

L2: Combinational Logic Design (Construction and Boolean Algebra)

(Most) Lecture material derived from R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993.

The Inverter

Truth Table

IN	OUT
0	1
1	0

$$NM_L = V_{IL} - V_{OL}$$

 $NM_H = V_{OH} - V_{IH}$

Large noise margins protect against various noise sources

TTL Logic Style (1970's-early 80's)

MOS Technology: The NMOS Switch

NMOS ON when Switch Input is High

PMOS: The Complementary Switch

PMOS ON when Switch Input is Low

The CMOS Inverter

Switch Model

Rail-to-rail Swing in CMOS

Possible Function of Two Inputs

There are 16 possible functions of 2 input variables:

In general, there are 2 (2ⁿ) functions of n inputs

Common Logic Gates

Gate

Symbol

Truth-Table

nrac	ON
pres	

NAND

$$Z = X \cdot Y$$

AND

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = X \cdot Y$$

NOR

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

$$Z = X + Y$$

OR

$$Z = X + Y$$

Exclusive (N)OR Gate

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = X \overline{Y} + \overline{X} Y$$
X or Y but not both
("inequality", "difference")

XNOR

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

$$Z = \overline{X} \overline{Y} + X Y$$
X and Y the same
("equality")

Widely used in arithmetic structures such as adders and multipliers

Generic CMOS Recipe

Note: CMOS gates result in inverting functions!

(easier to build NAND vs. AND)

Α	В	PDN	PUN	0
0	0	Off	0n	1
0	1	Off	0n	1
1	0	Off	0n	1
1	1	0n	Off	0

How do you build a 2-input NOR Gate?

Theorems of Boolean Algebra (I)

Elementary

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

3.
$$X + X = X$$

4.
$$(\overline{\overline{X}}) = X$$

5.
$$X + \overline{X} = 1$$

1D.
$$X \cdot 1 = X$$

2D.
$$X \cdot 0 = 0$$

3D.
$$X \cdot X = X$$

$$5D. X \bullet \overline{X} = 0$$

Commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

Associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

Distributivity:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

Uniting:

9.
$$X \cdot Y + X \cdot \overline{Y} = X$$

9D.
$$(X + Y) \cdot (X + \overline{Y}) = X$$

Absorption:

10.
$$X + X - Y = X$$

11.
$$(X + \overline{Y}) \cdot Y = X \cdot Y$$

10D.
$$X \cdot (X + Y) = X$$

11D. $(X \cdot \overline{Y}) + Y = X + Y$

11D.
$$(X \bullet \overline{Y}) + Y = X + Y$$

Theorems of Boolean Algebra (II)

Factoring:

12.
$$(X \cdot Y) + (X \cdot Z) = X \cdot (Y + Z)$$

12D.
$$(X + Y) \cdot (X + Z) = X + (Y \cdot Z)$$

Consensus:

13.
$$(X \cdot Y) + (Y \cdot Z) + (\overline{X} \cdot Z) = X \cdot Y + \overline{X} \cdot Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X + Z) = (X + Y) \cdot (X + Z)$$

De Morgan's:

14.
$$(\overline{X + Y + ...}) = \overline{X} \cdot \overline{Y} \cdot ...$$

14.
$$(\overline{X + Y + ...}) = \overline{X} \cdot \overline{Y} \cdot ...$$
 14D. $(\overline{X} \cdot \overline{Y} \cdot ...) = \overline{X} + \overline{Y} + ...$

Generalized De Morgan's:

15.
$$\overline{f}(X1,X2,...,Xn,0,1,+,\bullet) = f(X\overline{1},X\overline{2},...,X\overline{n},1,0,\bullet,+)$$

- Duality
 - □ Dual of a Boolean expression is derived by replacing by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - \Box f (X1,X2,...,Xn,0,1,+,•) \Leftrightarrow f(X1,X2,...,Xn,1,0,•,+)

Simple Example: One Bit Adder

- 1-bit binary adder
 - □ inputs: A, B, Carry-in
 - □ outputs: Sum, Carry-out

A	В	Cin	5	Cout
0 0 0 1 1 1	0 0 1 0 0 1	01010101	011001001	0 0 0 1 0 1 1

Sum-of-Products Canonical Form

$$S = \overline{A} \overline{B} Cin + \overline{A} B \overline{Cin} + A \overline{B} \overline{Cin} + A B Cin$$

Cout =
$$\overline{A}$$
 B Cin + \overline{A} B Cin + \overline{A} B Cin + \overline{A} B Cin

- Product term (or minterm)
 - □ ANDed product of literals input combination for which output is true
 - □ Each variable appears exactly once, in true or inverted form (but not both)

Simplify Boolean Expressions

Cout =
$$\overline{A}$$
 B Cin + \overline{A} Cin + \overline{A} B Cin + \overline{A} B

$$S = \overline{A} \overline{B} Cin + \overline{A} \overline{B} \overline{Cin} + A \overline{B} \overline{Cin} + A \overline{B} Cin$$

$$= (\overline{A} \overline{B} + A \overline{B}) Cin + (\overline{A} \overline{B} + \overline{A} \overline{B}) \overline{Cin}$$

$$= (\overline{A} \oplus \overline{B}) Cin + (\overline{A} \oplus \overline{B}) \overline{Cin}$$

$$= A \oplus B \oplus Cin$$

Sum-of-Products & Product-of-Sum

Product term (or minterm): ANDed product of literals – input combination for which output is true

Α	В	C	minterms		F in canonical form:
0	0	0	$\overline{A} \overline{B} \overline{C}$	m0	$F(A, B, C) = \Sigma m(1,3,5,6,7)$
0	0	1	ABC	m1	= m1 + m3 + m5 + m6 + m7
0	1	0	$\overline{A} B \overline{C}$	m2	$F = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + ABC$
0	1	1	A B C	m3	canonical form ≠ minimal form
1	0	0	$A \overline{B} \overline{C}$	m4	$F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C}$
1	0	1	$A \overline{B} C$	m5	$= (\overline{A} \overline{B} + \overline{A} B + A\overline{B} + AB)C + AB\overline{C}$
1	1	0	A B \overline{C}	m6	$= ((\overline{A} + A)(\overline{B} + B))C + AB\overline{C}$
1	1	1	ABC	_ m7	$= C + AB\overline{C} = AB\overline{C} + C = AB + C$

short-hand notation form in terms of 3 variables

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

		_		
Α	В	C	maxterms	
0	0	0	A + B + C	MO
0	0	1	$A + B + \overline{C}$	M 1
0	1	0	$A + \overline{B} + C$	M2
0	1	1	$A + \overline{B} + \overline{C}$	M 3
1	0	0	$\overline{A} + B + C$	M4
1	0	1	\overline{A} + B+ \overline{C}	M5
1	1	0	$\overline{A} + \overline{B} + C$	M6
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M7
				Ħ

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B + C) (\overline{A} + B + C)$
canonical form \neq minimal form
F(A, B, C) = $(A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$
= $(A + B + C) (\overline{A} + \overline{B} + C)$
 $(A + B + C) (\overline{A} + B + C)$

= (A + C) (B + C)

short-hand notation for maxterms of 3 variables

Mapping Between Forms

Minterm to Maxterm conversion:
 rewrite minterm shorthand using maxterm shorthand
 replace minterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$$

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Pi M(0,1,2) = \Sigma m(3,4,5,6,7)$$

3. Minterm expansion of F to Minterm expansion of F': in minterm shorthand form, list the indices not already used in F

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \Sigma m(0,1,2)$ $= \Pi M(0,1,2)$ \longrightarrow $= \Pi M(3,4,5,6,7)$

4. Minterm expansion of F to Maxterm expansion of F': rewrite in Maxterm form, using the same indices as F

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \Pi M(3,4,5,6,7)$ $= \Sigma m(0,1,2)$

The Uniting Theorem

- Key tool to simplification: $A(\overline{B} + B) = A$
- Essence of simplification of two-level logic
 - □ Find two element subsets of the ON-set where only one variable changes its value this single varying variable can be eliminated and a single product term used to represent both elements

Boolean Cubes

- Just another way to represent truth table
- Visual technique for identifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

Mapping truth tables onto Boolean cubes

Uniting theorem

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Circled group of the on-set is called the adjacency plane. Each adjacency plane corresponds to a product term.

ON-set = solid nodes OFF-set = empty nodes

A varies within face, B does not this face represents the literal B

Three variable example: Binary full-adder carry-out logic

Α	В	Cin	Cout	(A+A)BCin	AB(Cin +Cin)
0	0	0	0		
0	0	1	0		
0	1	0	0		Cout = BCin+AB+ACin
0	1	1	1	B C 0	
1	0	0	0	101	<u>_</u>
1	0	1	1	000 °	A(B+B)Cin
1	1	0	1 7	The on-set is completely covered by t	the combination (OR) of the subcu
1	1	1	1 1	• •	• •

of the subcubes of lower dimensionality - note that "111" is covered three times

Higher Dimension Cubes

 $F(A,B,C) = \Sigma m(4,5,6,7)$

on-set forms a square i.e., a cube of dimension 2 (2-D adjacency plane)

represents an expression in one variable i.e., 3 dimensions - 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

In a 3-cube (three variables):

- □ 0-cube, i.e., a single node, yields a term in 3 literals
- □ 1-cube, i.e., a line of two nodes, yields a term in 2 literals
- □ 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- □ 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,

□ m-subcube within an n-cube (m < n) yields a term with n − m literals</p>

Karnaugh Maps

- Alternative to truth-tables to help visualize adjacencies
 - □ Guide to applying the uniting theorem On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

BA	0	1
0	o 1	2 1
1	0	3 0

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

- Numbering scheme based on Gray-code
 - □ e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

K-Map Examples

Cout =

$$F(A,B,C) = \Sigma m(0,4,5,7)$$

 $F =$

$$F(A,B,C) =$$

F' simply replace 1's with 0's and vice versa

$$F'(A,B,C) = \Sigma m(1,2,3,6)$$

Four Variable Karnaugh Map

K-Map Example: Don't Cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

$$F(A,B,C,D) = \Sigma m(1,3,5,7,9) + \Sigma d(6,12,13)$$

$$F = \overline{A}D + \overline{B}\overline{C}D$$
 w/o don't cares

$$F = \overline{C} D + \overline{A} D$$
 w/don't cares

By treating this DC as a "1", a 2-cube can be formed rather than one 0-cube

In PoS form:	F = 0	A) (+ C)

Equivalent answer as above, but fewer literals

Hazards

Static Hazards: Consider this function:

Implemented with MSI gates:

Fixing Hazards

The glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

$$\mathbf{F} = \mathbf{A} * \overline{\mathbf{C}} + \mathbf{B} * \mathbf{C} + \mathbf{A} * \mathbf{B}$$

■ In general, it is difficult to avoid hazards — need a robust design methodology to deal with hazards.