand notation for maxterms of 3 variables

Fin canonical form:

$$
\begin{aligned}
F(A, B, C) & =\Pi M(0,2,4) \\
& =M O \cdot M 2 \cdot M 4 \\
& =(A+B+C)(A+\bar{B}+C)(\bar{A}+B+C)
\end{aligned}
$$

canonical form \neq minimal form

$$
\begin{aligned}
F(A, B, C)= & (A+B+C)(A+\bar{B}+C)(\bar{A}+B+C) \\
= & (A+B+C)(A+\bar{B}+C) \\
& (A+B+C)(\bar{A}+B+C) \\
= & (A+C)(B+C)
\end{aligned}
$$

Mapping Between Forms

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used
E.g., $F(A, B, C)=\Sigma m(3,4,5,6,7)=\Pi M(0,1,2)$
2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used
E.g., $F(A, B, C)=\Pi M(0,1,2)=\Sigma m(3,4,5,6,7)$
3. Minterm expansion of F to Minterm expansion of F^{\prime} :
in minterm shorthand form, list the indices not already used in F

$$
\begin{aligned}
\text { E.g., } \begin{aligned}
F(A, B, C) & =\Sigma m(3,4,5,6,7) \\
& =\Pi M(0,1,2)
\end{aligned} \longrightarrow \quad F^{\prime}(A, B, C) & =\Sigma m(0,1,2) \\
& =\Pi M(3,4,5,6,7)
\end{aligned}
$$

4. Minterm expansion of F to Maxterm expansion of F^{\prime} : rewrite in Maxterm form, using the same indices as F

$$
\begin{aligned}
\text { E.g., } F(A, B, C) & =\sum m(3,4,5,6,7) \\
& =\Pi M(0,1,2)
\end{aligned} \quad \longrightarrow \quad F^{\prime}(A, B, C)=\Pi M(3,4,5,6,7)
$$

The Uniting Theorem

- Key tool to simplification: $A(\bar{B}+B)=A$

■ Essence of simplification of two-level logic
\square Find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=\bar{A} \bar{B}+A \bar{B}=(\bar{A}+A) \bar{B}=\bar{B}
$$

Boolean Cubes

■ Just another way to represent truth table
■ Visual technique for identifying when the uniting theorem can be applied

- n input variables = n-dimensional "cube"

Mapping truth tables onto Boolean cubes

- Uniting theorem

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Circled group of the on-set is called the adjacency plane. Each adjacency plane corresponds to a product term.

ON-set = solid nodes
OFF-set = empty nodes
A varies within face, B does not this face represents the literal \bar{B}

- Three variable example: Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Higher Dimension Cubes

- In a 3-cube (three variables):

■0-cube, i.e., a single node, yields a term in 3 literals
-1-cube, i.e., a line of two nodes, yields a term in 2 literals
-2-cube, i.e., a plane of four nodes, yields a term in 1 literal
$\square 3$-cube, i.e., a cube of eight nodes, yields a constant term "1"

- In general,
- m -subcube within an n -cube ($\mathrm{m}<\mathrm{n}$) yields a term with $\mathrm{n}-\mathrm{m}$ literals

Karnaugh Maps

- Alternative to truth-tables to help visualize adjacencies
- Guide to applying the uniting theorem - On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

- Numbering scheme based on Gray-code
- e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

K-Map Examples

Cout $=$

$F(A, B, C)=\Sigma m(0,4,5,7)$

$$
F=
$$

$$
F(A, B, C)=
$$

F' simply replace 1's with 0's and vice versa

$$
F^{\prime}(A, B, C)=\Sigma m(1,2,3,6)
$$

$$
F^{\prime}=
$$

Four Variable Karnaugh Map

K-Map Example: Don't Cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

In PoS form: $F=D(\bar{A}+\bar{C})$
Equivalent answer as above, but fewer literals

$$
\begin{aligned}
F(A, B, C, D) & =\Sigma m(1,3,5,7,9)+\Sigma d(6,12,13) \\
F & =\bar{A} D+\bar{B} \bar{C} D \text { w/o don't cares } \\
F & =\bar{C} D+\bar{A} D \text { wl don't cares }
\end{aligned}
$$

By treating this DC as a "1", a 2-cube can be formed rather than one 0-cube

Hazards

Static Hazards: Consider this function:

$$
\mathrm{F}=\mathrm{A}^{*} \overline{\mathrm{C}}+\mathrm{B}^{*} \mathbf{C}
$$

> Implemented with MSI gates:

Glitch

Fixing Hazards

The glitch is the result of timing differences
in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

- In general, it is difficult to avoid hazards - need a robust design methodology to deal with hazards.

