
Video Target Practice

Faye Kasemset Andrew Klock Dave Kloster

MIT 6.111 - Introductory Digital Systems Laboratory
Prof. Anantha Chandrakasan

TA: David Milliner

May13, 2004

Table of Contents

1.0 Overview Page 1

2.0 The Nintendo Zapper Interface Page 2

3.0 Targeting Page 3

4.0 Video Controller Page 5

 4.1 Hardware Description Page 5

 4.2 Module Design Descriptions Page 6

5.0 The Game Controller Page 8

 5.1 Sample Timer Page 9

 5.2 Random Number Generator Page 9

 5.3 Address Selector Page 10

 5.4 Control FSM Page 10

 5.5 Add FSM Page 11

 5.6 Move FSM Page 12

6.0 Audio Extension Page 13

7.0 Design and Debugging Issues Page 14

8.0 Conclusions Page 16

Kasemset :: Klock :: Kloster i

List of Figures

Figure 1. Overall System Layout and Design Page 1

Figure 2. Internal Nintendo Zapper Page 2

Figure 3. Internal and Interface Schematic Design Page 2

Figure 4. Zapper Signals Page 3

Figure 5. Processed Gun Signals Page 3

Figure 6. Targeting Mode Controller Inputs and Drawing Page 4

Figure 7. Real-Time Targeting Analysis Page 4

Figure 8. Video Circuits Page 6

Figure 9. Video Module Block Diagram Page 6

Figure 10. Major and Minor FSMs Page 7

Figure 11. Draw FSMs Write Cycle Timing Diagram Page 8

Figure 12. Game Controller Block Diagram Page 9

Figure 13. LFSR of Arbitrary Bit Length Page 10

Figure 14. Control FSM Transition Diagram Page 11

Figure 15. Add FSM Transition Diagram Page 12

Figure 16. Move FSM Transition Diagram Page 13

Figure 17. Target Movement Page 13

Figure 18. Audio Interface Extension Page 14

Figure 19. Audio Controller Timing Diagram Page 14

Kasemset :: Klock :: Kloster ii

1.0 Overview

The goal of this project is to design and implement a video game system that used a light-gun to
read game information from the screen. The overall system layout and design is broken up into
the several parts as seen in Figure 1.

Figure 1. Overall System Layout and Design. The Game Controller takes input from
the system to run the game. The Output Select determines whether the system is
displaying from the normal Video Output or the Targeting Output. The Zapper and
Gun Interface read the display information from the RGB monitor controlled by the
MC6847 processing circuits.

The game is played by using the 1985 Nintendo Zapper to shoot targets on an RGB CRT
monitor. When the player accurately shoots one of three possible targets on the game screen, the

Kasemset :: Klock :: Kloster 1

target that has been hit is removed, and the game score is incremented by one. The targets follow
and arching pathway across the game screen and progressively get smaller to give the illusion
that they are flying away from the player. There are four levels with forty-four possible targets.

2.0 The Nintendo Zapper Interface

The interface between the cathode ray tube (CRT) screen and the Nintendo Zapper is the
pivoting technology for this project. The Zapper is equipped with a photo-diode and and IR
preamplifier that detects infra-red characteristic beams generated by the electron gun that
escaped from the CRT through the phosphorous screen. Figure 2 shows and internal view of the
Zapper.

Figure 2. Internal Nintendo Zapper. The lens, shielding, and photo-
diode are used to filter and detect IR beams from the CRT
accurately up to distances of seven feet.

Figure3. Internal and Interface Schematic Diagram. The photo-diode at the top-left of
the diagram is used by the IR Preamplifier to detect light beams characteristic of a CRT.
The transistor and trigger-switch pull down the sensor and trigger signals that must be
connected to 5 volts through 10K resistors in order to work properly. From reversed
engineered schematics: Nintendo Entertainment System, Stock # 18-600. Electronics
Corp. 1992.

There are four wires that connect to the Zapper, one each for power, ground, sensor, and trigger.
The internal and interface schematic is shown in Figure 3. The biggest secret for interfacing the

Kasemset :: Klock :: Kloster 2

hardware is that the sensor and trigger signals coming from the Zapper are not self-generating.
To interface to the Zapper, two 10K pull-up resistors must connect the sensor and trigger signals
to the 5 volt power supply. The Zapper pulls the voltage down using a transistor for the sensor
and a push-switch for the trigger.

The Gun Interface modules processes the signals coming from the Zapper and puts them in a
form more readily usable by the rest of the system. The trigger signal coming from the gun is an
active low signal that stays low for approx. 50 milliseconds when the trigger is pulled once. The
sensor signal is an active high signal that generates 5 millisecond pulses whenever is senses the
light from the CRT. These raw signals can be seen in Figure 4. The Gun Interface modules puts
these signals into active-high signals that are sustained longer and for a constant amount of time.
It also adds some filtering to ensure accurate results. The formated signals can be seen in Figure
5.

Figure 4. Zapper Signals. Lab1-0 is the trigger. Lab1-1 is the sensor. The trigger
goes low for anywhere between 50 to 100 milliseconds when pressed once. The
sensor signals generates short pulses when it detects light from the CRT.

Figure 5. Processed Gun Signals. The trigger and sensor signals are processed in to shot
and hit signals. When the trigger is pressed, the shot signal will go high for 320
milliseconds. In state three, the sensor signal is filtered out to allow the time for the
screen to blank before detecting hits. State one listens for the sensor, and when it is
detected, the hit signal goes high and waits in state two until the trigger signal comes
down.

The shot signal is sent to the Targeting Mode Controller and to the Output Selector to let them
know when to enter targeting mode. As long as the shot signal is high, the Output Selector gives
addressing control to the Targeting Mode Controller. The hit signal is given to the Game
Controller in conjunction with a target ID from the Targeting Mode Controller module.

Kasemset :: Klock :: Kloster 3

3.0 Targeting

To detect and signal hit targets when then Zapper is triggered, the game deviates from its normal
video display mode and enters Targeting Mode. The module that handles video in this mode is
the Targeting Mode Controller. This controller proceeds by first blanking out the entire screen
and then sequentially drawing white boxes in the places where the targets were in the normal
video mode. The inputs and drawing signals for this module can be seen in Figure 6.

Figure 6. Targeting Mode Controller Inputs and Drawing. When the module hears the
shot signal, it begins by blanking the screen for 80 milliseconds. The ROM address
0xFFFF contains all black pixels. It then proceeds to draw each target in white
sequentially for 80 milliseconds each. When it gets to a RAM address were a target is
to be drawn, the ROM address changes to 0xFFFE which contains all white pixels.

While the controller is drawing each white target-box, it is outputting the current_target ID to the
Game Controller. The Game Controller is also listening to the Gun Interface for the hit signal all
the time. When it hears the hit signal during a non-zero ID, it removes the target with the
current_target ID from the screen. Thus, the system is able to recognize which target is being hit
and when it is being hit. The timing analysis for the Zapper and Targeting Mode is shown in
Figure 7.

Figure 7. Real-Time Targeting Analysis. This is perhaps the most important
analysis of the system. Lab1-0 is the Zapper trigger. Lab1-1 is the Zapper
sensor. Lab2 is the current_id bus from the Targeting Mode Controller.

When the trigger is pressed, the Targeting Mode Controller blanks the screen for 80
milliseconds. During the first part of this time, the Gun Interface filters out any sensor signals
that may be charged from the previous video screen. If the Zapper detects CRT light during this

Kasemset :: Klock :: Kloster 4

period, it must be pointed at a separate video source, and the system will not register a target for
this cycle. It is also important to note that the IR preamplifier in the gun only triggers the sensor
signal when it detects light characteristic of a CRT. It will not trigger the sensor signal if the gun
is pointed at an ordinary light source.

After this period of blanking, the targeting controller sequentially displays white boxes for each
of the three possible targets. If and when the Zapper detects light from the CRT beginning in one
of these periods, the hit signal is sent to the Game Controller which then reads the current_target
ID number, thereby registering a hit for that target.

4.0 Video Controller

For video, we use the MC6847 chip to output a 128x96 pixel, four-color image to the monitor.
Target and background images are stored on a ROM. These images are then written to an
SRAM based on directions from the game module. Writing to the SRAM is controlled by a set
of major-minor FSMs, implemented in Verilog on a Flex10K70 FPGA (together with the gun
and game modules).

4.1 Hardware Description

Hardware Components

The hardware components used in the video display circuit are:

3.579545 MHz Crystal Oscillator
Monitor
MC6847 Video Display Generator
Two 74LS04 Inverter Chips
22v10 PAL Chip
74LS123 Chip
Two 26LS32 Chips
Am28F512 ROM
MCM6264 SRAM
Assorted resistors, potentiometers, and capacitors

Hardware Circuits

In order to make the MC6847 compatible with the monitors in the lab (it was designed
for use with standard TVs), we needed to run its outputs through several circuits: one to produce
a clock signal, one to center the display, and one to convert the output of the MC6847 from
analog signals into plain RGB signals.

Kasemset :: Klock :: Kloster 5

Figure 8. Video Circuits.

4.2 Module Design Descriptions

The Video Controller Module consisted of a top file and the following sub-modules:
Bkgd_Image_Controller, Bkgd_Draw_FSM, Bkgd_Draw_FSM, Image_Draw_FSM,
target_mode_controller, frame_timer, and bkgd_rom_addr_counter.

Figure 9. Video Module Block Diagram.

Kasemset :: Klock :: Kloster 6

Video_Controller. The top file for the video control module, Video_Controller, uses the signal
FS_bar, from the MC6847, to determine when it may write to RAM. When FS_bar is high, the
chip is reading the data from the RAM, and Video_Controller tristates the RAM address bus and
sets the RAM write enable (ram_we_bar) high. When FS_bar is low, it selects which of the
address and signal sets is outputted. If it receives a trigger signal, it gives control to the
target_output_controller module; otherwise, the Bkgd_Image_Controller signals are passed
along.

Figure 10. Major (center) and Minor FSMs

Bkgd_Image_Controller. The Major FSM for the picture output, this module begins writing to
RAM when FS_bar goes low, cycling through FSMs for the background, each of the targets, and

Kasemset :: Klock :: Kloster 7

the hit count. When finished, it waits for the next low FS_bar to cycle through again. It passes
the signals of each FSM up to the top module during its period of control.

Bkgd_Draw_FSM. Upon receiving a signal of “start” from the Bkgd_Image_Controller, this
Minor FSM draws the background to the ROM, starting to read at a level-specific offset in the
ROM, and looping through the RAM write cycle (shown in Figure 10; both Draw FSMs have the
same timing for this write cycle) 3,072 times (width ÷ pixels per cell × length = 128/4*96).

Image_Draw_FSM. Upon receiving a signal of “start” from the Bkgd_Image_Controller, this
Minor FSM takes inputs from the game module—the image id, the size, and the x and y
coordinates—and calculates the address in RAM at which it will begin writing and the offset in
ROM at which it will begin reading. It then loops through a row of the image in a similar
fashion to the Bkgd_Draw_FSM, but when it gets to the end of the rom, it skips ahead in the
RAM to the beginning location of the next row in the image.

Both Drawing FSMs give the RAM two clock cycles (on a 10MHz clock) to write; the RAM
needs 100ns to write, so one clock cycle might barely be enough, but we err on the side of safety.

Figure 11. Draw FSMs Write Cycle Timing Diagram

bkgd_rom_addr_counter. This counter is used by the Bkgd_Draw_FSM to count from 0 to 3071
(the size of the background image).

size_counter. This counter is used by the Image_Draw_FSM to keep track of the row and line
numbers.

5.0 The Game Controller

The gaming system is designed to output the location and image used for each target on the
screen to the display system, as well as to generate important game information such as level and
stage. To do this, the gaming system uses several components, including sample timers, a
random number generator, an address selector, and several finite state machines, all of which can
be seen in Figure 12. Since the FSMs are relatively complicated, the other components will be
explained first.

Kasemset :: Klock :: Kloster 8

Figure 12. Game Controller Block Diagram.

5.1 Sample Timer

The sample timer uses a simple counter to make a pulse every time the targets on the screen
should move to a new location on the display. Therefore, the actual speed of the targets on the
screen is determined by the sample pulse rate. For the four different levels, there are four
different numbers that the sample timer module counts to, at which point it creates the pulse.
Based on the 10 MHz clock rate of the system, the rates of the sample timer for levels one
through four are set to 10, 15, 22, and 35 pulses per second.

5.2 Random Number Generator

The random number generator creates a two-bit random number, which determine both the initial
position of a target when it is created and the path it will travel across the screen. To create this
random number, two linear feedback shift registers, or LFSRs, are used. Every clock cycle the
bits in the flip flops shift over by one, with the new bit shifted in created from a function of bits
already in the LFSR.

The LFSR is stuck at zero forever unless a seed is fed into it when the system is powered on. The
same seed is always used since there is no way to calculate one using a system clock that can
keep track of the date and time. To ensure that the numbers are random and will not cause the
game to follow a single pattern every time, they are generated every clock cycle, making the

Kasemset :: Klock :: Kloster 9

number dependent on the number of clock cycles that have passed since the system has turned
on.

The LFSRs used here are 20-bit registers. Ideally, there would be more bits, since the amount of
time until the random number generator repeats itself is proportional to the number of bits in the
LFSR. Still, since the random numbers are used fairly infrequently, the 20-bit LFSRs are
sufficient to provide adequately random game play.

Figure 13. LFSR of arbitrary bit length.

5.3 Address Selector

The address selector is the component that keeps track of whether or not the hit signal from the
gun goes high, indicating that a target has been hit. Based on the id of the target, which is given
by the gun system, the address selector will erase the target from the display by changing the
coordinates and image of the target such that the system will recognize that it should no longer
be on the screen, as well as increase the number of targets hit by one. If no target was hit, i.e. the
id is zero, then no change is made and the system continues normally. The address selector only
recognizes the hit signal at its positive edge, guaranteeing that only one target can be hit at a
time. The address selector is used because it greatly simplifies the overall gaming system, since
it allows almost every other component to ignore the inputs of the gun system.

5.4 Control FSM

The control FSM is the major FSM of the system, handling the add and move FSMs, which
respectively create targets on the screen and move them around. The FSM also generates
important gaming variables such as the level and stage.

The control FSM is a Mealy machine with seven different states (Figure 14), as well as two extra
wait states, which make the FSM go through two clock cycles before it transitions to a different
state. Its initial state displays a single stationary target on the screen, and only when the target is
hit does the FSM begin a transition.

Kasemset :: Klock :: Kloster 10

Figure 14. Control FSM Transition Diagram.

The next three states are each devoted to adding a single target to the screen. If only one target
needs to be added, i.e. when stage equals one, then the FSM will only transition to the first add
state, then go to the move state. If two need to be added, such as in stages two and four, it will
transition to the first two add states, and then go to the move state, and if there need to be three
targets, such as in stages three and five, all three add states will be used. Each add state starts the
add FSM and waits until it is no longer busy to transition to the next state. If the randomly
generated coordinates created are the same as the coordinates of a target already created, the add
FSM is restarted so that different coordinates can be chosen.

In the move state, all the targets that have been created are controlled by their own move FSM,
which are started when the control FSM transitions from its last add state. Each move FSM will
continue working until either their target has been hit or it has reached the end of its path. When
all three move FSMs are no longer busy, the control FSM transitions to the set level state, which
determines what the game should do next. If the current stage is less than five, then it is
increased by one and sent back to the add state. If the current stage is five and the level is less
than four, then the stage is reset to zero and the level is incremented by one. If the stage is five
and the level is four, then the control FSM transitions to the final end-screen state, where a blank
screen is displayed with only the number of targets hit displayed, and the system must be reset to
play again.

5.5 Add FSM

The Add FSM adds a single target to the screen, creating a random horizontal coordinate and
path, as well as generating a preset vertical coordinate so the target will be near the bottom and
setting the target to its largest size.

Kasemset :: Klock :: Kloster 11

There are five states in the FSM (Figure 15). The FSM is always in its initial state until it
receives a high start signal from the control FSM. In the gen x state, the x and y coordinates are
set, one a random number and the other a constant. The FSM then transitions to a third state so
that the random number generator can create a different random number for the path. In the gen
path state, one of four paths is randomly chosen for the target, which is stored in the two lowest
bits of the path signal. The highest bit determines whether the target travels left or right across
the screen, so it is chosen based on whether the x coordinate is in the right half or the left half of
the display respectively. Then, these signals are outputted from the FSM in the add and out
states, in order to ensure that the data bus has valid data. The FSM then transitions back to the
initial idle state.

Figure 15. Add FSM Transition Diagram.

It should be noted that the targets are not all added at the exact same time in a given stage.
However, the difference between the creations is only a few clock cycles, which is insignificant
in real time.

5.6 Move FSM

The move FSM outputs a series of coordinates for its target as well as its size. These signals are
based on the path that is chosen for a target in the add FSM as well as the coordinates that are fed
into it by the control FSM.

There are six states in the FSM (Figure 16). The FSM begins in its initial state, until it is given a
high start signal from the control FSM. Once this happens, it transitions to the wait sample state
after going through a single waiting cycle, and then waits for a sample pulse from the sample
timer. It then transitions to a get direction state, which determines which direction the target
should be traveling in at this point in the path, based on a counter that is set to zero when the
target is created. Then, the FSM transitions to the move state, where the x and y coordinates are
changed based on the direction chosen, and the size is updated according to how far along the
path the target has traveled. If the target has moved far enough, it is erased from the display and

Kasemset :: Klock :: Kloster 12

the FSM returns to the initial idle state. Otherwise, the FSM returns to the wait sample state once
again, after going through another wait state to ensure that the correct signals are established. If
at any point the target is hit by the gun, the move FSM stops and goes back to the idle state,
setting its signals so that the target will not be displayed on the screen.

Figure 16. Move FSM Transition Diagram.

There are sixteen different directions that a target can move, each corresponding to a different
number in the move FSM (Figure 17). These directions are used to create smooth arcs for the
targets’ paths. Since these paths are predetermined by the FSM, there is no way that any target
can hit any edge of the display, so there are no boundary conditions to worry about.

Figure 17. Target Movement.

6.0 Audio Extension

As an extra feature to enhance game-play in this project, we added a simple audio system to add
sound effects to the Zapper. This was done by storing sound sampled at 11025 Hz on a separate

Kasemset :: Klock :: Kloster 13

ROM and sending that data through the AD558 Digital to Audio Converter (DAC). This extra
system is implemented on a second FPGA that parallels the main FPGA. It contained its own
Gun Interface module and and Audio Controller wrapping a DAC FSM. When the trigger on the
Zapper was pulled, a sound effect was played over the amplified speaker. The block diagram and
control timing is shown in Figures 18 and 19.

Figure 18. Audio Interface Extension. The trigger from the Zapper started
the Audio Controller FSMs that played a sound effect from ROM through
the AD558 DAC.

Figure 19. Audio Controller Timing Diagram. When the trigger is pressed the Audio
Controller controls the address to the ROM as well as the CSbar signal going to the
DAC.

7.0 Design and Debugging Issues

Difficulties with the MC6847

Our choice of the MC6847 as our video display generator was based on the reports of previous
video targeting projects (Fall 2001 Duck Hunt, 1999 Wireless Marksmanship Trainer). Our
project is different from these projects, however, in that we use color images. In retrospect, the
decision to use the MC6847 limited some of our options (we might have found a chip more
suited to our color needs). Unfortunately, having invested so much time into the circuitry needed
to run the MC6847, we were left with little time to redesign the system after we realized its
limitations. While the MC6847 is very useful for generating vertical and horizontal sync signals
and controlling addressing to the RAM, it is a digital-to-analog converter. Our monitor can be
fed digital inputs for Red, Green, and Blue. In fact, the circuitry we used converted the analog
output of the MC6847 back to digital. Thus, the actual RGB output of the circuit is similar to
what we might have fed directly to the monitor from memory, if we had encoded three-bit color,

Kasemset :: Klock :: Kloster 14

minus four options (though this would have involved many tricky timing issues with the sync
signals, etc.). In our case, the mode we used only allowed us to select from four different
colors—not a very attractive combination of colors, either. The mode we selected, Color
Graphics Three, purports to allow for eight colors, but this promise requires that the user switch
between two modes using a control signal. The actual data read by the MC6847 in this mode
consists of 8-bit address locations on RAM, each representing a set of four pixels in a row.
Thus, there was no space in which to encode the extra mode selector bit. Additionally, when we
finally got the MC6847 working with the monitor, we found that it only wrote to the middle
section of the screen, leaving a large border in one of two colors: green for one mode and white
(called “buff” on the datasheet) in the other. For a project with a gun dependent upon white light
for targeting information (both green and white register as “hits” with the gun), this situation was
less than ideal.

Having resigned ourselves (due to time constraints) to four-bit color, we resolved to at least have
the colors of our choice. By adding additional logic to the prescribed “RGB Output” circuit, we
converted the colors of the mode we were using (CG3, CSS=0) as follows: Green (00) to Black
(to make the border of the screen black), Yellow (01) to Green, Blue (10) stayed Blue, and Red
(11) to White. This gave us the palette for traditional clay shooting and a screen compatible with
the light gun.

Inter-kit signals and optimization

We began with the idea that the video, game, gun, and sound modules would be able to operate
on separate kits. Initially, therefore, we were more concerned with accuracy than with
efficiency. When we began to address system integration and interfaces, we realized that the
game and video modules had to be on the same kit: they had far more communication channels
than there were physical nodes on the kits. We put both modules on the kit, and realized we had
another problem; when we ran wires to and from the gun module on another kit, the interaction
of the kits produced many glitches on the monitor output. It turned out that the trigger signal
was glitching badly in the transfer, in spite of several grounding wires between the kits. We then
moved the gun module onto the same kit as the others. We got a basic version of our project
working, and all was well.

Then, we decided to add the hit count to the screen. We began with the idea that we would add
two digits, side by side. This involved adding a counter to the game and two instantiations of the
Image_Draw_FSM to the Video module (as well as the images themselves, on the ROM). It
would not fit. When we finally managed to fit it all on the Flex 10K70, we had turned the
images into two-digit numbers (to reduce the number of additional FSMs to one), cut several
identification bits by up to half of their original length, reduced the size of counters, cut the
randomization factor in the game (for starting locations) by a factor of 2^29, and optimized all
the FSMs (i.e., rather than having specified offsets for all the numbers, as we had been able to do
for the limited number of scattered images, we calculated all of them off of one initial offset).
Having to fight for 800, then 300, then those last 20 logic cells forced us to look critically at the
efficiency of our code and drastically reduce excessive and inefficient methods. Occasionally, it

Kasemset :: Klock :: Kloster 15

forced us to sacrifice nice features, like the extensive randomization, but we found that the
difference was not noticeable in practice.

8.0 Conclusions

Overall we feel we succeeded in most of the goals we set out to achieve. Had there been no time
constraints we would have enjoyed implementing additional features such as wireless for the
gun, extra sounds, a greater palette of colors, a more detailed game over screen, and more
complicated game play. It would have helped to have had an FPGA that could hold more
features.

What our final project does include is:
� Moving targets that appear at a random location and move away from the user on a

predetermined path, shrinking as they disappear into the distance.
� Working gun interface that recognizes specific targets
� Four color video output
� Four five-stage levels, each with different backgrounds, targets, and speeds\
� Running score count
� Sound module to make realistic gun noise

Kasemset :: Klock :: Kloster 16

/* Adds targets to the screen by generating initial x and y values
 while choosing a path for the target to follow.
*/
module addfsm(clk, reset, start, rand, busy, x, y, path);

input clk, reset, start;
input[1:0] rand;
output busy;
output[6:0] x, y;
output[2:0] path;
reg busy, busy_int;
reg[6:0] x, y, x_int, y_int;
reg[2:0] path, path_int, state, next;

parameter IDLE = 0;
parameter gen_x = 1;
parameter gen_path = 2;
parameter add = 3;
parameter out = 4;

parameter bottom = 57;
parameter middle = 63;

always @ (posedge clk) begin
if (reset) state <= IDLE;
else state <= next;
x <= x_int;
y <= y_int;
path <= path_int;
busy <= busy_int;

end

always @ (start or reset or state or next or rand or busy
 or x or y or path)
case(state)
IDLE: if (start) begin

next = gen_x;
busy_int = 1;
y_int = bottom;
end
else begin
next = IDLE;
x_int = x;
y_int = y;
path_int = path;
busy_int = 0;
end

gen_x: begin
next = gen_path;
busy_int = 1;
x_int = (rand * 25) + 15;
y_int = bottom;
end

gen_path: begin
busy_int = 1;
x_int = x;
y_int = y;
next = add;
path_int[1:0] = rand[1:0];
if (x > middle) path_int[2] = 1;
else path_int[2] = 0;
end

add: begin
next = out;
busy_int = 1;
x_int = x;
y_int = y;
path_int = path;
end

out: begin
next = IDLE;
busy_int = 0;
x_int = x;
y_int = y;
path_int = path;
end

default: begin
next = IDLE;
busy_int = 0;
x_int = 0;
y_int = 0;
path_int = 0;
end

endcase
endmodule

/*************************************
 Filename: addr_counter.v
 Author: Dave Kloster
 Custom counter used to cycle through
 the address bus of the Video RAM.
 *************************************/

module addr_counter(clk, reset, count, address, full);

 input clk, reset;
 input count;

 output full;
 reg full;

 output [11:0] address;
 reg [11:0] address;

 always @ (posedge clk or posedge reset) begin
 if (reset) begin

 address <= 0;
 full <= 0;

 end
 else if (count) begin

 address <= address + 1;
 if (address == 12'hC00) begin
 //if (address == 12'd50) begin //TESTING VALUE
 full <= 1;
 address <= 0;
 end
 else full <= 0;

 end
 else address <= 0;
 end // always @ (posedge clk or posedge reset)
endmodule // addr_counter

/* This module decides if a target has been hit, and if it
 has, then changes its input so it will be erased from the
 display, and then adds one to the kill count. Otherwise,
 no change is made to the input.
*/
module address_selector(clk, reset,

x1, y1, image1, size1,
x2, y2, image2, size2,
x3, y3, image3, size3,
x1_f, y1_f, image1_f, size1_f,
x2_f, y2_f, image2_f, size2_f,
x3_f, y3_f, image3_f, size3_f,
hit, id, level, kills);

input clk, reset, hit;
input [1:0] id;
input[2:0] image1, image2, image3, size1, size2, size3, level;
input[6:0] x1, x2, x3, y1, y2, y3;
output[2:0] image1_f, image2_f, image3_f, size1_f, size2_f, size3_f;
output[5:0] kills;
output[6:0] x1_f, x2_f, x3_f, y1_f, y2_f, y3_f;
reg[2:0] image1_f, image2_f, image3_f,

 size1_f, size2_f, size3_f,
 image1_int, image2_int, image3_int,
 size1_int, size2_int, size3_int;

reg[5:0] kills, kills_int;
reg[6:0] x1_f, x2_f, x3_f, y1_f, y2_f, y3_f,

x1_int, x2_int, x3_int, y1_int, y2_int, y3_int;

always @ (posedge clk)
if (reset) begin

x1_f <= 0;
y1_f <= 0;
image1_f <= 0;
size1_f <= 7;
x2_f <= 0;
y2_f <= 0;
image2_f <= 0;
size2_f <= 7;
x3_f <= 0;
y3_f <= 0;
image3_f <= 0;
size3_f <= 7;
kills <= 6'b111111;

end
else if (hit) begin

x1_f <= x1_int;
y1_f <= y1_int;

image1_f <= image1_int;
size1_f <= size1_int;
x2_f <= x2_int;
y2_f <= y2_int;
image2_f <= image2_int;
size2_f <= size2_int;
x3_f <= x3_int;
y3_f <= y3_int;
image3_f <= image3_int;
size3_f <= size3_int;
kills <= kills_int;

end
else if (level == 6) begin

x1_f <= x1;
y1_f <= y1;
image1_f <= image1;
size1_f <= size1;
x2_f <= x2;
y2_f <= y2;
image2_f <= image2;
size2_f <= size2;
x3_f <= x3;
y3_f <= y3;
image3_f <= image3;
size3_f <= size3;
kills <= 6'b111111;

end
else begin

x1_f <= x1;
y1_f <= y1;
image1_f <= image1;
size1_f <= size1;
x2_f <= x2;
y2_f <= y2;
image2_f <= image2;
size2_f <= size2;
x3_f <= x3;
y3_f <= y3;
image3_f <= image3;
size3_f <= size3;
kills <= kills_int;

end

always @ (posedge hit)
if (id == 1 && image1 != 0) begin

x1_int <= 0;
y1_int <= 0;
image1_int <= 0;
size1_int <= 0;
x2_int <= x2;
y2_int <= y2;
image2_int <= image2;
size2_int <= size2;
x3_int <= x3;
y3_int <= y3;
image3_int <= image3;
size3_int <= size3;
kills_int <= kills + 1;

end
else if (id == 2 && image2 != 0) begin

x1_int <= x1;
y1_int <= y1;
image1_int <= image1;
size1_int <= size1;
x2_int <= 0;
y2_int <= 0;
image2_int <= 0;
size2_int <= 0;
x3_int <= x3;
y3_int <= y3;
image3_int <= image3;
size3_int <= size3;
kills_int <= kills + 1;

end
else if (id == 3 && image3 != 0) begin

x1_int <= x1;
y1_int <= y1;
image1_int <= image1;
size1_int <= size1;
x2_int <= x2;
y2_int <= y2;
image2_int <= image2;
size2_int <= size2;
x3_int <= 0;

y3_int <= 0;
image3_int <= 0;
size3_int <= 0;
kills_int <= kills + 1;

end
else begin

x1_int <= x1;
y1_int <= y1;
image1_int <= image1;
size1_int <= size1;
x2_int <= x2;
y2_int <= y2;
image2_int <= image2;
size2_int <= size2;
x3_int <= x3;
y3_int <= y3;
image3_int <= image3;
size3_int <= size3;
kills_int <= kills;

end

endmodule

/**
 * Background Drawing FSM
 * This minor FSM draws the background to the RAM.
 *
 * Author: Faye Kasemset
 ***/

module Bkgd_Draw_FSM(clk, reset, start, done, bkgd_id,
 bkgd_rom_addr, ram_addr, ram_we,
 state);

 input clk, reset;
 input start;
 input [2:0] bkgd_id;
 output [15:0] bkgd_rom_addr;
 output [11:0] ram_addr;
 output ram_we;
 output done;
 output [2:0] state;
 reg done;
 reg ram_we, ram_we_int;
 reg [2:0] bkdg_id;
 reg [2:0] state, next;
 reg [15:0] addr_offset, addr_offset_int;
 reg addr_inc;
 wire [11:0] addr;

 // Address Counter
 bkgd_rom_addr_counter addr_count1(.clk(clk),

 .reset(reset),
 .inc(addr_inc),
 .addr(addr));

 // Background ID parameters.
 parameter LEVEL_START = 3'b110;
 parameter BLANK = 3'b000;
 parameter LEVEL1 = 3'b001;
 parameter LEVEL2 = 3'b010;
 parameter LEVEL3 = 3'b011;
 parameter LEVEL4 = 3'b100;

 // ID addr offsets.
 parameter LEVEL_START_OFFSET = 16'h2400;
 parameter LEVEL1_OFFSET = 16'h0000;
 parameter LEVEL2_OFFSET = 16'h0C00;
 parameter LEVEL3_OFFSET = 16'h3000;
 parameter LEVEL4_OFFSET = 16'h1800;

 // Wires out.
 assign ram_addr = addr;
 assign bkgd_rom_addr = addr + addr_offset;

 // State variables.
 parameter IDLE = 0;
 parameter WRITE_SETUP = 1;
 parameter WRITE_HOLD_1 = 2;
 parameter WRITE_HOLD_2 = 3;
 parameter WRITE_FINISH = 4;
 parameter STOP_WRITE = 5;

 always @ (posedge clk) begin
 if (!reset) begin

 state <= IDLE;
 addr_offset <= 16'b0;
 ram_we <= 0;

 end
 else begin

 state <= next;
 addr_offset <= addr_offset_int;
 ram_we <= ram_we_int;

 end
 end

 always @ (state or bkgd_id or addr) begin
 addr_offset_int = addr_offset;
 addr_inc = 0;
 ram_we_int = ram_we;
 done = 0;
 case (state)

IDLE: begin
ram_we_int = 0;
 if (start) next = WRITE_SETUP;
 else next = IDLE;
end
WRITE_SETUP: begin
ram_we_int = 0;
 if (bkgd_id == LEVEL_START) addr_offset_int = LEVEL_START_OFFSET;
 if (bkgd_id == LEVEL1) addr_offset_int = LEVEL1_OFFSET;
 if (bkgd_id == LEVEL2) addr_offset_int = LEVEL2_OFFSET;
 if (bkgd_id == LEVEL3) addr_offset_int = LEVEL3_OFFSET;
 if (bkgd_id == LEVEL4) addr_offset_int = LEVEL4_OFFSET;
 next = WRITE_HOLD_1;
end
WRITE_HOLD_1: begin
 ram_we_int = 1;
 next = WRITE_HOLD_2;
end
WRITE_HOLD_2: begin
 ram_we_int = 1;
 next = STOP_WRITE;
end
STOP_WRITE: begin
 ram_we_int = 0;
 next = WRITE_FINISH;
end
WRITE_FINISH: begin
 ram_we_int = 0;
 if (addr == 3071) begin
 next = IDLE;
 done = 1;
 end
 else next = WRITE_SETUP;
 addr_inc = 1;
end
default: next = IDLE;

 endcase // case(state)
 end // always @ (state or bkgd_id or addr)
endmodule // Bkgd_Draw_FSM

 /**
 * Background and Image Controller.
 * FSM for drawing backgrounds and superimposing
 * images. Contains separate FSMs for drawing
 * the background to the RAM, drawing the
 * three individual targets on top of the
 * background, and drawing the hit count.
 *
 * Author: Faye Kasemset
 * ***/

module Bkgd_Image_Controller(clk, reset, FS_bar, trigger,
 kills, rom_addr, bkgd_id_ext,
 targetA_id, targetB_id, targetC_id,
 targetA_x, targetB_x, targetC_x,
 targetA_y, targetB_y, targetC_y,
 ram_addr, ram_we_bar, state,
 bkgd_state, targetA_state,
 targetB_state, targetC_state);

 input clk, reset, FS_bar, trigger;
 input [5:0] kills;
 input [2:0] bkgd_id_ext;
 input [5:0] targetA_id, targetB_id, targetC_id;
 input [6:0] targetA_x, targetB_x, targetC_x;

 input [6:0] targetA_y, targetB_y, targetC_y;
 output [15:0] rom_addr;
 output [11:0] ram_addr;
 output ram_we_bar;
 output [2:0] state, bkgd_state, targetA_state,

 targetB_state, targetC_state;
 reg ram_we, ram_we_int;
 assign ram_we_bar = ~ram_we;
 wire [2:0] bkgd_id_ext;
 wire [5:0] kills;
 wire clk, reset, FS_bar, trigger;
 reg [2:0] fsm_sel, fsm_sel_int;
 reg [2:0] state, next;
 reg bkgd_start, targetA_start, targetB_start,

 targetC_start, number_start;
 wire bkgd_done, targetA_done, targetB_done,

 targetC_done, number_done;
 wire [15:0] bkgd_rom_addr, targetA_rom_addr,

 targetB_rom_addr, targetC_rom_addr,
 number_rom_addr;

 wire [11:0] bkgd_ram_addr, targetA_ram_addr,
 targetB_ram_addr, targetC_ram_addr,
 number_ram_addr;

 wire bkgd_ram_we, targetA_ram_we, targetB_ram_we,
 targetC_ram_we, number_ram_we;

 wire [2:0] bkgd_state;
 wire [2:0] targetA_state;
 wire [2:0] targetB_state;
 wire [2:0] targetC_state;
 wire [2:0] number_state;

 // Minor FSMs:

 // Background FSM (x1)
 Bkgd_Draw_FSM bkdraw1(.clk(clk),

 .reset(reset),
 .start(bkgd_start),
 .done(bkgd_done),
 .bkgd_id(bkgd_id_ext),
 .bkgd_rom_addr(bkgd_rom_addr),
 .ram_addr(bkgd_ram_addr),
 .ram_we(bkgd_ram_we),
 .state(bkgd_state));

 // Target FSMs (x3)
 Image_Draw_FSM targetA1(.clk(clk),

 .reset(reset),
 .start(targetA_start),
 .done(targetA_done),
 .img_id({1'b0, targetA_id}),
 .img_x(targetA_x),
 .img_y(targetA_y),
 .img_rom_addr(targetA_rom_addr),
 .ram_addr(targetA_ram_addr),
 .ram_we(targetA_ram_we),

 .state(targetA_state));
 Image_Draw_FSM targetB1(.clk(clk),

 .reset(reset),
 .start(targetB_start),
 .done(targetB_done),
 .img_id({1'b0, targetB_id}),
 .img_x(targetB_x),
 .img_y(targetB_y),
 .img_rom_addr(targetB_rom_addr),
 .ram_addr(targetB_ram_addr),
 .ram_we(targetB_ram_we),
 .state(targetB_state));

 Image_Draw_FSM targetC1(.clk(clk),
 .reset(reset),
 .start(targetC_start),
 .done(targetC_done),
 .img_id({1'b0, targetC_id}),
 .img_x(targetC_x),
 .img_y(targetC_y),
 .img_rom_addr(targetC_rom_addr),
 .ram_addr(targetC_ram_addr),
 .ram_we(targetC_ram_we),
 .state(targetC_state));

 // Hit Count FSM
 Image_Draw_FSM num1(.clk(clk),

 .reset(reset),
 .start(number_start),
 .done(number_done),
 .img_id({1'b1, kills}),
 .img_x(7'd28),

 .img_y(7'd0),
 .img_rom_addr(number_rom_addr),
 .ram_addr(number_ram_addr),
 .ram_we(number_ram_we),

 .state(number_state));

 // FSM_Sel IDs.
 parameter BKGD = 3'b000;
 parameter TARGET_A = 3'b001;
 parameter TARGET_B = 3'b010;
 parameter TARGET_C = 3'b011;
 parameter NUMBER = 3'b100;

 assign ram_addr = fsm_sel[2] ? number_ram_addr

 : (fsm_sel[1] ? (fsm_sel[0] ? targetC_ram_addr
 : targetB_ram_addr)

 : (fsm_sel[0] ? targetA_ram_addr : bkgd_ram_addr));

 assign rom_addr = fsm_sel[2] ? number_rom_addr

 : (fsm_sel[1] ? (fsm_sel[0] ? targetC_rom_addr
 : targetB_rom_addr)

 : (fsm_sel[0] ? targetA_rom_addr : bkgd_rom_addr));

 // State variables.
 parameter IDLE = 0;
 parameter DRAW_BKGD = 1;
 parameter DRAW_TARGET_A = 2;
 parameter DRAW_TARGET_B = 3;
 parameter DRAW_TARGET_C = 4;
 parameter WAIT_FS_HIGH = 5;
 parameter DRAW_NUMBER = 6;

 always @ (posedge clk) begin
 if (!reset) begin

 state <= IDLE;
 fsm_sel <= 3'b000;
 ram_we <= 0;

 end
 else begin

 state <= next;
 fsm_sel <= fsm_sel_int;
 ram_we <= ram_we_int;

 end
 end

 always @ (state or FS_bar or bkgd_done or targetA_done or
 targetB_done or targetC_done or bkgd_ram_we or
 targetA_ram_we or targetB_ram_we or targetC_ram_we) begin

 fsm_sel_int = fsm_sel;
 bkgd_start = 0;
 targetA_start = 0;
 targetB_start = 0;
 targetC_start = 0;
 number_start = 0;
 ram_we_int = 0;
 case (state)

 IDLE: begin
 if (!FS_bar) begin
 next = DRAW_BKGD;
 fsm_sel_int = BKGD;
 bkgd_start = 1;
 ram_we_int = bkgd_ram_we;
 end
 else next = IDLE;
 end
 DRAW_BKGD: begin
 ram_we_int = bkgd_ram_we;
 if (bkgd_done || FS_bar) begin
 next = DRAW_TARGET_A;
 fsm_sel_int = TARGET_A;
 targetA_start = 1;
 ram_we_int = targetA_ram_we;
 end
 else next = DRAW_BKGD;
 end
 DRAW_TARGET_A: begin
 ram_we_int = targetA_ram_we;
 if (targetA_done || FS_bar) begin
 next = DRAW_TARGET_B;
 fsm_sel_int = TARGET_B;
 targetB_start = 1;
 ram_we_int = targetB_ram_we;
 end
 else next = DRAW_TARGET_A;

 end
 DRAW_TARGET_B: begin
 ram_we_int = targetB_ram_we;
 if (targetB_done || FS_bar) begin
 next = DRAW_TARGET_C;
 fsm_sel_int = TARGET_C;
 targetC_start = 1;
 ram_we_int = targetC_ram_we;
 end
 else next = DRAW_TARGET_B;
 end
 DRAW_TARGET_C: begin
 ram_we_int = targetC_ram_we;
 if (targetC_done || FS_bar) begin
 if (bkgd_id_ext == 6) begin

 next = WAIT_FS_HIGH;
 ram_we_int = 0;

 end
 else begin
 next = DRAW_NUMBER;

 fsm_sel_int = NUMBER;
 number_start = 1;
 ram_we_int = number_ram_we;

 end // else: !if(bkgd_id_ext == 6)
 end
 else next = DRAW_TARGET_C;
 end
DRAW_NUMBER: begin
 ram_we_int = number_ram_we;
 if (number_done || FS_bar) begin
 next = WAIT_FS_HIGH;
 ram_we_int = 0;
 end
 else next = DRAW_NUMBER;
end
WAIT_FS_HIGH: begin
 if (FS_bar) next = IDLE;
 else next = WAIT_FS_HIGH;
end
default: next = IDLE;

 endcase // case(state)
 end
endmodule // Bkgd_Image_Controller

 /***
 * Background ROM Address Counter
 * This module keeps count for the Bkgd Draw FSM.
 * It counts from 0 to 3071 (There are 3072 locations
 * required to map the 128x96 screen) and then
 * resets itself.
 *
 * Author: Faye Kasemset
 **/

module bkgd_rom_addr_counter(clk,
 reset,
 inc,
 addr);

 input clk, reset, inc;
 output [11:0] addr;
 reg [11:0] addr;
 always @ (posedge clk) begin

 // Reset takes precedence.
 if (!reset) addr <= 0;
 // Increment?
 else if (inc) begin
 // Already at 3071? Set back to 0.
 if (addr == 3071) addr <= 0;
 // Otherwise, increment.
 else addr <= addr + 1;
 end
 else addr <= addr;

 end
endmodule // bkgd_rom_addr_counter

 /***
 Filename: blank_timer.v
 Author: Dave Kloster
 Sets the blanking time for the shot/hit cycle
 for the gun interface of the NES Zapper.
 **/

module blank_timer(clk, reset, start, stop, time_up);

 //SET TO THE AMOUNT OF TIME TO WAIT.
 //VALUE DEPENDS ON DESIRED TIME AND
 //THE FREQUENCE OF THE CLOCK.
 parameter TIMER_COUNT = 24'd400000;
 //USING 10MHz CLOCK, COUNTING TO 40 milli-SECONDs.

 input clk,reset,start,stop;

 output time_up;
 reg time_up;

 reg [23:0] Q;
 reg on;

 always @ (posedge clk or posedge reset) begin
 if (reset) begin

 Q <= 24'b0;
 time_up = 0;
 on = 0;

 end
 else if (stop) begin

 Q <= 24'b0;
 time_up = 0;
 on = 0;

 end
 else if (Q == TIMER_COUNT) begin

 time_up = 1;
 on = 0;

 end
 else if (on) begin

 Q <= Q + 1;
 on = 1;

 end
 else if (start) begin

 Q <= 24'b1;
 on = 1;

 end
 end // always @ (posedge clk or posedge reset)
endmodule // shot_timer

 /* This module acts as the Major FSM and also
 outputs valuable game information.
 */
module controlfsm(clk, reset, hit, id, sample, rand,

x1_in, y1_in, x2_in, y2_in, x3_in, y3_in,
x1, y1, image1, size1,
x2, y2, image2, size2,
x3, y3, image3, size3,
level, image3_in);

input clk, reset, sample, hit;
input[1:0] id, rand;
input[2:0] image3_in;
input[6:0] x1_in, y1_in, x2_in, y2_in, x3_in, y3_in;
output[6:0] x1, y1, x2, y2, x3, y3;
output[2:0] image1, image2, image3,

size1, size2, size3, level;
reg start_add, start_move_1, start_move_2, start_move_3,

start_add_int, start_move_1_int, start_move_2_int, start_move_3_int;
reg[6:0] x1, y1, x2, y2, x3, y3,

 x1_int, y1_int, x2_int, y2_int, x3_int, y3_int;
reg [2:0] level, level_int, stage, stage_int,

 path_reg_1, path_reg_2, path_reg_3,
 path_1_int, path_2_int, path_3_int,
 image1, image2, image3,
 image1_int, image2_int, image3_int,
 size1, size2, size3;

reg[3:0] state, next, state_int, next_int;
wire busy_add, busy_move_1, busy_move_2, busy_move_3;
wire[2:0] path, size1_m, size2_m, size3_m;
wire[6:0] x_add, y_add, x1_in, y1_in, x2_in, y2_in, x3_in, y3_in,

 x1_out, y1_out, x2_out, y2_out, x3_out, y3_out;

addfsm add_target_1(.clk(clk), .reset(reset), .start(start_add), .rand(rand),
 .busy(busy_add), .x(x_add), .y(y_add), .path(path));

movefsm move_target_1(.clk(clk), .reset(reset), .start(start_move_1),
 .path(path_reg_1), .sample(sample), .busy(busy_move_1),
 .x_in(x1_in), .y_in(y1_in), .x_out(x1_out),
 .y_out(y1_out), .size(size1_m));

movefsm move_target_2(.clk(clk), .reset(reset), .start(start_move_2),
 .path(path_reg_2), .sample(sample), .busy(busy_move_2),
 .x_in(x2_in), .y_in(y2_in), .x_out(x2_out),
 .y_out(y2_out), .size(size2_m));

movefsm move_target_3(.clk(clk), .reset(reset), .start(start_move_3),

 .path(path_reg_3), .sample(sample), .busy(busy_move_3),
 .x_in(x3_in), .y_in(y3_in), .x_out(x3_out),
 .y_out(y3_out), .size(size3_m));

parameter IDLE = 0;
parameter add1 = 1;
parameter add2 = 2;
parameter add3 = 3;
parameter move_targets = 4;
parameter set_level = 5;
parameter waitcycle = 6;
parameter waitcycle2 = 7;
parameter endscreen = 8;

always @ (posedge clk)
if (reset) begin
x1 <= 0;
y1 <= 0;
x2 <= 0;
y2 <= 0;
x3 <= 0;
y3 <= 0;
level <= 0;
stage <= 0;
start_add <= 0;
start_move_1 <= 0;
start_move_2 <= 0;
start_move_3 <= 0;
path_reg_1 <= 0;
path_reg_2 <= 0;
path_reg_3 <= 0;
size1 <= 7;
size2 <= 7;
size3 <= 7;
state <= IDLE;
end
else begin
x1 <= x1_int;
y1 <= y1_int;
x2 <= x2_int;
y2 <= y2_int;
x3 <= x3_int;
y3 <= y3_int;
level <= level_int;
stage <= stage_int;
start_add <= start_add_int;
start_move_1 <= start_move_1_int;
start_move_2 <= start_move_2_int;
start_move_3 <= start_move_3_int;
path_reg_1 <= path_1_int;
path_reg_2 <= path_2_int;
path_reg_3 <= path_3_int;
image1 <= image1_int;
image2 <= image2_int;
image3 <= image3_int;
if (state == IDLE) size3 <= 0;
else size3 <= size3_m;
size1 <= size1_m;
size2 <= size2_m;
state <= next;
state_int <= next_int;
end

always @ (state or next or sample or hit or id or level or stage
 or busy_add or busy_move_1 or busy_move_2 or busy_move_3
 or x1_out or y1_out or x2_out or y2_out or x3_out or y3_out
 or image3_in)
case(state)
IDLE: if (hit && image3_in == 0) begin

start_add_int = 1;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
next = waitcycle;
next_int = add1;
level_int = 1;
stage_int = 0;
image1_int = 1;
image2_int = 0;
image3_int = 0;
path_1_int = 0;
path_2_int = 0;
path_3_int = 0;
end

else begin
x1_int = 0;
y1_int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 50;
y3_int = 34;
level_int = 6;
stage_int = 0;
image1_int = 0;
image2_int = 0;
image3_int = 6;
start_add_int = 0;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
path_1_int = 0;
path_2_int = 0;
path_3_int = 0;
next_int = add1;
next = IDLE;
end

add1: begin
start_add_int = 0;
stage_int = stage;
level_int = level;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
if (!busy_add && stage == 1) begin

x1_int = x_add;
y1_int = y_add;
path_1_int = path;
image1_int = level;
next = waitcycle;
next_int = move_targets;
start_move_1_int = 1;

end
else if (!busy_add) begin

x1_int = x_add;
y1_int = y_add;
path_1_int = path;
image1_int = level;
next = waitcycle;
next_int = add2;
start_add_int = 1;

end
else next = add1;
end

add2: begin
start_add_int = 0;
stage_int = stage;
x1_int = x1;
y1_int = y1;
path_1_int = path_reg_1;
level_int = level;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
if (!busy_add && (x1 == x_add)) begin

next_int = add2;
next = waitcycle;
start_add_int = 1;

end
else if (!busy_add) begin

x2_int = x_add;
y2_int = y_add;
path_2_int = path;
image2_int = level;
next = waitcycle;
if ((stage == 2) || (stage == 4)) begin
next_int = move_targets;
start_move_1_int = 1;
start_move_2_int = 1;
end
else begin
next_int = add3;
start_add_int = 1;
end

end
else next = add2;
end

add3: begin
stage_int = stage;

start_add_int = 0;
x1_int = x1;
y1_int = y1;
x2_int = x2;
y2_int = y2;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
level_int = level;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
if (!busy_add && (x1 == x_add || x2 == x_add)) begin

next_int = add3;
next = waitcycle;
start_add_int = 1;

end
else if (!busy_add) begin

x3_int = x_add;
y3_int = y_add;
path_3_int = path;
image3_int = level;
next = waitcycle;
next_int = move_targets;
start_move_1_int = 1;
start_move_2_int = 1;
start_move_3_int = 1;

end
else next = add3;
end

move_targets: begin
stage_int = stage;
level_int = level;
start_add_int = 0;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
x1_int = x1_out;
y1_int = y1_out;
x2_int = x2_out;
y2_int = y2_out;
x3_int = x3_out;
y3_int = y3_out;
image1_int = image1;
image2_int = image2;
image3_int = image3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
path_3_int = path_reg_3;
next = move_targets;
if (!busy_move_1 && !busy_move_2 &&
 !busy_move_3 && hit) begin

next = move_targets;
image1_int = 0;
image2_int = 0;
image3_int = 0;

end
else if (!busy_move_1 && !busy_move_2

 && !busy_move_3) begin
next = waitcycle;
next_int = set_level;
image1_int = 0;
image2_int = 0;
image3_int = 0;

end
else if (!busy_move_1 && image1) begin

image1_int = 0;
next = move_targets;

end
else if (!busy_move_2 && image2) begin

image2_int = 0;
next = move_targets;

end
else if (!busy_move_3 && image3) begin

image3_int = 0;
next = move_targets;

end
else next = move_targets;
end

set_level: if (stage < 5) begin
next = waitcycle;
next_int = add1;
level_int = level;
stage_int = stage + 1;
start_add_int = 1;

end
else if (level < 4) begin

next = waitcycle;
next_int = add1;
stage_int = 1;
level_int = level + 1;
start_add_int = 1;

end
else begin

next = waitcycle;
x1_int = 0;
y1_int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 0;
y3_int = 0;
level_int = 4;
stage_int = 0;
image1_int = 0;
image2_int = 0;
image3_int = 0;
start_add_int = 0;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
next_int = endscreen;

end
waitcycle: begin

next = waitcycle2;
next_int = state_int;
level_int = level;
stage_int = stage;
image1_int = image1;
image2_int = image2;
image3_int = image3;
x1_int = x1;
y1_int = y1;
x2_int = x2;
y2_int = y2;
x3_int = x3;
y3_int = y3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
path_3_int = path_reg_3;
end

waitcycle2: begin
next = state_int;
level_int = level;
stage_int = stage;
image1_int = image1;
image2_int = image2;
image3_int = image3;
x1_int = x1;
y1_int = y1;
x2_int = x2;
y2_int = y2;
x3_int = x3;
y3_int = y3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
path_3_int = path_reg_3;
end

endscreen: begin
x1_int = 0;
y1_int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 0;
y3_int = 0;
level_int = 4;
stage_int = 0;
image1_int = 0;
image2_int = 0;
image3_int = 0;
start_add_int = 0;
start_move_1_int = 0;
start_move_2_int = 0;
start_move_3_int = 0;
next = endscreen;
end

default: begin
next = IDLE;
level_int = level;
image1_int = image1;

image2_int = image2;
image3_int = image3;
end

endcase
endmodule

 /* This module acts as the top level file for the
 entire gameplay system.
 */
module controller(clk, reset, hit, id,

x1, y1, image1, size1,
x2, y2, image2, size2,
x3, y3, image3, size3,
level, kills);

input clk, reset, hit;
input[1:0] id;
output[2:0] image1, image2, image3, size1, size2, size3, level;
output[5:0] kills;
output[6:0] x1, y1, x2, y2, x3, y3;
reg reset_sync;

wire[1:0] rand;
wire sample;
wire[6:0] x1_out, y1_out, x2_out, y2_out, x3_out, y3_out;
wire[2:0] image1_out, size1_out, image2_out, size2_out, image3_out, size3_out;

controlfsm controller(.clk(clk), .reset(reset_sync), .hit(hit), .id(id),
 .sample(sample), .rand(rand),
 .x1_in(x1), .y1_in(y1), .x2_in(x2), .y2_in(y2),
 .x3_in(x3), .y3_in(y3),
 .x1(x1_out), .y1(y1_out),
 .image1(image1_out), .size1(size1_out),
 .x2(x2_out), .y2(y2_out),
 .image2(image2_out), .size2(size2_out),
 .x3(x3_out), .y3(y3_out),
 .image3(image3_out), .size3(size3_out),
 .level(level), .image3_in(image3));

sample_timer sampler(.clk(clk), .reset(reset_sync), .level(level),
 .sample(sample));

rndnum rng(.clk(clk), .reset(reset_sync), .rand_num(rand));
address_selector select(.clk(clk), .reset(reset_sync),

.x1(x1_out), .y1(y1_out),

.image1(image1_out), .size1(size1_out),

.x2(x2_out), .y2(y2_out),

.image2(image2_out), .size2(size2_out),

.x3(x3_out), .y3(y3_out),

.image3(image3_out), .size3(size3_out),

.x1_f(x1), .y1_f(y1),

.image1_f(image1), .size1_f(size1),

.x2_f(x2), .y2_f(y2),

.image2_f(image2), .size2_f(size2),

.x3_f(x3), .y3_f(y3),

.image3_f(image3), .size3_f(size3),

.hit(hit), .id(id), .level(level), .kills(kills));

always @ (posedge clk) reset_sync <= reset;

endmodule

 /**
 Filename: frame_timer.v
 Author: Dave Kloster
 Custom timer used to time the durations
 that targets appear in targeting mode.
 ***/

module frame_timer(clk, reset, count, time_up);

 //SET TO THE AMOUNT OF TIME TO WAIT.
 //VALUE DEPENDS ON DESIRED TIME AND
 //THE FREQUENCE OF THE CLOCK.
 parameter TIMER_COUNT = 20'd800000;
 //parameter TIMER_COUNT = 24'd50; //TESTING VALUE
 //USING 10MHz CLOCK, COUNTING TO .08 SECONDs.

 input clk, reset, count;

 output time_up;
 reg time_up;

 reg [19:0] Q;

 always @ (posedge clk or posedge reset) begin
 if (reset) begin

 Q <= 20'b0;
 time_up = 0;

 end
 else if (count) begin

 Q <= Q + 1;
 if (Q == TIMER_COUNT) begin
 time_up = 1;
 Q <= 0;
 end
 else time_up = 0;

 end
 else begin

 Q <= 0;
 time_up = 0;

 end
 end // always @ (posedge clk or posedge reset)
endmodule // frame_timer

/**************************************
 Filename: gun_interface.v
 Author: Dave Kloster
 Provides accurate and synchronized
 trigger and hit signals interfaced
 from the NES Zapper.
 *************************************/

module gun_interface(clk, reset, sensor, trigger, shot, hit);

 input clk,reset,sensor,trigger;

 output shot,hit;
 reg shot,hit;

 reg sensor_sync,trigger_sync,sensor_temp,trigger_temp;

 //TIMER INSTALL
 reg start,stop,time_up;
 shot_timer timer(

 .clk(clk),
 .reset(reset),
 .start(start),
 .stop(stop),
 .time_up(time_up)
);

 //BLANK TIMER INSTALL
 reg blank_start,blank_stop,blank_time_up;
 blank_timer timer2(

 .clk(clk),
 .reset(reset),
 .start(blank_start),
 .stop(blank_stop),
 .time_up(blank_time_up)
);

 reg [1:0] state, next;

 //FSM PARAMETERS
 parameter IDLE = 0;
 parameter LOOK = 1;
 parameter WAIT = 2;
 parameter BLANK = 3;

 //CLOCK LOOP
 always @ (posedge clk or posedge reset) begin
 //synchronize signals
 sensor_temp <= sensor;
 sensor_sync <= sensor_temp;
 trigger_temp <= ~trigger;
 trigger_sync <= trigger_temp;

 if (reset) state <= IDLE;
 else state <= next;
 end // always @ (posedge clk or posedge reset)

 //FSM STATE IMPLEMENTATION
 always @ (state or trigger_sync or sensor_sync or time_up) begin

 //default values
 hit = 0;
 shot = 0;
 start = 0;
 blank_start = 0;
 blank_stop = 0;

 stop = 0;

 case (state)

IDLE: begin
 stop = 1;
 blank_stop = 1;
 if (trigger_sync) begin
 shot = 1;
 next = BLANK;
 end
 else next = IDLE;
end

BLANK: begin
 shot = 1;
 start = 1;
 blank_start = 1;
 if (blank_time_up) next = LOOK;
 else next = BLANK;
end

LOOK: begin
 shot = 1;
 start = 1;
 blank_stop = 1;
 if (sensor_sync) begin
 hit = 1;
 next = WAIT;
 end
 else if (time_up) next = IDLE;
 else next = LOOK;
end

WAIT: begin
 shot = 1;
 hit = 1;
 if (time_up) next = IDLE;
 else next = WAIT;
end

default: next = IDLE;

 endcase // case(state)
 end // always @ (state or trigger_sync or sensor_sync or time_up)
endmodule // gun_interface

/***************************************
 * Image Drawing FSM
 * This module overlays the target images
 * and hit counter onto the ROM.
 *
 * Author: Faye Kasemset
 ***************************************/

module Image_Draw_FSM(clk, reset, start, done,
 img_id, img_x, img_y,
 img_rom_addr, ram_addr,
 ram_we, state);

 input clk, reset, start;
 input [6:0] img_id;
 input [6:0] img_x, img_y;
 output [15:0] img_rom_addr;
 output [11:0] ram_addr;
 output [2:0] state;
 output ram_we;
 output done;
 reg done;
 reg ram_we, ram_we_int;
 reg [2:0] state, next;
 reg [15:0] addr_offset, addr_offset_int;
 reg [4:0] length, length_int;
 reg [4:0] width, width_int;
 reg w_restart, w_inc, l_restart, l_inc;
 wire [4:0] w_addr, l_addr;

 // Width and Length counters.
 size_counter width1(.clk(clk),

 .reset(reset),
 .restart(w_restart),
 .inc(w_inc),
 .addr(w_addr));

 size_counter length1(.clk(clk),
.reset(reset),

.restart(l_restart),

.inc(l_inc),

.addr(l_addr));

 // Image ID parameters
 parameter BLANK = 7'b000111;
 parameter START_TARGET = 7'b110000;
 parameter FRISBEE28 = 7'b001000;
 parameter FRISBEE24 = 7'b001001;
 parameter FRISBEE20 = 7'b001010;
 parameter FRISBEE16 = 7'b001011;
 parameter FRISBEE12 = 7'b001100;
 parameter GHOST28 = 7'b010000;
 parameter GHOST24 = 7'b010001;
 parameter GHOST20 = 7'b010010;
 parameter GHOST16 = 7'b010011;
 parameter GHOST12 = 7'b010100;
 parameter FISH28 = 7'b011000;
 parameter FISH24 = 7'b011001;
 parameter FISH20 = 7'b011010;
 parameter FISH16 = 7'b011011;
 parameter FISH12 = 7'b011100;
 parameter BOTTLE28 = 7'b100000;
 parameter BOTTLE24 = 7'b100001;
 parameter BOTTLE20 = 7'b100010;
 parameter BOTTLE16 = 7'b100011;
 parameter BOTTLE12 = 7'b100100;

 // ROM address offsets
 parameter START_TARGET_OFFSET = 16'hFAFC;
 parameter FRISBEE28_OFFSET = 16'hFDDC;
 parameter FRISBEE24_OFFSET = 16'hFEA0;
 parameter FRISBEE20_OFFSET = 16'hFF30;
 parameter FRISBEE16_OFFSET = 16'hFF94;
 parameter FRISBEE12_OFFSET = 16'hFFD4;
 parameter GHOST28_OFFSET = 16'hFBC0;
 parameter GHOST24_OFFSET = 16'hFC84;
 parameter GHOST20_OFFSET = 16'hFD14;
 parameter GHOST16_OFFSET = 16'hFD78;
 parameter GHOST12_OFFSET = 16'hFDB8;
 parameter FISH28_OFFSET = 16'hF6C4;
 parameter FISH24_OFFSET = 16'hF788;
 parameter FISH20_OFFSET = 16'hF818;
 parameter FISH16_OFFSET = 16'hF87C;
 parameter FISH12_OFFSET = 16'hF8BC;
 parameter BOTTLE28_OFFSET = 16'hF8E0;
 parameter BOTTLE24_OFFSET = 16'hF9A4;
 parameter BOTTLE20_OFFSET = 16'hFA34;
 parameter BOTTLE16_OFFSET = 16'hFA98;
 parameter BOTTLE12_OFFSET = 16'hFAD8;
 parameter ZERO_OFFSET = 16'hA000;

 // State variables.
 parameter IDLE = 0;
 parameter SETUP_PARAMS = 1;
 parameter START_WRITE = 2;
 parameter WAIT_WRITE = 3;
 parameter WRITE_CHECK = 4;
 parameter STOP_WRITE = 5;

 assign img_rom_addr = addr_offset + (width + 1)*l_addr + w_addr;
 assign ram_addr = (32*(img_y + l_addr)) + (img_x + w_addr);

 always @ (posedge clk) begin
 if (!reset) begin

 state <= IDLE;
 width <= 5'b0;
 length <= 5'b0;
 addr_offset <= 16'b0;
 ram_we <= 0;

 end
 else begin

 state <= next;
 width <= width_int;
 length <= length_int;
 addr_offset <= addr_offset_int;
 ram_we <= ram_we_int;

 end
 end

 always @ (state or width or length or l_addr or w_addr) begin
 ram_we_int = ram_we;
 addr_offset_int = addr_offset;
 width_int = width;

 length_int = length;
 w_restart = 0;
 w_inc = 0;
 l_restart = 0;
 l_inc = 0;
 done = 0;

 case (state)

IDLE: begin
 ram_we_int = 0;
 if (start) begin
 next = SETUP_PARAMS;
 l_restart = 1;
 w_restart = 1;
 end
 else next = IDLE;
end
SETUP_PARAMS: begin
 ram_we_int = 0;
 next = IDLE;
 if (img_id == BLANK) begin
 l_restart = 1;
 w_restart = 1;
 done = 1;
 next = IDLE;
 end
 else begin
 next = START_WRITE;
 width_int = 6 - img_id[2:0];
 length_int = 27 - (img_id[2:0]*4);
 if (img_id == START_TARGET) begin

 addr_offset_int = START_TARGET_OFFSET;
 end
 if (img_id == FRISBEE28) begin

 addr_offset_int = FRISBEE28_OFFSET;
 end
 if (img_id == FRISBEE24) begin

 addr_offset_int = FRISBEE24_OFFSET;
 end
 if (img_id == FRISBEE20) begin

 addr_offset_int = FRISBEE20_OFFSET;
 end
 if (img_id == FRISBEE16) begin

 addr_offset_int = FRISBEE16_OFFSET;
 end
 if (img_id == FRISBEE12) begin

 addr_offset_int = FRISBEE12_OFFSET;
 end
 if (img_id == GHOST28) begin

 addr_offset_int = GHOST28_OFFSET;
 end
 if (img_id == GHOST24) begin

 addr_offset_int = GHOST24_OFFSET;
 end
 if (img_id == GHOST20) begin

 addr_offset_int = GHOST20_OFFSET;
 end
 if (img_id == GHOST16) begin

 addr_offset_int = GHOST16_OFFSET;
 end
 if (img_id == GHOST12) begin

 addr_offset_int = GHOST12_OFFSET;
 next = START_WRITE;

 end
 if (img_id == FISH28) begin

 addr_offset_int = FISH28_OFFSET;
 end
 if (img_id == FISH24) begin

 addr_offset_int = FISH24_OFFSET;
 end
 if (img_id == FISH20) begin

 addr_offset_int = FISH20_OFFSET;
 end
 if (img_id == FISH16) begin

 addr_offset_int = FISH16_OFFSET;
 end
 if (img_id == FISH12) begin

 addr_offset_int = FISH12_OFFSET;
 end
 if (img_id == BOTTLE28) begin

 addr_offset_int = BOTTLE28_OFFSET;
 end
 if (img_id == BOTTLE24) begin

 addr_offset_int = BOTTLE24_OFFSET;

 end
 if (img_id == BOTTLE20) begin

 addr_offset_int = BOTTLE20_OFFSET;
 end
 if (img_id == BOTTLE16) begin

 addr_offset_int = BOTTLE16_OFFSET;
 end
 if (img_id == BOTTLE12) begin

 addr_offset_int = BOTTLE12_OFFSET;
 end
 if (img_id[6] == 1'b1) begin

 width_int = 3;
 length_int = 11;
 addr_offset_int = ZERO_OFFSET + (48 * img_id[5:0]);

 end
 end // else: !if(img_id == BLANK)
end
START_WRITE: begin
 ram_we_int = 1;
 next = WAIT_WRITE;
end
WAIT_WRITE: begin
 ram_we_int = 1;
 next = STOP_WRITE;
end
STOP_WRITE: begin
 ram_we_int = 0;
 next = WRITE_CHECK;
end
WRITE_CHECK: begin
 ram_we_int = 0;
 // Done with row?
 if (w_addr == width) begin
 // Increment l_addr.
 w_restart = 1;
 // Last row?
 if (l_addr == length) begin

 l_restart = 1;
 done = 1;
 next = IDLE;

 end
 // Otherwise, go to next row.
 else begin

 l_inc = 1;
 next = SETUP_PARAMS;

 end
 end
 // Increment w_addr, continue.
 else begin
 w_inc = 1;
 next = SETUP_PARAMS;
 end
end

 endcase // case(state)
 end
endmodule // Image_Draw_FSM

/* This module generates a random one or zero,
 based on an input seed and how many clock
 cycles have passed since power has turned on.
 */
module lfsr(clk, reset, seed, msb);
input clk, reset;
input [19:0] seed;
output msb;
reg msb;
reg [19:0] q;
wire [19:0] n_q;

assign n_q[18:0] = q[19:1];
assign n_q[19] = q[19] ^ q[6] ^ q[5] ^ q[1];

always @ (posedge clk) begin
if (reset) q <= seed;
else q <= n_q;
msb <= q[19];
end

endmodule

/* This module controls a single target, sending out a series
 of coordinates based on an input path, the input coordinates,
 and how long it has been since the target was created.
 */

module movefsm(clk, reset, start, path, sample, busy,
x_in, y_in, x_out, y_out,
size);

input clk, reset, start, sample;
input[2:0] path;
input[6:0] x_in, y_in;
output busy;
output[6:0] x_out, y_out;
output[2:0] size;
reg busy, busy_int;
reg[3:0] direction, direction_int;
reg[6:0] x_out, y_out, x_int, y_int;
reg[6:0] count, count_int;
reg[2:0] size, size_int;
reg[3:0] state, next, state_int, next_int;

parameter IDLE = 0;
parameter wait_sample = 1;
parameter get_direction = 2;
parameter move = 3;
parameter out = 4;
parameter waitcycle = 5;
parameter waitcycle2 = 6;

parameter zero_arc_right = 0;
parameter one_arc_right = 1;
parameter two_arc_right = 2;
parameter three_arc_right = 3;
parameter zero_arc_left = 4;
parameter one_arc_left = 5;
parameter two_arc_left = 6;
parameter three_arc_left = 7;

always @ (posedge clk) begin
if (reset) begin
state <= IDLE;
state_int <= IDLE;
count <= 0;
size <= 7;
end
else begin
state <= next;
count <= count_int;
size <= size_int;
state_int <= next_int;
end
x_out <= x_int;
y_out <= y_int;
direction <= direction_int;
busy <= busy_int;

end

always @ (state or next or start or busy or sample or path
 or x_in or y_in or size or count)
case(state)
IDLE: if (start) begin

busy_int = 1;
next = waitcycle;
next_int = wait_sample;
x_int = x_in;
y_int = y_in;
size_int = 0;
end
else begin
next = IDLE;
next_int = IDLE;
x_int = x_in;
y_int = y_in;
size_int = 7;
busy_int = 0;
direction_int = 0;
count_int = 0;
end

wait_sample: if (x_in == 0 && y_in == 0) begin
next = IDLE;
busy_int = 0;
x_int = x_in;
y_int = y_in;
size_int = 7;
end
else if (sample) begin
next = get_direction;
busy_int = 1;
count_int = count;

x_int = x_in;
y_int = y_in;
size_int = size;
end
else begin
next = wait_sample;
busy_int = 1;
count_int = count;
x_int = x_in;
y_int = y_in;
size_int = size;
end

get_direction: if (x_in == 0 && y_in == 0) begin
next = IDLE;
busy_int = 0;
x_int = x_in;
y_int = y_in;
size_int = 7;
end
else begin
case(path)
zero_arc_right:
 if (count < 14) direction_int = 0;
 else if (count > 13 && count < 24)
 direction_int = 1;
 else if (count > 23 && count < 28)
 direction_int = 2;
 else if (count > 27 && count < 30)
 direction_int = 3;
 else if (count > 29 && count < 31)
 direction_int = 4;
 else if (count > 30 && count < 33)
 direction_int = 5;
 else if (count > 32 && count < 36)
 direction_int = 6;
 else if (count > 35 && count < 42)
 direction_int = 7;
 else if (count > 41) direction_int = 8;
 one_arc_right:
 if (count < 17) direction_int = 0;
 else if (count > 16 && count < 25)
 direction_int = 1;
 else if (count > 24 && count < 28)
 direction_int = 2;
 else if (count > 27 && count < 30)
 direction_int = 3;
 else if (count > 29 && count < 31)
 direction_int = 5;
 else if (count > 30 && count < 35)
 direction_int = 6;
 else if (count > 34 && count < 39)
 direction_int = 7;
 else if (count > 38) direction_int = 8;
 two_arc_right:
 if (count < 19) direction_int = 0;
 else if (count > 18 && count < 25)
 direction_int = 1;
 else if (count > 24 && count < 28)
 direction_int = 2;
 else if (count > 27 && count < 30)
 direction_int = 3;
 else if (count > 29 && count < 32)
 direction_int = 6;
 else if (count > 31 && count < 36)
 direction_int = 7;
 else if (count > 35) direction_int = 8;
 three_arc_right:
 if (count < 22) direction_int = 0;
 else if (count > 21 && count < 26)
 direction_int = 1;
 else if (count > 25 && count < 28)
 direction_int = 2;
 else if (count > 27 && count < 30)
 direction_int = 3;
 else if (count > 29 && count < 32)
 direction_int = 6;
 else if (count > 31 && count < 36)
 direction_int = 7;
 else if (count > 35) direction_int = 8;
 zero_arc_left:
 if (count < 14) direction_int = 0;
 else if (count > 13 && count < 24)
 direction_int = 15;
 else if (count > 23 && count < 28)

 direction_int = 14;
 else if (count > 27 && count < 30)
 direction_int = 13;
 else if (count > 29 && count < 31)
 direction_int = 12;
 else if (count > 30 && count < 33)
 direction_int = 11;
 else if (count > 32 && count < 36)
 direction_int = 10;
 else if (count > 35 && count < 42)
 direction_int = 9;
 else if (count > 41) direction_int = 8;
 one_arc_left:
 if (count < 17) direction_int = 0;
 else if (count > 16 && count < 25)
 direction_int = 15;
 else if (count > 24 && count < 29)
 direction_int = 14;
 else if (count > 27 && count < 30)
 direction_int = 13;
 else if (count > 29 && count < 31)
 direction_int = 11;
 else if (count > 30 && count < 35)
 direction_int = 10;
 else if (count > 34 && count < 39)
 direction_int = 9;
 else if (count > 38) direction_int = 8;
 two_arc_left:
 if (count < 19) direction_int = 0;
 else if (count > 18 && count < 25)
 direction_int = 15;
 else if (count > 24 && count < 28)
 direction_int = 14;
 else if (count > 27 && count < 30)
 direction_int = 13;
 else if (count > 29 && count < 32)
 direction_int = 10;
 else if (count > 31 && count < 36)
 direction_int = 9;
 else if (count > 35) direction_int = 8;
 three_arc_left:
 if (count < 22) direction_int = 0;
 else if (count > 21 && count < 26)
 direction_int = 15;
 else if (count > 25 && count < 28)
 direction_int = 14;
 else if (count > 27 && count < 30)
 direction_int = 13;
 else if (count > 29 && count < 32)
 direction_int = 10;
 else if (count > 31 && count < 36)
 direction_int = 9;
 else if (count > 35) direction_int = 8;
 default direction_int = 0;
endcase
next = move;
busy_int = 1;
count_int = count;
x_int = x_in;
y_int = y_in;
size_int = size;
end

move: if (count > 53) begin
next = out;
busy_int = 1;
x_int = 0;
y_int = 0;
size_int = 7;
end
else begin
count_int = count + 1;
next = out;
busy_int = 1;
if ((direction == 1) || (direction == 7))
 x_int = x_in + 1;
else if ((direction == 15) || (direction == 9))
 x_int = x_in - 1;
else if ((direction > 1) && (direction < 7))
 x_int = x_in + 2;
else if ((direction > 9) && (direction < 15))
 x_int = x_in - 2;
else x_int = x_in;
if ((direction == 3) || (direction == 13))
 y_int = y_in - 1;

else if ((direction == 5) || (direction == 11))
 y_int = y_in + 1;
else if ((direction < 3) || (direction > 13))
 y_int = y_in - 2;
else if ((direction > 5) && (direction < 11))
 y_int = y_in + 2;
else y_int = y_in;
if (count < 9) size_int = 0;
else if (count > 8 && count < 18)
 size_int = 1;
else if (count > 17 && count < 27)
 size_int = 2;
else if (count > 26 && count < 36)
 size_int = 3;
else if (count > 35 && count < 45)
 size_int = 4;
else if (count > 44) size_int = 5;
end

out: if (x_in == 0 && y_in == 0) begin
next = IDLE;
busy_int = 0;
x_int = x_in;
y_int = y_in;
size_int = 7;
end
else begin
next = waitcycle2;
next_int = wait_sample;
busy_int = 1;
x_int = x_out;
y_int = y_out;
size_int = size;
count_int = count;
end

waitcycle: begin
next = state_int;
x_int = x_in;
y_int = y_in;
size_int = size;
busy_int = 1;
end

waitcycle2: begin
next = state_int;
x_int = x_out;
y_int = y_out;
busy_int = 1;
size_int = size;
count_int = count;
end

default: begin
next = IDLE;
busy_int = busy;
x_int = x_in;
y_int = y_in;
size_int = 7;
direction_int = direction;
end

endcase
endmodule

/* This module creates a two-bit random number
 from two separate LFSRs.
 */
module rndnum(clk, reset, rand_num);
input clk, reset;
output [1:0] rand_num;

parameter seed1 = 20'b00010110111000111000;
parameter seed2 = 20'b01110011010111000011;

lfsr bitzero(.clk(clk), .reset(reset), .seed(seed1), .msb(rand_num[0]));
lfsr bitone(.clk(clk), .reset(reset), .seed(seed2), .msb(rand_num[1]));

endmodule

/* This module outputs a sample pulse at a given
 rate, which is determined by the input level.
 */
module sample_timer(clk, reset, level, sample);
input clk, reset;
input [2:0] level;
output sample;
reg sample;
reg [19:0] count, countlimit;

parameter sampleone = 999999; //10fps
parameter sampletwo = 666666; //15fps
parameter samplethree = 454545; //22fps
parameter samplefour = 285714; //35fps

//parameter testsample = 8; //used for simulation

always @ (posedge clk) begin
if (reset) countlimit <= 0;
else if (level == 1) countlimit <= sampleone;
else if (level == 2) countlimit <= sampletwo;
else if (level == 3) countlimit <= samplethree;
else if (level == 4) countlimit <= samplefour;
else countlimit <= 0;
if (reset) begin

count <= 0;
sample <= 0;

end
else if (countlimit == 0) begin

count <= 0;
sample <= 0;

end
else if (countlimit == sampleone && level != 1) begin

count <= 0;
sample <= 0;

end
else if (countlimit == sampletwo && level != 2) begin

count <= 0;
sample <= 0;

end
else if (countlimit == samplethree && level != 3) begin

count <= 0;
sample <= 0;

end
else if (countlimit == samplefour && level != 4) begin

count <= 0;
sample <= 0;

end
else if (count == countlimit) begin

count <= 0;
sample <= 1;

end
else begin

count <= count + 1;
sample <= 0;

end
end
endmodule

/***
 Filename: shot_timer.v
 Author: Dave Kloster
 Sets the time values for the shot/hit cycle
 for the gun interface of the NES Zapper.
 **/

module shot_timer(clk, reset, start, stop, time_up);

 //SET TO THE AMOUNT OF TIME TO WAIT.
 //VALUE DEPENDS ON DESIRED TIME AND
 //THE FREQUENCE OF THE CLOCK.
 parameter TIMER_COUNT = 22'd3200000;
 //USING 10MHz CLOCK, COUNTING TO .32 SECONDs.

 input clk,reset,start,stop;

 output time_up;
 reg time_up;

 reg [21:0] Q;
 reg on;

 always @ (posedge clk or posedge reset) begin
 if (reset) begin

 Q <= 22'b0;
 time_up = 0;
 on = 0;

 end
 else if (stop) begin

 Q <= 22'b0;
 time_up = 0;
 on = 0;

 end

 else if (Q == TIMER_COUNT) begin
 time_up = 1;
 on = 0;

 end
 else if (on) begin

 Q <= Q + 1;
 on = 1;

 end
 else if (start) begin

 Q <= 22'b1;
 on = 1;

 end
 end // always @ (posedge clk or posedge reset)
endmodule // shot_timer

// This module keeps count for the Image Draw FSM.

// It counts from 0 to up to 64 (we assume no
// target will be larger than 64x64 pixels.

module size_counter(clk,
 reset,
 restart,
 inc,
 addr);

 input clk, reset, restart, inc;

 output [4:0] addr;
 reg [4:0] addr;

 always @ (posedge clk) begin
 // Reset takes precedence.
 if (!reset) addr <= 0;
 // Restart?
 else if (restart) addr <= 0;
 // Increment?
 else if (inc) addr <= addr + 1;
 else addr <= addr;

 end

endmodule // bkgd_rom_addr_counter

/**
 Filename: target_mode_controller.v
 Author: Dave Kloster
 Controls the display of white boxes to
 be read by the Light Gun when a shot
 has been fired.
 **/

module target_mode_controller (clk, reset,
 targetA_size, targetA_x, targetA_y,
 targetB_size, targetB_x, targetB_y,
 targetC_size, targetC_x, targetC_y,
 shot,
 current_target,
 RAM_address,
 ROM_address
);

 input clk, reset;

 input [2:0] targetA_size, targetB_size, targetC_size;
 input [4:0] targetA_x, targetB_x, targetC_x;

 input [6:0] targetA_y, targetB_y, targetC_y;

 input shot;

 output [1:0] current_target;
 reg [1:0] current_target;

 output [15:0] ROM_address;
 reg [15:0] ROM_address, ROM_address_int;

 output [11:0] RAM_address;
 reg [11:0] RAM_address, RAM_address_int;
 wire [4:0] current_x;
 wire [6:0] current_y;
 assign current_x[4:0] = RAM_address[4:0];
 assign current_y[6:0] = RAM_address[11:5];

 //ADDRESS LOCATIONS FOR ALL-BLACK

 //OR ALL-WHITE DATA BITS.
 parameter [15:0] black_address = 16'hFFFF;
 parameter [15:0] white_address = 16'hFFFE;
 //

 //ADDR COUNTER INSTALL
 reg [11:0] addr_count;
 addr_counter counter(

.clk(clk),

.reset(reset),

.count(addr_count),

.address(RAM_address_int)
);

 //FRAME TIMER INSTALL
 reg frame_count;
 reg time_up;
 frame_timer timer(

 .clk(clk),
 .reset(reset),
 .count(frame_count),
 .time_up(time_up)
);

 //STATES
 parameter IDLE = 0;
 parameter BLANK = 1;
 parameter TARGET_A = 2;
 parameter TARGET_B = 3;
 parameter TARGET_C = 4;

 reg [2:0] state, next;

 always @ (posedge clk or posedge reset) begin
 if (reset) state <= IDLE;
 else state <= next;

 ROM_address <= ROM_address_int;
 RAM_address <= RAM_address_int;

 end

 always @ (state or shot or time_up) begin

 ROM_address_int = black_address;
 addr_count = 1;
 frame_count = 1;
 current_target = 2'b0;

 case (state)

IDLE: begin
 addr_count = 0;
 frame_count = 0;

 if (shot) next = BLANK;
 else next = IDLE;
end

BLANK: begin

 if (time_up) next = TARGET_A;
 else next = BLANK;
end

TARGET_A: begin
 current_target = 2'b01;
 if (current_x > (targetA_x - 5'd2)) begin
 if (current_x < (targetA_x - 5'b1) + {2'b0,~targetA_size}) begin

 if (current_y > (targetA_y - 7'b1)) begin
 if (current_y < targetA_y + {2'b0,~targetA_size,2'b0}) begin
 ROM_address_int = white_address;
 end
 end

 end
 end

 if (time_up) next = TARGET_B;
 else next = TARGET_A;
end // case: TARGET_A

TARGET_B: begin
 current_target = 2'b10;
 if (current_x > (targetB_x - 5'd2)) begin
 if (current_x < (targetB_x - 5'b1) + {2'b0,~targetB_size}) begin

 if (current_y > (targetB_y - 7'b1)) begin
 if (current_y < targetB_y + {2'b0,~targetB_size,2'b0}) begin
 ROM_address_int = white_address;
 end
 end

 end
 end

 if (time_up) next = TARGET_C;
 else next = TARGET_B;
end // case: TARGET_B

TARGET_C: begin
 current_target = 2'b11;
 if (current_x > (targetC_x - 5'd2)) begin
 if (current_x < (targetC_x - 5'b1) + {2'b0,~targetC_size}) begin

 if (current_y > (targetC_y - 7'b1)) begin
 if (current_y < targetC_y + {2'b0,~targetC_size,2'b0}) begin
 ROM_address_int = white_address;
 end
 end

 end
 end

 if (time_up) next = IDLE;
 else next = TARGET_C;
end // case: TARGET_C

default: next = IDLE;

 endcase // case(state)
 end // always @ (state or shot or time_up)
endmodule // target_mode_controller

module Top(clk, reset, hit, FS_bar, trigger_in, sensor, rom_addr, ram_addr, ram_we,
hit_id, bkgd_id);

 input clk, reset, FS_bar, trigger_in, sensor;
 output hit;
 output [11:0] ram_addr;
 output [15:0] rom_addr;
 output ram_we;
 output [2:0] bkgd_id;
 output [1:0] hit_id;
 wire trigger;
 reg FS_bar_sync;
 wire [11:0] ram_addr;
 wire ram_we;
 wire [15:0] rom_addr;
 wire [2:0] bkgd_id;
 wire [5:0] targetA_id, targetB_id, targetC_id;
 wire [6:0] targetA_xtop, targetB_x, targetC_x,

 targetA_y, targetB_y, targetC_y;
 wire [5:0] kills;
 // Game Module:
 controller game1(.clk(clk),

 .reset(~reset),
 .hit(hit),
 .id(hit_id),
 .x1(targetA_xtop),
 .y1(targetA_y),
 .image1(targetA_id[5:3]),
 .size1(targetA_id[2:0]),
 .x2(targetB_x),
 .y2(targetB_y),
 .image2(targetB_id[5:3]),
 .size2(targetB_id[2:0]),
 .x3(targetC_x),
 .y3(targetC_y),
 .image3(targetC_id[5:3]),
 .size3(targetC_id[2:0]),
 .level(bkgd_id),
 .kills(kills));

 Video_Controller vc1(.clk(clk),
.reset(reset),
.ram_addr(ram_addr),
.ram_we(ram_we),

 .rom_addr(rom_addr),
.FS_bar(FS_bar_sync),
.bkgd_id(bkgd_id),
.targetA_id(targetA_id),
.targetA_xvc(targetA_xtop[6:2]),
.targetA_y(targetA_y),
.targetB_id(targetB_id),
.targetB_x(targetB_x[6:2]),
.targetB_y(targetB_y),
.targetC_id(targetC_id),
.targetC_x(targetC_x[6:2]),
.targetC_y(targetC_y),
.trigger(trigger),
.hit_id(hit_id),
.kills(kills));

 gun_interface gun1(.clk(clk),
 .reset(~reset),
 .sensor(sensor),
 .trigger(trigger_in),
 .shot(trigger),
 .hit(hit));

 // Synchronize input from MC6847
 always @ (posedge clk) FS_bar_sync <= FS_bar;
endmodule

/**
 * Video Controller Top Module
 * Top level file for the video control module.
 * Controls output to MC6847 and switches between
 * targetting and drawing modes.
 *
 * Author: Faye Kasemset
 ***/

module Video_Controller(clk, reset, ram_addr, ram_we,
 rom_addr, FS_bar, bkgd_id,

targetA_id, targetA_xvc, targetA_y,
targetB_id, targetB_x, targetB_y,
targetC_id, targetC_x, targetC_y,
trigger, hit_id, kills);

 input clk, reset;
 input [5:0] kills;
 input FS_bar;
 input trigger;
 input [2:0] bkgd_id;
 input [5:0] targetA_id, targetB_id, targetC_id;
 input [4:0] targetA_xvc, targetB_x, targetC_x;
 input [6:0] targetA_y, targetB_y, targetC_y;
 output [11:0] ram_addr;
 output ram_we;
 output [15:0] rom_addr;
 output [1:0] hit_id;
 wire target_ram_we;
 wire [11:0] target_ram_addr;
 wire [15:0] target_rom_addr;
 wire [1:0] hit_id;
 wire [11:0] bkgd_image_ram_addr;
 wire [15:0] bkgd_image_rom_addr;
 wire bkgd_image_ram_we;
 wire [2:0] bkgd_image_state;

 // Targetting Mode FSM:
 target_mode_controller target_control1(.clk(clk),

 .reset(~reset),
 .targetA_size(targetA_id[2:0]),
 .targetA_x(targetA_xvc),
 .targetA_y(targetA_y),
 .targetB_size(targetB_id[2:0]),
 .targetB_x(targetB_x),
 .targetB_y(targetB_y),
 .targetC_size(targetC_id[2:0]),
 .targetC_x(targetC_x),
 .targetC_y(targetC_y),
 .shot(trigger),
 .current_target(hit_id),
 .RAM_address(target_ram_addr),
 .ROM_address(target_rom_addr));

 // Regular Drawing Mode FSM:
 Bkgd_Image_Controller bkgd_img_cont1(.clk(clk),

.reset(reset),

.FS_bar(FS_bar),

.trigger(trigger),

.kills(kills),

.rom_addr(bkgd_image_rom_addr),

.bkgd_id_ext(bkgd_id),

.targetA_id(targetA_id),

.targetB_id(targetB_id),

.targetC_id(targetC_id),

.targetA_x({2'b00, targetA_xvc}),

.targetB_x({2'b0, targetB_x}),

.targetC_x({2'b0,targetC_x}),

.targetA_y(targetA_y),

.targetB_y(targetB_y),

.targetC_y(targetC_y),

.ram_addr(bkgd_image_ram_addr),

.ram_we_bar(bkgd_image_ram_we),

.state(bkgd_image_state));

 assign ram_we = FS_bar ? 1 : (trigger ? 0 : bkgd_image_ram_we);
 assign ram_addr = FS_bar ? 8'bZZ : (trigger ? target_ram_addr

 : bkgd_image_ram_addr);
 assign rom_addr = trigger ? target_rom_addr : bkgd_image_rom_addr;
endmodule // Video_Controller

Start Screen

Level 1

Level 2

Level 3

Level 4

Video Circuit

Sound Circuit

