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Abstract
The  project  consists  of  computing  the  Fast  Fourier  Transform (FFT)  of  a  128-point

signal  fed through an A/D converter,  and outputted to a 256-address RAM. The algorithm is
based on the radix-2 FFT, which computes the FFT for a power of 2, N, number of inputs. The
actual algorithm is implemented inside a Field Programmable Gate Array (FPGA), the Altera
Flex10k70. The system has an input RAM to store the last 128 input samples, an output RAM
where the calculated FFT and a ROM to store pre-computed twiddle factors needed for the FFT
algorithm. All these memory blocks are embedded within the FPGA. After each computation of
the FFT, the output RAM addresses are read one by one to output the result.



1. Introduction 
The project’s initial purpose was to receive an EKG signal from an analog EKG sensor,

transmit it wirelessly from the remote station to a base station, and compute its FFT, outputting
the result to a display. My part of the project was specifically the FFT computation. For this, I
decided  to  do  a  128-point  FFT,  considering  both  performance  speed  and  resolution  as
counterweighing factors.

Beyond the scope of the initial project application, the FFT has numerous applications in
digital signal processing. There is a constant need for faster and better FFT algorithms. Although
I was not aiming to build the most optimal FFT algorithm there is, the implementation of the FFT
itself is a good familiarization with such an important algorithm, as well as a considerably non-
trivial  digital  design  problem.  Namely,  the  FFT  algorithm  relies  on  a  divide-and-conquer
methodology, which divides the N coefficient points into smaller blocks in different stages. This
iterative nature  of the  algorithm with individual  computation of smaller  blocks is  ideal  for  a
major-minor FSM design. The major FSM in the design controls the main loop of the system, as
we go from one stage to the next, while a minor FSM controls the computation of the coefficients
within each block. 

2. Overview 
As mentioned in the introduction, the FFT involves separating the N points into smaller

groups. We compute the first stage with groups of two coefficients, yielding N/2 blocks, each
computing the addition and subtraction of the coefficients scaled by the corresponding twiddle
factors (called a “butterfly” for its cross-over appearance). These results are used to compute the
next state of N/4 blocks, which will then combine the results of two previous blocks (combining
4 coefficients at this  point).  This process repeats until  we have one main block, with a final
computation of all N coefficients. 

Figure 1. Illustration of FFT stages for an 8-pt FFT

In Figure 1, we can see the different  stages.  In stage 1, there are 4 blocks, with one
butterfly-per-block. In stage 2, there are two blocks with 2 butterflies each; and finally, in stage
3, there is only one block, combining all 8 coefficients with 4 butterflies.

Using a major-minor FSM approach, we have one major FSM, the  fft block, which
controls  the  general  flow  of  the  system.  Waiting  for  the  signal,  a  BFcomputation block
computes to start the computation within each block, given the right parameters. The minor block
can take  arguments,  such  as  how many butterflies  per  block,  the  step size  between different
butterflies, or the step size of each block.  These arguments allow the BFcomputation FSM to
be a scalable block that can be re-used for each stage.



Beyond these two main blocks, the system also has to control several memory blocks,
which store the twiddle factors as well as the input and output coefficients.

Figure 2. Block diagram for system

3. Design Methodology
As seen in Figure 2, there are smaller modules that ensure the functionality of the FFT

and block computation modules. Specifically, the BFcomputation module uses a ROM where
the twiddle factors are stored.

The twiddle factors are simply the factors . They contain both a real and an
imaginary part, making the output coefficients complex numbers as well. These values are stored
in a ROM controlled by a  ROMcontroller minor FSM. This, in turn, is encapsulated in the
BFcomputation module, since it does not need to be accessed by any other part of the system.
Since these numbers repeat themselves after N/2 with a reversed sign, for a 128-point FFT, we
only need the first 64 factor. Exactly which factors are used at each point is determined by the
algorithm and the explanation for this can be studied with any of the many existing documents
about the FFT.1

To be able to do complex multiplication, the BFcomputation module also includes a
complexmult module inside, which computes the real and imaginary part of the product of
two complex numbers, given their real and imaginary parts. Put together, these modules are in
charge of the mechanics ‘inside’ each of the blocks. The complexmult module itself uses the
asynchronous multiplier that had been used in a previous lab and problem set.

Finally,  there  is  also  a  RAMcontroller module,  which reads  and writes  from two
internal RAM modules.  One of these is where the input  values are stored,  and the other  one
where the output coefficients are progressively computed and ultimately stored in. The RAM is
written on and read by both the fft and the BFcomputation modules. When the fft stores
the new input value it writes on the input RAM, and when it finishes the computation of the FFT,

1 http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE302_files/Ch_05_09a%20FFT%20Write%20Up_2004.PDF



it reads the output coefficients at the end of the routine to ensure proper functionality. Figure 2
shows the basic block diagram of the entire system. Please note that the embedded Altera RAM
and ROM modules are not in the diagram.

The  fft FSM major starts off in an init state, when it is first reset. Here it sets the
current address to be 0. After this, we enter the idle state, where each time there is an enable
signal, sample, the RAM address is driven to be the current address, and the data to the RAM is
set to be the input data. Following this, the FSM enters a  write state where it waits for the
RAM to finish writing. After the write, the system is ready to start the fft computation. Firstly,
it sets up the parameters for the computation of the block. These are:  st_i (the starting index
for the block), tw_step (is the difference between the indexes of the twiddle factors used), nBF
(the number of butterflies in the block) and bf_span (the difference of indexes between the two
coefficients that the butterfly will take). The system goes through all the coefficients by doing as
many blocks as there are per stage (for stage 1 of a 128-pt FFT, it is 64), and then goes to the
next stage.

As  the  algorithm completes  each  stage,  it  updates  these  values  to  correspond  to  the
appropriate values for that stage. Below is a table of the values for each stage in a 128-pt FFT

Stage   0 1 2 3 4 5 6
# blocks 64 32 16 8 4 2 1
# BF/blk 1 2 4 8 16 32 64
BF_span 1 2 4 8 16 32 64
tw_step 64 32 16 8 4 2 1
blk_step 2 4 8 16 32 64 128

Table 1. Parameters for block computation

After each block starts,  the  fft FSM waits  for it  to be done before calling the next
block. Once done with each block of stage 1 (k = 0), the parameters are updated in the  iter
state; and the system moves to stage 2, in this case.  When all 7 stages are finished, the fft FSM
goes to an out_ram mode where it reads the current address and continues to read each of the
addresses in the output RAM to ensure proper functionality.

In terms of the  BFcomputation FSM, the system just  goes through a sequence of
RAM reads (call them ci and cj) , and then computes their addition and subtraction, making these
the new coefficients. The general control flow of the FSM goes as follows:

- Setup address for real part of ci, wait for the RAM to be done reading
- Setup address for imaginary part of ci, wait for the RAM to be done reading
- Multiply this first complex number by (127 + 0i)
- Read the real and imaginary parts of the corresponding twiddle factor
- Likewise, read real  and imaginary parts  of cj,  and then multiply cj  by the twiddle

factor
- After this is done, the system just writes the results from of the real and imaginary

parts of ci and cj writing it one at a time, and again waiting for the RAM to be done
each time.

It is worth noting that the first stage of computation has two special conditions. One is
that the coefficient indexes are the bit-reversed indexes from the ones where the output of the
block goes. So that the ordering of the inputs is: 0, 2, 4, 6, 1, 3, 5, 7 for an 8-pt FFT, for example,
while  the  outputs  are  still  in  regular  order.  This  means  that  the  first  time,  when  the  input
coefficients are used to compute the coefficients at stage 1, the address should be inverted.

Furthermore, during the first stage, the FFT takes the ‘base’ coefficients from the input
RAM. As the  computation  progresses  though,  the  FFT takes  the  last  stage  of  the  computed
coefficients.  This  means that  the  BFcomputation block receives  a signal  telling it  if  it  is



computing a block in the first stage or not. If it is, then it reads from the input RAM and stores in
the output RAM. Otherwise, it should read and write to the output RAM.

It is also important to see that the first coefficient is multiplied by 127. The reason for
this is that the twiddle factors are in reality between 0 and 1 in magnitude. However, to have a
floating-point number in fixed-point representation, each point was scaled by 127. The scaling of
the coefficient without a twiddle factor keeps things in the same order of magnitude. The twiddle
factors are scaled by 127 because they are 8-bit numbers in sign-magnitude formula.

Finally, the multiplier takes in an 8-bit number in sign-magnitude form and one in two’s
complement form. This is because the twiddle factors were pre-computed in Matlab, scaled and
finally put in sign-magnitude form. These values were used to initialize the ROM by placing
them in a .mif file.

4. Testing
The  testing  of  the  system involved very detailed  simulation  of  each  of  the  modules

separately. This included the complex multiplier the ROM and RAM controllers at the lowest
level. After these were working correctly, I simulated and tested the  BFcomputation block,
and finally the FFT. I chose to wrap the complex multiplier and ROMcontroller modules by
instantiating them inside the  BFcomputation module. This ensured that once it worked as a
whole, the entire functionality could be abstracted as a unit.  Likewise, the  RAMcontroller
module controlled both the input and the output RAM by simply using a select signal, which
worked as a mux that determined which RAM was being read or written.

The  modules  all  worked  fairly  easily  by  themselves  as  I  built  up  the  system,  from
multiplier to complex multiplier to BFcomputation, for example. However, the integration of
the  three  top  level  blocks:  fft,  BFcomputation and  RAMcontroller was  the  most
difficult part. 

The first reason was that once put together, the system took a very long time to simulate
and it was hard to check for bugs with only the logic analyzer. Even the actual FFT takes fairly
long since it is basically a large number of reads and writes to memory, and this, of course, takes
time. In order to test that each of the states was going through correctly, I created another top file
ommiting the BFcomputation block and always declaring done = 1. This way the simulation
could  bypass  the  actual  computation  of  the  coefficients  and  just  see  if  the  FFT and  the
RAMcontroller worked well together.

Testing is still underway since I have not been able to even output any of the values in
the RAM. After the FFT clearly goes through each of the 7 stages, with the different  blocks
being computed at each stage, the outputted RAM values are all zero. This is strange, since the
RAMs are initialized with random values, and even if it was not outputting the right values, it
should output values different from zero. These problems still need to be fixed in order to check
for proper computation for the FFT. Since my partner did not end up working on the project,
there was not an appropriate output for the output coefficients and I had to improvise a way to
read from the RAM (going through the addresses one by one to output  to a logic analyzer).  

5. Conclusions and Future Work 

In short, this has been a long and arduous process,l satisfying in some senses and very
frustrating in others. I was not able to complete the FFT computation. The reason behind this
seems to be that each time a multiplication was computed with a coefficient by the corresponding
twiddle factor, the RAM only stores the 8 MSBs from the 16-bit output. The reason behind this is
that otherwise, the coefficients would double in width with each stage (for 7 stages, we would
end up with coefficients  of  512 points!).  This  is  not desiarable.  However,  taking the 8MSBs
seems to assume the producs are big enough, and this does not seem to be the case because the



output is always 0. Since the block are computed by the same module, regardless of what stage it
is at, I believe the error lies in the data trimming.

Beyond  these  final  problems,  the  project  ran  into  other  challenges  along  the  way
concerning group dynamics and project management. Despite all this, most of the FFT algortihm
is correctly implemented, except for the internal data handling at the moment of multiplying the
factors. The system does go through each of the 7 stages, varying the number of blocks per stage,
and other arguments to compute each state correctly. For example, for the first stage, we take 64
blocks that compute 1 butterfly each, then the next stage has 32 blocks with 2 butterflies each
(meaning using 4 points), and so no. Each block computation involves several reads and writes to
the memory modules. Since all three memory blocks are internal to the FPGA, these should not
return any output at all if there were problems with the interface. It is unfortunate that the FFT is
so  dependent  on just  its  output,  as  opposed  to  a  system of several  individually  tested  parts,
because I feel like it is an all or nothing outcome.

Another  concluding  remark  is  that  this  FFT  implementation  is  by  far  not  the  most
efficient  one. The computation of 128 points takes several  seconds,  and ideally a faster  FFT
would be used with time-sensitive appliations such as the medical monitoring device we first
envisioned. It did serve, however, as a good design exercise due to its several layers of nested
iterative loops and their good adaptability to the major-minor FSM methodology.



A.  Appendix

Note:  Code  included  here  is  trimmed  to  show  most  relevant  parts,  omitting  parameter
declarations for example. This is not run-able code!!

module  bfcomputation  (clk,  reset, start,  first,  select,  st_i, nBF,  bf_span, tw_step,
cur_addr, done_ram, from_ram, to_ram, write_ram, read_ram, done, addr_ram, state);

input clk, reset, start, first;
input [7:0] st_i, nBF, bf_span, cur_addr;
input [6:0] tw_step;
input done_ram;
input [7:0] from_ram;
output write_ram, read_ram, done, select;
output [7:0] to_ram, addr_ram;
output [4:0] state;

[…]

//instantiation  of  complex  multiplier  and  rom  controller  modules  inside  block  //
computation block
complexmult mult (….);

romcontroller twiddles ( ….);

[…]

//offset between the real and imaginary parts of a given index
//for example, real-i is in address i, while imag-i is in address (i + 64) for the rom
//and (i + 128) for the ram
parameter rom_offset = 8'd64;
parameter ram_offset = 8'd128;

always @ (posedge clk or negedge reset)
  begin
    if (!reset) state <= IDLE;
    else state <= next;

select <= select_int; […]
i <= i_int;

  end
  
always @ (state or start or done_ram or done_rom)
  begin

//defaults: 
[…]
    case (state)
  
    IDLE:
      begin 
        done_int = 1;
        i_int = 8'b0;

addr_ram_int = 8'b0;
addr_rom_int = 8'b0;
if (start) next = SETUP_C1_RE;
else next = IDLE;

  end

SETUP_C1_RE:
  begin

// first denotes the first stage, where the information  is taken from
the // input. All other stages take it from the output ram (cumulative sum)
if (first)
  begin

select_int = 1;
addr_ram_int2 = st_i + i + cur_addr;

//bit reversal for first stage
addr_ram_int = 
{addr_ram_int2[0],addr_ram_int2[1],addr_ram_int2[2],addr_ram_int2[3],
addr_ram_int2[4],addr_ram_int2[5],addr_ram_int2[6],addr_ram_int2[7]};
  end
else
  begin



select_int = 0;
addr_ram_int = st_i + i + cur_addr;

  end
read_ram_int =1;
next = WAIT1;

  end

WAIT_C1_RE:
  begin

if (first)
select_int = 1;

else select_int = 0;
if (done_ram) begin
  in_re = from_ram;
  next = SETUP_C1_IM; end
else next = WAIT_C1_RE;

  end

SETUP_C1_IM:
  Begin

if (first)
  begin

[…]//similar to the past setup
  end
[…] //now setup values for the complex multiplier

WAIT_MULT1:
  begin

if (done_mult) begin
next = SETUP_C2_RE;
c1_re = c_re;
c2_re = c_im; end
else next = WAIT_MULT1;

  end
SETUP_C2_RE:

[…] //same as the states to get real and imaginary parts of c1

WAIT_MULT2:
  begin

if (done_mult) begin
next = WRITE_C1_RE;
c2_re = c_re;
c2_re = c_im; end
else next = WAIT_MULT2;

  end

//write the new coefficients now, onto the output ram
WRITE_C1_RE:
  begin

select_int = 0;
c1_new = c1_re + c2_re;
addr_ram_int = st_i + i;
to_ram_int = {c1_new[8:1]};
write_ram_int = 1;
next = WAIT13;

  end

WAIT13: next = WAIT14;
WAIT14: next = WRITE_C1_IM;

WRITE_C1_IM:
  begin

select_int = 0;
if (done_ram) begin
  c1_new = c1_im + c2_im;
  addr_ram_int = st_i + i + ram_offset + cur_addr;
  to_ram_int = {c1_new[8:1]};
  write_ram_int = 1;
  next = WRITE_C2_RE; end
else next = WRITE_C1_IM;

  end

[…] //again for c2 
// finally update the block to do the next butterfly in the block
// if all of them have been done, then return to idle state BLOCK DONE!



UPDATE:
  begin

if (i == nBF) next = IDLE;
else next = SETUP_C1_RE;  

  end   

default: next = IDLE;
endcase

  end
endmodule

module fft (clk, reset, sample, data_in, start_bfcomp, write_ram, first, select, done,
read_ram, cur_addr,

to_ram,  addr_ram,  done_ram,  done_bfcomp,  st_i,  nBF,  bf_span,
tw_step, k, m, state);

input clk, reset, sample;
input [7:0] data_in;
input done_bfcomp, done_ram;

output start_bfcomp, write_ram, first, select, done, read_ram;
output [7:0] st_i, nBF, bf_span, tw_step, m;
output [7:0] to_ram, addr_ram, cur_addr;
output [2:0] k;
output [3:0] state;

reg start_bfcomp, write_ram, read_ram, first, select, start_bfcomp_int,
write_ram_int, read_ram_int, first_int, select_int, done, done_int;

reg [7:0] to_ram, to_ram_int, addr_ram, addr_ram_int, cur_addr, cur_addr_int, write_addr,
write_addr_int;
reg [7:0] st_i, nBF, bf_span, tw_step, nBlk, blk_step, m;
reg [7:0] st_i_int, nBF_int, bf_span_int, tw_step_int, nBlk_int, blk_step_int, m_int;
reg [3:0] state, next;
reg [2:0] k, k_int; 

parameter INIT = 0;
parameter IDLE = 1;
parameter WRITE = 2;
parameter SETUP = 3;
parameter START_BLK = 4;
parameter WAIT1 = 5;
parameter WAIT2 = 6;
parameter WAIT_BLK = 7;
parameter ITER = 8;
parameter OUT_RAM = 9;
parameter WAIT_READ = 10;
parameter WAIT_READ1 = 11;
parameter WAIT_READ2 = 12;
parameter NEXT_ADDR1 = 13;
parameter NEXT_ADDR2 = 14;

always @ (posedge clk or negedge reset)
  begin
    if (!reset) state <= INIT;
    else state <= next;

start_bfcomp <= start_bfcomp_int;
write_ram <= write_ram_int;
read_ram <= read_ram_int;
first <= first_int;
select <= select_int;
to_ram <= to_ram_int;
addr_ram <= addr_ram_int;
cur_addr <= cur_addr_int;
write_addr <= write_addr_int;
st_i <= st_i_int;

 nBF <= nBF_int;
bf_span <= bf_span_int;
tw_step <= tw_step_int;
nBlk <= nBlk_int;
blk_step <= blk_step_int;
k <= k_int;
m <= m_int;
done <= done_int;

  end
  
always @ (state or sample or done_ram or done_bfcomp)



  begin
    //defaults

start_bfcomp_int = 0;
write_ram_int = 0;
read_ram_int = 0;
select_int = 0;
addr_ram_int = addr_ram;
cur_addr_int = cur_addr;
write_addr_int = write_addr;
to_ram_int = to_ram;
st_i_int = st_i;
nBF_int = nBF;
bf_span_int = bf_span;
tw_step_int = tw_step;
nBlk_int = nBlk;
blk_step_int = blk_step;
k_int = k;
m_int = m;
done_int = 0;

    case (state)
  

INIT:
  begin

cur_addr_int = 8'b0;
write_addr_int = 8'b0;
k_int = 3'b0;
m_int = 8'b0;
next = IDLE;

  end

IDLE:
  begin

k_int = 3'b0;
if (sample) begin
  select_int = 1;
  addr_ram_int = write_addr;
  to_ram_int = data_in;
  write_ram_int = 1;
  next = WRITE;  end
else next = IDLE;

  end

WRITE:
  begin

select_int = 1;
cur_addr_int = write_addr + 1;
if (done_ram)
  if (write_addr == 8'd127) write_addr_int = 8'b0;
  else write_addr_int = write_addr + 1;
  next = SETUP;

  end

SETUP:
  begin

m_int = 8'b0;
if (k == 3'b0) begin
  nBlk_int = 8'd64;
  tw_step_int = 8'd64;
  blk_step_int = 8'd2;
  nBF_int = 8'd1;
  bf_span_int = 8'd1;
  first_int = 1; end
else begin // k > 0 
  blk_step_int = {blk_step[6:0], 1'b0};
  bf_span_int = {bf_span[6:0], 1'b0};
  nBF_int = {nBF[6:0], 1'b0};
  nBlk_int = {1'b0, nBlk[7:1]};
  tw_step_int = {1'b0, tw_step[7:1]};
  first_int = 0;  end
next = START_BLK;

// next = ITER;
  end

START_BLK:
  begin

st_i_int = blk_step * m;



start_bfcomp_int = 1;
next = WAIT1;

      end

WAIT1:
  begin

next = WAIT2;
  end

WAIT2:
  begin

next = WAIT_BLK;
  end

WAIT_BLK:
  begin

if (done_bfcomp) begin
  next = ITER; end
else next = WAIT_BLK;

  end

ITER:
  begin
  m_int = m + 1;
    if (m == nBlk)   begin

  k_int = k + 1;
  if (k == 7) begin

addr_ram_int = cur_addr;
next = OUT_RAM; end

  else
next = SETUP; end

// else next = ITER;
else next = START_BLK;

  end

OUT_RAM:
  begin

read_ram_int = 1;
next = WAIT_READ;

  end

WAIT_READ:
next = WAIT_READ1;

WAIT_READ1:
next = WAIT_READ2;

WAIT_READ2:
  begin

if (done_ram) begin
addr_ram_int = addr_ram + 1;
next = NEXT_ADDR1; end

else next = WAIT_READ2;
  end
NEXT_ADDR1: next = NEXT_ADDR2;

NEXT_ADDR2:
  begin

if (addr_ram == cur_addr)
  next = IDLE;
else begin
  next = OUT_RAM; end

  end

default: next = IDLE;

    endcase
  end
endmodule


