Video Target Practice

Faye Kasemset Andrew Klock Dave Kloster

MIT 6.111 - Introductory Digital Systems Laboratory
Prof. Anantha Chandrakasan
TA: David Milliner

May13, 2004

Table of Contents

1.0 Overview
2.0 The Nintendo Zapper Interface
3.0 Targeting
4.0 Video Controller
4.1 Hardware Description
4.2 Module Design Descriptions
5.0 The Game Controller
5.1 Sample Timer
5.2 Random Number Generator
5.3 Address Selector
5.4 Control FSM
5.5Add FSM
5.6 Move FSM
6.0 Audio Extension
7.0 Design and Debugging I ssues

8.0 Conclusions

Kasemset :: Klock :: Kloster

Page 1
Page 2
Page 3
Page 5
Page 5
Page 6
Page 8
Page 9
Page 9
Page 10
Page 10
Page 11
Page 12
Page 13
Page 14
Page 16

List of Figures

Figure 1. Overall System Layout and Design

Figure 2. Internal Nintendo Zapper

Figure 3. Internal and Interface Schematic Design
Figure 4. Zapper Signals

Figure 5. Processed Gun Signals

Figure 6. Targeting Mode Controller Inputs and Drawing
Figure 7. Real-Time Targeting Analysis

Figure 8. Video Circuits

Figure 9. Video Module Block Diagram

Figure 10. Mgor and Minor FSMs

Figure 11. Draw FSMs Write Cycle Timing Diagram
Figure 12. Game Controller Block Diagram

Figure 13. LFSR of Arbitrary Bit Length

Figure 14. Control FSM Transition Diagram

Figure 15. Add FSM Transition Diagram

Figure 16. Move FSM Transition Diagram

Figure 17. Target Movement

Figure 18. Audio Interface Extension

Figure 19. Audio Controller Timing Diagram

Kasemset :: Klock :: Kloster

Page 1
Page 2
Page 2
Page 3
Page 3
Page 4
Page 4
Page 6
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 13
Page 14
Page 14

1.0 Overview

The goal of this project isto design and implement a video game system that used a light-gun to
read game information from the screen. The overall system layout and design is broken up into
the several partsas seenin Figure 1.

GAME CONTEOLLEER

hit count /|
\\3 == \\7‘
hit
background V/ 20 lzo lzo = sensor
\\ \\ \\ \\ 16—
GUN INTERFACE ZAPPER
trigger
PICTURE 2
current_id i
oOuUTPuUT - - !
R > TAEGET OUTPUT !
<4 >
target ASB/C I
[id, size, =, ¥] :
TR i
ROM i -
address i RAM \address trigger (sehot) I
\/ address address\ I
F5_bar i
OUTFUT SELECT i
IR !
BEAME i
16 from
A S p G CRT =
ROM address RAM address SCREEN I
\f' F5 kar
MCE6847 EGE
koM RAM PROCESSING |——p| MONITOR
\ 8 8
N \\ 4
A
< \ p- DATABUS

Figure 1. Overall System Layout and Design. The Game Controller takes input from
the system to run the game. The Output Select determines whether the system is
displaying from the norma Video Output or the Targeting Output. The Zapper and
Gun Interface read the display information from the RGB monitor controlled by the
MC6847 processing circuits.

The game is played by using the 1985 Nintendo Zapper to shoot targets on an RGB CRT
monitor. When the player accurately shoots one of three possible targets on the game screen, the

Kasemset :: Klock :: Kloster

target that has been hit is removed, and the game score isincremented by one. The targets follow
and arching pathway across the game screen and progressively get smaller to give the illusion
that they are flying away from the player. There are four levels with forty-four possible targets.

2.0 The Nintendo Zapper Interface

The interface between the cathode ray tube (CRT) screen and the Nintendo Zapper is the
pivoting technology for this project. The Zapper is equipped with a photo-diode and and IR
preamplifier that detects infrared characteristic beams generated by the electron gun that
escaped from the CRT through the phosphorous screen. Figure 2 shows and internal view of the

Zapper.

~ SHIELDING.

diode are used to filter and detect IR beams from the CRT
accurately up to distances of seven feet.

)
T"S'ﬂ

|

FYTY I

Ty I

W ‘ 160 !
Mok Fe10k |

b3 g 8 ¥TR F " P !

= P Lok T~ 1our ;

I

3 IR Preamplifier |

ik |

lur 22 v g i
1 Ca5a rigger i i

! g [Trigge: |

5. 5uf I

|

— —]
|

|

1

|

|

]

|

1
1
1
T
1
1
|
l
Sharp IR3TO7A 7 : [Light s=nsor
El Jn}—‘ I
1
1
T
1
1
1
1
1
1
1
T
1
1

Figure3. Interna and Interface Schematic Diagram. The photo-diode at the top-left of
the diagram is used by the IR Preamplifier to detect light beams characteristic of a CRT.
The transistor and trigger-switch pull down the sensor and trigger signals that must be
connected to 5 volts through 10K resistors in order to work properly. From reversed
engineered schematics: Nintendo Entertainment System, Stock # 18-600. Electronics
Corp. 1992.

There are four wires that connect to the Zapper, one each for power, ground, sensor, and trigger.
The internal and interface schematic is shown in Figure 3. The biggest secret for interfacing the

Kasemset :: Klock :: Kloster 2

hardware is that the sensor and trigger signals coming from the Zapper are not self-generating.
To interface to the Zapper, two 10K pull-up resistors must connect the sensor and trigger signals
to the 5 volt power supply. The Zapper pulls the voltage down using a transistor for the sensor
and a push-switch for the trigger.

The Gun Interface modules processes the signals coming from the Zapper and puts them in a
form more readily usable by the rest of the system. The trigger signal coming from the gun is an
active low signal that stays low for approx. 50 milliseconds when the trigger is pulled once. The
sensor signal is an active high signal that generates 5 millisecond pulses whenever is senses the
light from the CRT. These raw signals can be seen in Figure 4. The Gun Interface modules puts
these signals into active-high signals that are sustained longer and for a constant amount of time.
It also adds some filtering to ensure accurate results. The formated signals can be seen in Figure

5.
seE!f-Diu Delay MHarkers Acguisition Time
| S0.0 ms | 152.0 ms | of f 13 May 2004 20:17:53
Cabl 0O
||

L ﬂ L]

Figure 4. Zapper Signals. Lab1-0isthetrigger. Labl-1 isthe sensor. The trigger

goes low for anywhere between 50 to 100 milliseconds when pressed once. The

sensor signals generates short pulses when it detects light from the CRT.
- clk i 1 i
= reseat 0 _,—‘
WS- trigger 1 | |
@—sensor | 0 T T | T L L]
= shot 0 | | |
8 hit 0 | [] |
Al state HO 0 I 3 Y 1 i 2 4

Figure 5. Processed Gun Signals. The trigger and sensor signals are processed in to shot
and hit signals. When the trigger is pressed, the shot signal will go high for 320
milliseconds. In state three, the sensor signal is filtered out to allow the time for the
screen to blank before detecting hits. State one listens for the sensor, and when it is
detected, the hit signal goes high and waits in state two until the trigger signal comes
down.

The shot signal is sent to the Targeting Mode Controller and to the Output Selector to let them
know when to enter targeting mode. As long as the shot signal is high, the Output Selector gives
addressing control to the Targeting Mode Controller. The hit signa is given to the Game
Controller in conjunction with atarget 1D from the Targeting Mode Controller module.

Kasemset :: Klock :: Kloster 3

3.0 Targeting

To detect and signal hit targets when then Zapper istriggered, the game deviates from its normal
video display mode and enters Targeting Mode. The module that handles video in this mode is
the Targeting Mode Controller. This controller proceeds by first blanking out the entire screen
and then sequentially drawing white boxes in the places where the targets were in the normal
video mode. The inputs and drawing signals for this module can be seen in Figure 6.

5= shot o 1] a5 shot T o

= reset o] HE=reset 0

ek VLT T LT LT LT I T LTI T LT 1T Lew Sy A
S5 RAM _address| H 00B [ii] 005) 0065 RAM_address| HO40 049) 04a
S ROM_address| H FFFF |~ FFFF S5 ROM_address| H FFFF FFFF ¥ FFFE i FFFF

H= targetd,_size HO 1} D= targetA_size HO 1}

= targetd x HoD oo = targetA x Haoo oo

= targetA_y_in | H&F 5F &= targetA_y_in | HEF 5F

= targetB_size HO [i] = targetB_size HO 1]

= targetB_x HOA 04 = targetB_x HOA 0A

= targetB_y_in [H&F 5F 5= target8_y in | HEF 5F

= targetC_size | HO] &= targetC_size | HO [i]

5= targetC_x Hi4 14 5= targetC_x H14 14

= targetC_y_in [H5F 5E: 5= targetC_y_in | HSF 5F

ay state H1 [¥ 1 al state H2 2

= current_target| HO 0 S5 current_target | H 1 1

Figure 6. Targeting Mode Controller Inputs and Drawing. When the module hears the
shot signal, it begins by blanking the screen for 80 milliseconds. The ROM address
OXFFFF contains all black pixels. It then proceeds to draw each target in white
sequentially for 80 milliseconds each. When it getsto aRAM address were atarget is
to be drawn, the ROM address changes to OXFFFE which contains all white pixels.

While the controller is drawing each white target-box, it is outputting the current_target 1D to the
Game Controller. The Game Controller is also listening to the Gun Interface for the hit signal all
the time. When it hears the hit signal during a non-zero ID, it removes the target with the
current_target ID from the screen. Thus, the system is able to recognize which target is being hit
and when it is being hit. The timing analysis for the Zapper and Targeting Mode is shown in
Figure 7.

sec!Dw Delay Harkers W Acguisition Time
20.0 ms 152 0 ms off 13 May 2004 20:17:59

La'”W]HHIH@ H L
Lebz ol 0 | 1 | 2 | 3 0

Figure 7. Real-Time Targeting Analysis. This is perhaps the most important
analysis of the system. Labl1-0 is the Zapper trigger. Labl-1 is the Zapper
sensor. Lab2 isthe current_id bus from the Targeting Mode Controller.

When the trigger is pressed, the Targeting Mode Controller blanks the screen for 80
milliseconds. During the first part of this time, the Gun Interface filters out any sensor signals
that may be charged from the previous video screen. If the Zapper detects CRT light during this

Kasemset :: Klock :: Kloster 4

period, it must be pointed at a separate video source, and the system will not register a target for
this cycle. It is also important to note that the IR preamplifier in the gun only triggers the sensor
signal when it detects light characteristic of a CRT. It will not trigger the sensor signal if the gun
ispointed at an ordinary light source.

After this period of blanking, the targeting controller sequentially displays white boxes for each
of the three possible targets. If and when the Zapper detects light from the CRT beginning in one
of these periods, the hit signal is sent to the Game Controller which then reads the current_target
ID number, thereby registering a hit for that target.

4.0 Video Controller

For video, we use the MC6847 chip to output a 128x96 pixel, four-color image to the monitor.
Target and background images are stored on a ROM. These images are then written to an
SRAM based on directions from the game module. Writing to the SRAM is controlled by a set
of maor-minor FSMs, implemented in Verilog on a Flex10K70 FPGA (together with the gun
and game modules).

4.1 Hardware Description

Hardware Components
The hardware components used in the video display circuit are:

3.579545 MHz Crystal Oscillator

Monitor

MC6847 Video Display Generator

Two 74LS04 Inverter Chips

22v10 PAL Chip

74L.S123 Chip

Two 26L S32 Chips

Am28F512 ROM

MCM6264 SRAM

Assorted resistors, potentiometers, and capacitors

Hardware Circuits
In order to make the MC6847 compatible with the monitors in the lab (it was designed
for use with standard TV's), we needed to run its outputs through several circuits: one to produce

a clock signal, one to center the display, and one to convert the output of the MC6847 from
analog signalsinto plain RGB signals.

Kasemset :: Klock :: Kloster 5

47() :Wclﬁt?fg - ¢\’l(131;347
TR A

MCAB47 -
2z 3 4 5 6 & %
Lso4| ‘ LS04 LS04 3.3k
1.7v

3570545 | L] MHz Crystal

Clock Cirouit 510 2

Q 3 Q 3 L6V p S3
I8 * LB 620 . i:D
(Implemented on a 22v10 PAL)
123), 123 | AM26LS32

3
Q— QF- Vsyne

(l)u Moitor - MU6847
8 28

RGB Output

Centering the Display
Modified from Fall 2003 Video Lecture Handout

Figure 8. Video Circuits.

4.2 Module Design Descriptions

The Video Controller Module consisted of a top file and the following sub-modules:
Bkgd_Image _Controller, Bkgd Draw_FSM, Bkgd Draw_FSM, Image Draw_FSM,
target_mode_controller, frame_timer, and bkgd_rom_addr_counter.

From Game: From Gun:
N—— Video_Controller —
bkgd_id[2:0] trigger
. From MC6847:
targeta_id[5:0]
FS_bar
“Targeth XA 0| Bkgd_Image_Controller
To Game:
targetA, _v[G:O]- target_mode_controller —
e
targetB_id[5:0]
Bkgd_Draw_FSM Image_Draw_FSM TORAW:

targetB_x[4.0] ram_addr{11:0]

_ =
targetB_y[6:0]

ram_we
_ =
targetC_id[5:0] To ROM:
targetC_x[4:0] rom_addr{15:0]

_ =
targetC_y[6:0]

kills

Figure 9. Video Module Block Diagram.

Kasemset :: Klock :: Kloster 6

Video_Controller. The top file for the video control module, Video_Controller, uses the signa
FS_bar, from the MC6847, to determine when it may write to RAM. When FS bar is high, the
chip is reading the data from the RAM, and Video_Controller tristates the RAM address bus and
sets the RAM write enable (ram_we_bar) high. When FS _bar is low, it selects which of the
address and signal sets is outputted. If it receives a trigger signal, it gives control to the
target_output_controller module; otherwise, the Bkgd Image Controller signals are passed

along.

DRAW
TARGET A

3or2"

targetd_done

target® _done

targetd done

Start Screan?

Bkgd_Draw_FSMm Image_Draw_FSMm

Bkgd_Image_Controller
Figure 10. Magor (center) and Minor FSMs

Bkgd_Image_Controller. The Magor FSM for the picture output, this module begins writing to
RAM when FS_bar goes low, cycling through FSMs for the background, each of the targets, and

Kasemset :: Klock :: Kloster 7

the hit count. When finished, it waits for the next low FS_bar to cycle through again. It passes
the signals of each FSM up to the top module during its period of control.

Bkgd_Draw_FSM. Upon receiving a signal of “start” from the Bkgd_Image_Controller, this
Minor FSM draws the background to the ROM, starting to read at a level-specific offset in the
ROM, and looping through the RAM write cycle (shown in Figure 10; both Draw FSMs have the
same timing for this write cycle) 3,072 times (width + pixels per cell x length = 128/4*96).

Image_Draw_FSM. Upon receiving a signal of “start” from the Bkgd_Image_Controller, this
Minor FSM takes inputs from the game module—the image id, the size, and the x and y
coordinates—and calculates the address in RAM at which it will begin writing and the offset in
ROM at which it will begin reading. It then loops through a row of the image in a similar
fashion to the Bkgd_Draw_FSM, but when it gets to the end of the rom, it skips ahead in the
RAM to the beginning location of the next row in the image.

Both Drawing FSMs give the RAM two clock cycles (on a 10MHz clock) to write; the RAM
needs 100ns to write, so one clock cycle might barely be enough, but we err on the side of safety.

« 0 0 0 b L L L
startJ

ram_we_bar ‘ | ‘

Figure 11. Draw FSMs Write Cycle Timing Diagram

bkgd_rom_addr_counter. This counter is used by the Bkgd_Draw_FSM to count from 0 to 3071
(the size of the background image).

size_counter. This counter is used by the Image_Draw_FSM to keep track of the row and line
numbers.

5.0 The Game Controller

The gaming system is designed to output the location and image used for each target on the
screen to the display system, as well as to generate important game information such as level and
stage. To do this, the gaming system uses several components, including sample timers, a
random number generator, an address selector, and several finite state machines, all of which can
be seen in Figure 12. Since the FSMs are relatively complicated, the other components will be
explained first.

Kasemset :: Klock :: Kloster 8

Control FAL
Add Fal targetl data }targetl ot
20 20
o targetddata | Address Lo s
| £ Move FSM 1 0 Selector |7 7)7 tergeriont
Sample Timer levvel ; targetidata
z Y targetIout
20 el /
Mlowve FAI 2
hit ————
id T MWowe FAL 3
Random s
Humber i
Cenerator 2

Figure 12. Game Controller Block Diagram.
5.1 Sample Timer

The sample timer uses a ssimple counter to make a pulse every time the targets on the screen
should move to a new location on the display. Therefore, the actual speed of the targets on the
screen is determined by the sample pulse rate. For the four different levels, there are four
different numbers that the sample timer module counts to, at which point it creates the pulse.
Based on the 10 MHz clock rate of the system, the rates of the sample timer for levels one
through four are set to 10, 15, 22, and 35 pulses per second.

5.2 Random Number Generator

The random number generator creates a two-bit random number, which determine both the initia
position of atarget when it is created and the path it will travel across the screen. To create this
random number, two linear feedback shift registers, or LFSRS, are used. Every clock cycle the
bitsin the flip flops shift over by one, with the new bit shifted in created from a function of bits
aready inthe LFSR.

The LFSR is stuck at zero forever unless a seed is fed into it when the system is powered on. The
same seed is aways used since there is no way to calculate one using a system clock that can
keep track of the date and time. To ensure that the numbers are random and will not cause the
game to follow a single pattern every time, they are generated every clock cycle, making the

Kasemset :: Klock :: Kloster 9

number dependent on the number of clock cycles that have passed since the system has turned
on.

The LFSRs used here are 20-bit registers. Ideally, there would be more bits, since the amount of
time until the random number generator repeats itself is proportional to the number of bitsin the
LFSR. Still, since the random numbers are used fairly infrequently, the 20-bit LFSRs are
sufficient to provide adequately random game play.

Chatput

:j ’_D 0 D Qr**+—D QD Q[TID a

[

Figure 13. LFSR of arbitrary bit length.

5.3 Address Selector

The address selector is the component that keeps track of whether or not the hit signal from the
gun goes high, indicating that a target has been hit. Based on the id of the target, which is given
by the gun system, the address selector will erase the target from the display by changing the
coordinates and image of the target such that the system will recognize that it should no longer
be on the screen, as well as increase the number of targets hit by one. If no target was hit, i.e. the
id is zero, then no change is made and the system continues normally. The address selector only
recognizes the hit signal at its positive edge, guaranteeing that only one target can be hit at a
time. The address selector is used because it greatly simplifies the overall gaming system, since
it alows amost every other component to ignore the inputs of the gun system.

5.4 Control FSM

The control FSM is the mgjor FSM of the system, handling the add and move FSMs, which
respectively create targets on the screen and move them around. The FSM also generates
important gaming variables such as the level and stage.

The control FSM is a Mealy machine with seven different states (Figure 14), aswell as two extra
wait states, which make the FSM go through two clock cycles before it transitions to a different
state. Itsinitial state displays a single stationary target on the screen, and only when the target is
hit does the FSM begin atransition.

Kasemset :: Klock :: Kloster 10

stage I= land stage =5 and

start target hit add_busy =10 add busy =/El

stage=1 and stage=2 ordand
level=3 o g4 tusgy=0 add_busy=0 add busy=0

Llowe Targets

all move busy's=10

Figure 14. Control FSM Transition Diagram.

The next three states are each devoted to adding a single target to the screen. If only one target
needs to be added, i.e. when stage equals one, then the FSM will only transition to the first add
state, then go to the move state. If two need to be added, such as in stages two and four, it will
transition to the first two add states, and then go to the move state, and if there need to be three
targets, such asin stages three and five, all three add states will be used. Each add state starts the
add FSM and waits until it is no longer busy to transition to the next state. If the randomly
generated coordinates created are the same as the coordinates of atarget already created, the add
FSM isrestarted so that different coordinates can be chosen.

In the move state, al the targets that have been created are controlled by their own move FSM,
which are started when the control FSM transitions from its last add state. Each move FSM will
continue working until either their target has been hit or it has reached the end of its path. When
all three move FSMs are no longer busy, the control FSM transitions to the set level state, which
determines what the game should do next. If the current stage is less than five, then it is
increased by one and sent back to the add state. If the current stage is five and the level is less
than four, then the stage is reset to zero and the level isincremented by one. If the stage is five
and the level isfour, then the control FSM transitions to the final end-screen state, where a blank
screen is displayed with only the number of targets hit displayed, and the system must be reset to

play again.
5.5 Add FSM
The Add FSM adds a single target to the screen, creating a random horizontal coordinate and

path, as well as generating a preset vertical coordinate so the target will be near the bottom and
setting the target to its largest size.

Kasemset :: Klock :: Kloster 11

There are five states in the FSM (Figure 15). The FSM is aways in its initial state until it
receives a high start signal from the control FSM. In the gen x state, the x and y coordinates are
set, one a random number and the other a constant. The FSM then transitions to a third state so
that the random number generator can create a different random number for the path. In the gen
path state, one of four paths is randomly chosen for the target, which is stored in the two lowest
bits of the path signal. The highest bit determines whether the target travels left or right across
the screen, so it is chosen based on whether the x coordinate isin the right half or the left half of
the display respectively. Then, these signals are outputted from the FSM in the add and out
states, in order to ensure that the data bus has valid data. The FSM then transitions back to the
initial idle state.

tatt
7 gen path

Figure 15. Add FSM Transition Diagram.

It should be noted that the targets are not all added at the exact same time in a given stage.
However, the difference between the creations is only afew clock cycles, which is insignificant
inreal time.

5.6 Move FSM

The move FSM outputs a series of coordinates for its target as well as its size. These signals are
based on the path that is chosen for atarget in the add FSM as well as the coordinates that are fed
into it by the control FSM.

There are six states in the FSM (Figure 16). The FSM beginsin itsinitial state, until itisgivena
high start signal from the control FSM. Once this happens, it transitions to the wait sample state
after going through a single waiting cycle, and then waits for a sample pulse from the sample
timer. It then transitions to a get direction state, which determines which direction the target
should be traveling in at this point in the path, based on a counter that is set to zero when the
target is created. Then, the FSM transitions to the move state, where the x and y coordinates are
changed based on the direction chosen, and the size is updated according to how far along the
path the target has traveled. If the target has moved far enough, it is erased from the display and

Kasemset :: Klock :: Kloster 12

the FSM returns to the initial idle state. Otherwise, the FSM returns to the wait sample state once
again, after going through another wait state to ensure that the correct signals are established. If
at any point the target is hit by the gun, the move FSM stops and goes back to the idle state,
setting its signals so that the target will not be displayed on the screen.

wait sample get direction

end of path

target hit

Figure 16. Move FSM Transition Diagram.

There are sixteen different directions that a target can move, each corresponding to a different
number in the move FSM (Figure 17). These directions are used to create smooth arcs for the
targets’ paths. Since these paths are predetermined by the FSM, there is no way that any target
can hit any edge of the display, so there are no boundary conditions to worry about.

E| F | 0O 1 | 2
D i 3
=Bl A7
] e
i 4
o e

A B | 8| F |6

Figure 17. Target Movement.
6.0 Audio Extension

As an extra feature to enhance game-play in this project, we added a simple audio system to add
sound effects to the Zapper. This was done by storing sound sampled at 11025 Hz on a separate

Kasemset :: Klock :: Kloster 13

ROM and sending that data through the AD558 Digital to Audio Converter (DAC). This extra
system is implemented on a second FPGA that parallels the main FPGA. It contained its own
Gun Interface module and and Audio Controller wrapping a DAC FSM. When the trigger on the
Zapper was pulled, a sound effect was played over the amplified speaker. The block diagram and
control timing is shown in Figures 18 and 19.

EEeNn&OT
AUDIO ZAPPER
CONTREOLLER
trigger
N 16
N
Cs _bar
\

f address J,f
8
ROM =P ADG58 i
data
a\\

Figure 18. Audio Interface Extension. The trigger from the Zapper started
the Audio Controller FSMs that played a sound effect from ROM through

the AD558 DAC.
== trigger 1
W= raset 1 _|
5= clk i
£ CShar o | [L] 5] |]
S address_bus | H 0000 000 i o001 } o2 ¥ 003 i o004 ¥ 0005

Figure 19. Audio Controller Timing Diagram. When the trigger is pressed the Audio
Controller controls the address to the ROM as well as the CSbar signal going to the
DAC.

7.0 Design and Debugging Issues

Difficulties with the MC6847

Our choice of the MC6847 as our video display generator was based on the reports of previous
video targeting projects (Fall 2001 Duck Hunt, 1999 Wireless Marksmanship Trainer). Our
project is different from these projects, however, in that we use color images. |In retrospect, the
decision to use the MC6847 limited some of our options (we might have found a chip more
suited to our color needs). Unfortunately, having invested so much time into the circuitry needed
to run the MC6847, we were left with little time to redesign the system after we readlized its
limitations. While the MC6847 is very useful for generating vertical and horizontal sync signals
and controlling addressing to the RAM, it is a digital-to-analog converter. Our monitor can be
fed digital inputs for Red, Green, and Blue. In fact, the circuitry we used converted the analog
output of the MC6847 back to digital. Thus, the actual RGB output of the circuit is similar to
what we might have fed directly to the monitor from memory, if we had encoded three-bit color,

Kasemset :: Klock :: Kloster 14

minus four options (though this would have involved many tricky timing issues with the sync
signas, etc.). In our case, the mode we used only alowed us to select from four different
colors—ot a very attractive combination of colors, either. The mode we selected, Color
Graphics Three, purports to allow for eight colors, but this promise requires that the user switch
between two modes using a control signal. The actua data read by the MC6847 in this mode
consists of 8-bit address locations on RAM, each representing a set of four pixels in a row.
Thus, there was no space in which to encode the extra mode selector bit. Additionally, when we
finally got the MC6847 working with the monitor, we found that it only wrote to the middle
section of the screen, leaving a large border in one of two colors: green for one mode and white
(called “buff” on the datasheet) in the other. For a project with a gun dependent upon white light
for targeting information (both green and white register as “hits’ with the gun), this situation was
lessthan ideal.

Having resigned ourselves (due to time constraints) to four-bit color, we resolved to at least have
the colors of our choice. By adding additional logic to the prescribed “RGB Output” circuit, we
converted the colors of the mode we were using (CG3, CSS=0) as follows: Green (00) to Black
(to make the border of the screen black), Yellow (01) to Green, Blue (10) stayed Blue, and Red
(11) to White. This gave us the palette for traditional clay shooting and a screen compatible with
the light gun.

Inter-kit signals and optimization

We began with the idea that the video, game, gun, and sound modules would be able to operate
on separate kits. Initially, therefore, we were more concerned with accuracy than with
efficiency. When we began to address system integration and interfaces, we realized that the
game and video modules had to be on the same kit: they had far more communication channels
than there were physical nodes on the kits. We put both modules on the kit, and realized we had
another problem; when we ran wires to and from the gun module on another kit, the interaction
of the kits produced many glitches on the monitor output. It turned out that the trigger signal
was glitching badly in the transfer, in spite of several grounding wires between the kits. We then
moved the gun module onto the same kit as the others. We got a basic version of our project
working, and all was well.

Then, we decided to add the hit count to the screen. We began with the idea that we would add
two digits, side by side. Thisinvolved adding a counter to the game and two instantiations of the
Image_Draw_FSM to the Video module (as well as the images themselves, on the ROM). It
would not fit. When we finally managed to fit it all on the Flex 10K70, we had turned the
images into two-digit numbers (to reduce the number of additional FSMs to one), cut several
identification bits by up to half of their original length, reduced the size of counters, cut the
randomization factor in the game (for starting locations) by a factor of 2729, and optimized all
the FSMs (i.e., rather than having specified offsets for all the numbers, as we had been able to do
for the limited number of scattered images, we calculated all of them off of one initial offset).
Having to fight for 800, then 300, then those /ast 20 logic cells forced us to look critically at the
efficiency of our code and drastically reduce excessive and inefficient methods. Occasionadly, it

Kasemset :: Klock :: Kloster 15

forced us to sacrifice nice features, like the extensive randomization, but we found that the
difference was not noticeable in practice.

8.0 Conclusions

Overall we feel we succeeded in most of the goals we set out to achieve. Had there been no time
constraints we would have enjoyed implementing additional features such aswireless for the
gun, extra sounds, a greater palette of colors, a more detailed game over screen, and more
complicated game play. It would have helped to have had an FPGA that could hold more

features.

What our final project doesincludeis:

Moving targets that appear at a random location and move away from the user on a
predetermined path, shrinking as they disappear into the distance.

Working gun interface that recognizes specific targets

Four color video output

Four five-stage levels, each with different backgrounds, targets, and speeds\
Running score count

Sound module to make realistic gun noise

Kasemset :: Klock :: Kloster 16

/* Adds targets to the screen by generating initial x and y val ues
; whil e choosing a path for the target to follow
*
modul e addfsm(cl k, reset, start, rand, busy, x, y, path);
input clk, reset, start;
input[1:0] rand;
out put busy;
output[6:0] x, vy;
out put[2: 0] path;
reg busy, busy_int;
reg[6:0] x, y, x_int, y_int;
reg[2:0] path, path_int, state, next;

paranmeter |DLE = O;
paraneter gen_x = 1,
paranmeter gen_path = 2;

paraneter add = 3;
paraneter out = 4;
parameter bottom = 57;
parameter niddle = 63;

al ways @ (posedge cl k) begin
if (reset) state <= | DLE;
el se state <= next;
X <= x_int;
y <= y_int;
path <= path_int;
busy <= busy_int;
end

always @ (start or reset or state or next or rand or busy
or x or y or path)

case(state)

| DLE: if (start) begin
next = gen_x;
busy_int = 1;
y_int = bottom
end

gen_x: begi n

gen_pat h: ~ begin

add: begi n

out: begi n

defaul t: begi n

endcase
endnodul e

/
Filename: addr_counter.v

Author: Dave Kloster

Custom counter used to cycle through
the address bus of the Video RA}\/I.

module addr_counter(clk, reset, count, address, full);

input clk, reset;
input count;

output full;
reg full;

output [11:0] address;
reg [11:0] address;

always @ (posedge clk or posedge reset) begin
if (reset) begin
address <= 0;
full <= 0;

end
else if (count) begin
address <= address + 1;
if (address == 12'hC00) begin
//i; (ﬁ{ddress == 12'd50) begin /ITESTING VALUE
ull <=1;
address <= 0;
end
else full <= 0;
end
else address <= 0;
end // always @ (posedge clk or posedge reset)
endmodule // addr_counter

/* This module decides if a target has been hit, and if it
has, then changes its input so it will be erased from the
display, and then adds one to the kill count. Otherwise,
no change is made to the input.
*
module address_selector(clk, reset,
x1, y1, imagel, sizel,
X2, y2, image2, size2,
x3, y3, image3, size3,
x1_f,yl1_f, imagel_f, sizel f,
x2_f,y2_f, image2_f, size2_f,
x3_f, y3_f, image3_f, size3_f,
hit, id, level, kills);
input clk, reset, hit;
input [1:0] id;
input[2:0] imagel, image2, image3, sizel, size2, size3, level;
input[6:0] x1, x2, x3, y1, y2, y3;
output[2:0] imagel_f, image2_f, image3_f, sizel_f, size2_f, size3_f;
output[5:0] kills;
output[6:0] x1_f, x2_f, x3_f, y1 f,y2 f y3 f;
reg[2:0] imagel_f, image2_f, image3_f,
sizel_f, size2_f, size3_f,
imagel_int, image2_int, image3_int,
sizel_int, size2_int, size3_int;
reg[5:0] kills, kills_int;
reg[6:0] x1_f, x2_f, x3_f, y1_f,y2_f,y3 f,
x1_int, x2_int, x3_int, y1_int, y2_int, y3_int;

always @ (posedge clk)
if (reset) begin
x1_f<=0;

image3_f <= 0;
size3 f<=7;
kills <= 6'b111111;
end
else if (hit) begin
x1_f<=x1_int;
yl f<=yl int;

end
else if

end

imagel f <= imagel_int;
sizel f <= sizel_int;
x2_f <= x2_int;

y2 f <= y2_int;

1 mge2_f <= image2 int;

size2_f <= size2_int;
x3_f <= x3_int;
y3 f <= y3_int;

1mage3d_f <= i mage3_i nt;

size3_f <= size3_int;
kills <= kills_int;

(level == 6) begin
x1_f <= x1;
yl f <= y1;

1 mgel_f <= imagel;
sizel f <= sizel,;
x2_f <= x2;

y2_f <= y2;

1 mge2_f <= imge2;
size2_f <= size2;
x3_f <= x3;

y3_f <= y3;

I mage3_f <= image3;
size3_f <= size3;
kills <= 6' bllllll;

el se begin

end

alvxays
if (id

end
else if

end
else if

x1_f <= x1;

yl f <= y1;

1 magel_f <= imagel;
sizel f <= sizel,;
x2_f <= x2;

y2_f <= y2;

I mage2_f <= image2;
size2_f <= size2;
x3_f <= x3;

y3 f <= y3;

1 mge3_f <= inmages3;
size3_f <= size3;
kills <= kills_int;

@(posedge hit)

== &% imagel !'= 0) begin

Xl_l nt <= 0;

yl int <= 0;
Imagel_int <= 0,
sizel_int <= O;

X2 int <= x2;

y2_int <= y2;

I mage2_int <= i mage2;
size2_int <= size2;
x3_int <= x3;

y3_int <= y3;

1 mage3d_int <= inmage3;
size3_int <= size3;

kills_int <= kills + 1;

(id == 2 & image2 !'= 0)

x1_int <= x1;

yl int <= yl;

I magel_int <= inmagel;
sizel int <= sizel;
X2_int <= 0;

y2_int <= 0;

I mage2_int <= 0;
size2_int <= 0;
x3_int <= x3;

y3_int <= y3;

1 mage3d_int <= inmage3;
size3_int <= size3;

kills_int <= kills + 1;

(id == 3 & image3 ! =
x1_int <= x1;

yl int <= yl;
imagel_int <= imagel;
sizel_int <= sizel;

X2 int <= x2;

y2_int <= y2;

I mage2_int <= image2;
size2_int <= size2;
x3_int <= 0;

begi n

begi n

y3_int <= 0;
I mage3d_int <= 0;
size3_int <= 0;
kills_int <= kills + 1;
end
el se begin
x1_int <= x1;
yl int <= yl;
I magel_int <= inmagel;
sizel int <= sizel;
X2_int <= x2;
y2_int <= y2;
I mage2_int <= image2;
size2_int <= size2;
x3_int <= x3;
y3_int <= y3;
1 mage3_int <= i mages;
size3_int <= size3;
kills_int <= kills;
end

endnodul e

/**

* Background Drawi ng FSM
* This mnor FSM draws the background to the RAM
*

* Aut hor: Faye Kasenset
~k*~k****~k****~k****~k*************************l

nmodul e Bkgd_Draw FSMcl k, reset, start, done, bkgd_id,
bkgd_rom addr, ram addr, ramwe,
state);

i nput clk, reset;

i nput start;

i nput [2:0] bkgd_id;

out put [15:0] bkgd_rom addr;
out put [11:0] ram addr;

out put ramwe;

out put done;

output [2:0] state;

reg done;

reg mwe, ramwe_int;

ra
reg [2:0] bkdg_id;

reg [2:0] state, next;

reg [15: 0] addr_offset, addr_offset_int;
reg addr _i nc;

wire [11:0] addr ;

/1 Address Counter

bkgd_r om addr _counter addr_count 1(. cl k(cl k),
.reset(reset),
.inc(addr_inc),

.addr (addr));
/] Background | D paraneters.
par amet er LEVEL_START = 3' b110;
par anet er BLANK = 3' b00O;
par anet er LEVEL1 = 3' b001;
par anet er LEVEL2 = 3' b010;
par anet er LEVEL3 = 3' b011;
par anet er LEVEL4 = 3' b100;
/1 1D addr offsets.
par anet er LEVEL_START_OFFSET = 16' h2400;
par amet er LEVEL1_OFFSET = 16' h0000;
par amet er LEVEL2_OFFSET = 16' h0C00;
par amet er LEVEL3_OFFSET = 16' h3000;
par amet er LEVEL4_OFFSET = 16' h1800;

/'l Wres out.
assign ram addr = addr;
assi gn bkgd_rom addr = addr + addr_of fset;

/1 State variables.
parameter |IDLE = O;
parameter WRI TE_SETUP = 1,
par amet er WRI TE_HOL
parameter WRI TE_HOLD_
parameter WRI TE_FI N S
parameter STOP_WRI TE

al wvays @ (posedge cl k) begin
if (!reset) begin

state <= | DLE;
addr _of fset <= 16' b0;
ramwe <= 0;

end

el se begin
state <= next;
addr _of fset <= addr_offset_int;
ramwe <= ramwe_int;

end

end

always @ (state or bkgd_id or addr) begin
addr offset int = addr_of fset;
addr_inc = 0;
ramwe_int = ram we;
done = 0;
case (state)
| DLE: begin
ramwe_int = 0;
if (start) next = WRI TE_SETUP;
el se next = |DLE;
end
WRI TE_ SETUP begin
ramwe_int 0;
i f (bkgd_| id == LEVEL _START) addr_offset_int = LEVEL_START_OFFSET,;
if (bkgd_id == LEVELT) addr_offset_int LEVELl OFFSET;
i; Egkgd id == LEVEL2) addr_offset_in LEVEL2_OFFSET;
i
if (b
t

t ;
kgd_id == LEVEL3) addr_offset_int LEVEL3_OFFSET;
kgd_id == LEVEL4) addr_offset_int LEVEL4_OFFSET;
= WRI TE_HOLD 1;

end

VRI TE_HOLD_1: begl n

WRI TE_HOLD 2: begi n
ramwe_int = 1;
next = STOP_ WRI TE;
end
STOP_WRI TE: beg| n
ramwe_int = 0;
next = WRI TE_FI NI SH;
end
WRI TE_FI NI SH: begl n
ramwe_i nt 0;
if (addr = 3071) begi n
DLE,

end
el se next = WRI TE_SETUP;
addr_inc = 1;

end

default: next = |DLE

endcase // case(state)
end // always @ (state or bkgd_id or addr)
endnodul e // Bkgd_Draw _FSM

R R S R S R R

/
* Background and | mage Controller.

* FSMtor draw ng backgrounds and superinposing
* images. Contalins separate FSMs for draw ng

* the background to the RAM draw ng the

* three individual targets on top of the

* background, and draw ng the hit count.

*
*
*

Aut hor: Faye Kasenset
***/

nmodul e Bkgd_I| mage_Control |l er(clk, reset, FS bar, trigger,
kills, romaddr, bkgd_id_ext,
targetAld targetBld, targetC.id,
target A x, targetB x, targetC x,
targetA y, targetB y, targetC.y,
ram addr, ramwe_bar, state,
bkgd_state, targetA state,
targetB state, targetC state);

i nput clk, reset, FS bar, trigger;

i nput [5:0] kills;

i nput [2:0] bkgd_i d_ext;

i nput [5:0] targetA id, targetB_id, targetC.id;
i nput [6:0] target A x, targetB_x, targetC x;

i nput [6:0] targetA y, targetB_ y, targetC.y;

out put [15:0] rom addr;

output [11:0] ram addr;

out put ramwe_ bar

output [2:0] state, bkgd state, targetA state,
targetB state, targetC state;

reg ramwe, ramweint;

assign ram_we_bar = ~ramwe;

wire [2:0] bkgd_i d_ext;

wire [5:0] kills;

wire clk, reset, FS bar, trigger;

reg [2:0] fsmsel, fsmsel |nt;

reg [2:0] state, next;

reg bkgd_start, targetA start, targetB start,
target C st art, nunber _start;

wire bkgd_done, tar get A done, targetB done,
target C_ done nunber done;

wire [15:0] "bkgd_rom addr, targetA rom addr,

target B_rom addr, targetC romaddr,
nunber _rom addr;

wire [11:0] bkgd_ram addr, targetA ram addr,
target B_ram addr, targetC ramaddr,
nunber _ram addr;

wire bkgd_ram we, targetA_ram_we, targetB_ram we,
target C_ramwe, nunber_ram we;

wire [2:0] bkgd_st at e;

wire [2:0] target A state;

wire [2:0] targetB_state;

wire [2:0] target C state;

wire [2:0] nunber _state;

/1 M nor FSMs:

/| Background FSM (x1)
Bkgd_Dr aw_FSM bkdrawl(. cl k(cl k),
.reset(reset),
.start(bkgd_start),
. done(bkgd_done),
. bkgd_i d(bkgd_i d_ext),
. bkgd_r om addr (bkgd_r om addr),
. ram addr (bkgd_r am addr),
.ram we(bkgd_ram we),
.state(bkgd_state));
/| Target FSMs (x3)
I mage_Draw_FSM t arget A1(. cl k(cl k),
.reset(reset),
.start(targetA start),
. done(target A done),
.img_id({1' bo, targetA_i d}),
(targetA X),
(targetAy
om addr(tar getA rom addr),
ddr(target A ram addr),
1Twe(target A ramwe),
.state(targetA state));
| mage_Draw_FSM t ar get Bl(cl k(cl k),
.reset(reset),
.start(targetB start),
. done(target B_done),
.img_id({1' b0, targetB_id}),
(targetB X),
(targetB_y),
om addr(target B rom addr),
ddr(target B ram addr),
1we(target B_ramwe),
.state(targetB state));
| mage_Draw_FSM t ar get Cl(cl k(cl k),
.reset(reset),
.start(targetC start),
. done(target C done),
.img_id({1 bo, targetC|d})
Limg_ x(targetC X),
.img_y(targetCy),
.img_rom addr(targetC rom addr),
.ram addr (target C ram addr),
.ramwe(targetC ramwe),
.state(targetC state));

_X
_y
_r
1a

_X
_y
_r
1a

/1 Hit Count FSM

I mage_Draw_FSM numi(. cl k(cl k),
.reset(reset),
.start (nunber_start),
. done(number _done),
Sing_id({1 b)l kllls}),

.ing_x(7'd28

.img_y(7'd0),
.ing_rom addr(nunber rom addr),

. ram addr (nunmber _r am_ addr),
. ram we(nurber _ram we),
.state(nunber_state));

/1 FSM Sel |Ds.

par anet er BKGD = 3' b00O0;

par anet er TARGET_A = 3' b001;
par anet er TARGET_B = 3' b010;
par anet er TARGET_C = 3' b011;
par anet er NUMBER = 3' b100;

assign ram addr = fsmsel[2] ? nunmber_ram addr
: (fsmsel[1] ? (fsmsel[0] ? targetC ram addr
: targetB_ram addr)
(fsmsel[0] ? targetA ramaddr : bkgd_ram addr));

assign romaddr = fsmsel[2] ? nunmber_rom addr
(fsmsel[1] ? (fsm sel [0] ? targetC rom addr
: targetB_rom addr)
(fsmsel[0] 2 target A rom addr : bkgd_rom addr));

/] State vari abl es.

par amet er IDLE = O;

par amet er DRAW BKGD = 1;

par amet er DRAW TARGET_A = 2;
par amet er DRAW TARGET B = 3;
par amet er DRAW TARGET_C = 4;
par amet er WAIT FS HGH = 5;
par amet er DRAW NUVBER = 6;

al wvays @ (posedge cl k) begin
if (!reset) begin
state <= | DLE;
fsmsel <= 3 bOOO;
ramwe <= 0;
end
el se begin
state <= next;
fsmsel <= fsm sel _int;
ramwe <= ramwe_int;
end
end

always @ (state or FS bar or bkgd_done or targetA done or
target B _done or targetC done or bkgd_ramwe or
targetA ramwe or targetB ramwe or targetC ramwe) begin
fsmsel_int = fsmsel;
bkgd_start = 0;

targetA start = 0;
targetB_start = 0O;
targetC start = 0O;

nunber _start = 0;
ramwe_int = 0;
case (state)
I DLE: begin
if (!FS_bar) begin
next = DRAW BKGD;
fsmsel _int = BKGD;

bkgd_start = 1;
ramwe_int = bkgd_ram we;
end
el se next = |DLE;
end

DRAW BKGD: begi n
ramwe_int = bkgd_ram we;
if (bkgd_done || FS bar) begin
next = DRAW ARGET_A;
fsmsel _int = TARGET_A
targetA start =1,
ramwe_int = targetA ram we;
end
el se next = DRAW BKGD,
end
DRAW TARGET_A: begin
ramwe_int = targetA ramwe;
if (targetA done || FS bar) begin
next = DRAWTARGET_B;
fsmsel _int = TARGET_B;
targetB start =1,
ramwe_int = targetB_ram we;
end
el se next = DRAW TARGET_A;

end
DRAW TARGET_B: beg| n
ramwe_int = targetB_ram we;
if (targetB done || FS bar) begin
next = DRAWTARGET G,
fsmsel _int = TARC;ET C,
targetC start = 1;
ramwe_int = targetC_ram we;
end
deI se next = DRAW TARGET_B;
en
DRAW TARGET_C: beg| n
ramwe_int = targetC_ramwe;
if (target C done || FS bar) begin
i f (bkgd id_ext == 6) begin
next WAI T_FS_HI GH;
ramwe_int = 0;
end
el se begin
next = DRAW NUMBER,
fsmsel _int = NUMBER;
nunber _start = 1;
ramwe_i nt = nunber_ram we;
end // else: lif(bkgd_id_ext == 6)
end
deI se next = DRAW TARGET_C,
en
DRAW NUMBER: begi n
ramwe_i nt = nunber _ram we;
i f (nunber done || FS bar) begin
next WAl T_FS_H GH;
ramwe_int = 0;
end
el se next = DRAW NUMBER;

en
VAIT_FS H GH begin

if (FS_bar) next = IDLE;
el se next = WAIT_FS_HI G+
end
default: next = |DLE;
endcase // case(state)

end
endnodul e // Bkgd_l mage_Control |l er

R R R R R R R R

/
* Background ROM Address Counter

* This nobdul e keeps count for the Bkgd Draw FSM

* It counts fromO to 3071 (There are 3072 | ocations
* required to map the 128x96 screen) and then

* resets itself.

*

*

*

Aut hor: Faye Kasenset
~k**~k****~k****~k****~k****~k***********************/

nmodul e bkgd_rom addr _counter(clk,
reset,
inc,
addr) ;
input clk, reset, inc;
out put [11:0] addr;
reg [11:0] addr
al wvays @ (posedge cl k) begi n
/| Reset takes precedence.
if (!reset) addr <= 0;
/1 Increment?
else if (inc) begin
/1 Already at 3071? Set back to O.
if (addr == 3071) addr <= O;
/1 Qtherw se, increnent.
el se addr <= addr + 1,
end
el se addr <= addr;

end
endnodul e // bkgd_rom addr _counter

/***

Fil enane: blank_tiner.v

Aut hor: Dave Kl oster

Sets the blanking tine for the shot/hit cycle
for the gun interface of the NES Zapper.

**/

modul e bl ank_timer(clk, reset, start, stop, time_up);

/1 SET TO THE AMOUNT OF TI ME TO WAIT.

[/ VALUE DEPENDS ON DES| RED TI ME AND

/1 THE FREQUENCE OF THE CLOCK.

paraneter TIMER_COUNT = 24' d400000;

/1 USI NG 10MHz CLOCK, COUNTING TO 40 milli- SECONDs.

input clk,reset,start, stop;

out put time_up;
reg tine_up;

reg [23:0] Q
reg on;

al wvays @ (posedge clk or posedge reset) begin
if (reset) begin

Q <= 24" bO
time_up =
on = 0;

end

else if (stop) begi n
Q <= 24" bo;
tinme up =0
on = 0;

end

else if (Q == TIMER COUNT) begin
time_up = l

on = 0;

end

else if (on) begin
Q<=Q+ 1;
on = 1,

end

else if (start) begi n
Q <= 24' b1,
on = 1;

end

end // always @ (posedge clk or posedge reset)
endnodul e // shot _ti nmer

/* This nmodul e acts as the Major FSM and al so
/out puts val uabl e garme i nformation.

*

modul e control fsn(clk, reset, hit, id, sanple, rand,
x1_in, yl in, x2_in, y2_in, x3_in, y3 in,
x1, yl |mage1, si zel,
x2, y2, inmage2, size2,
x3, y3, imge3, size3,
| evel, inage3_in);

input clk, reset, sarrpl e, hit;

input[1:0] id, rand

input[2:0] inmage3_i n

input[6:0] x1_in, yl in, x2_in, y2_in, x3_in, y3_in;

output[6:0] xI, yl1, x2, y2, x3, y3;

out put [2: 0] i mgel, inmage2, inage3,
sizel, size2, size3, level;
reg start_add, start_nove_1, start_nove_2, start_nove_3,

start_add_int, start_nove 1 int, start_nove 2 int, start_nove_3_int;
reg[6: 0] x1, y1, x2, y2, x3, y3,
x1l_ int, yl int, x2_int, y2_int, x3_int, y3_int;

reg [2:0] level, level _int, stage, stage_int,

path_reg_1, path_reg_2, path_reg_3,

path_1_int, path_2 int, path_3_int,

i magel, i magez i mage3,

imagel_int, imge2_int, imge3_int,

si zel, si ze2, si ze3,;
reg[3:0] state, next, state_int, next_int;
wire busy_add, busy_nove_1, busy_nove_2, busy_nove_3;
wire[2:0] pat h sizel m size2_m size3_m
wire[6:0] x_add, y_add, x1_in, yl in, x2_in, y2_in, x3_in, y3_in,

x1_out, yl out, x2_out, y2_out, x3_out, y3_out;

addf sm add_target _1(.clk(clk), .reset(reset), .start(start_add), .rand(rand),
. busy(busy_add), .x(x_add), .y(y_add), .pat h(pat h));

nmovef sm nove_target _1(.clk(clk), .reset(reset), .start(start_nove_1),
. pat h(path_ reg 1), .sanpl e(sarrpl e), .busy(busy_nove 1),
.x_in(x1_in), .y_ |n(1.in), .x_out(xl out),
.y_out (yl_ out) . Si ze(si zel m);
nmovef sm nove_t arget _2(. cI k(cl k), reset(reset), .start(start_nove_2),
. path(path re _2), .sanpl e(sa le), .busy(busy nove_ 2),
X n(x2 in), .y_in(y2_in), .x_ out (x2 out),
Ly y2_ out) .Size(size2_| ;
nmovef sm nove_t ar get 3(cI k(cI k), reset(reset), .start(start_nove_3),

| DLE
addl
add2
add3
nove_t ar ge
set_leve
wai tcycl e
maitcyclez
endscr een

i

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

i

0;
1;
2;
3;
r

ets

al wvays @ (posedge cl k)
if (reset) begi
x1l <=
yl <=
X2 <=
y2 <=
X3 <=
y3 <=
I evel

<= 0;
stage <= 0
start_add <=
start_nove_1
start_nove_2
start_nove_3

999990

0;

5;
6,
= 8;

.path(path_reg_3),
.x_in(x3_in), .y_
.y_out (y3_ out)

4,

7;

n

<= O;
<= O;
<= O;

path reg 1 <= 0
path_reg_2 <=0
path_reg_3 <=0

sizel <= 7,
size2 <=7
size3 <=7
state <= | DLE
end

el se begin

x1 <= x1_int;
yl <= y17int;
X2 <= x2_int;
y2 <= y2_int;
x3 <= x3_int;
y3 <= y3_int;
level <= leve

int;

. sanpl e(sanpl e),
|n(3_1n),
S|ze(5|ze3|ﬂ)

st age
start
start
start
start

_add <=

<= stage_int;
start_add_int;

<= start_nove_1_int;
<= start_nove_2_int;
<= start_nove_3_int;

_nove_1
“nove_2
“nove_3

path reg_1 <= path_1 _int;

path_reg_2 <= path

2_int;

path_reg_3 <= path_3_int;
Imagel <= imgel_int;

i mge2 <= i mage2_int;

i mge3 <= |nage3 int;

if (state == IDLE) size3 <= 0
el se size3 <= size3_m

si zel
si ze2
state
state
end

_int

<= sizel_m
<= size2_m
<= next;

<= next_int;

always @ (state or next or sanple or hit or id or leve
or busy_add or busy_nove_1 or busy_nove_2 or busy_nove_3
or x1_out or yl out or x2_out or y2_out or x3_out or y3_out
or inmge3_in)
case(state)

| DLE:

if (hit & image3_in == 0) begin

start_add_int =1
start_nnve_l_lnt =0
start_move_2_int = 0
start_move_3_int = 0
next = waitcycle;
next _int = addl
level _int = 1;
stage_int = 0,
imgel_int = 1;
imge2_int = 0;
imge3_int = 0;
path_1 int =0
path_2_int = 0;
path_3_int =0

end

busy(busy_nove_3),

. X out(x3 out),

or stage

el se begin
x1l_int = 0;
yl int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 50;
y3_int = 34;
level _int = 6;
stage_int = 0;
imagel_int = O;
image2_int = O;
image3_int = 6;
start_add_int = O;
start_move_1_int = 0;
start_nove_2_int = 0O;
start_nove_. 3"int = 0
path T int = 0;
path_2_int = 0;
path_3_int = 0;
next _int = addi;
next = |DLE;
end

addl: begi n
start_add_int = 0;
stage_i nt = stage;
level _int = level;
start _nove_1_int = 0;
start_nmove_2_int = 0;
start_nmove_3_int = 0;
if (!busy_add && stage == 1) begin

x1_int = x_add;
yl_int = y_add,
path_1_int = path;
Imagel_int = |evel;
next = waitcycle;
next _int = nove_targets;
start_move_1_int = 1;

end

el se if (!busy_add) begin
x1_int = x_add;
yl_int = y_add,
path_1 int = path;
imagel_int = |evel;
next = waitcycle;
next _int = add2;
start_add_int = 1;

end

el se next = addil;

end

add2: begi n

start_add_int = O;

stage_i nt = stage;

x1l_int = x1;

yl_int = y1;

path_1 int = path_reg_1;
level _int = level;
start_m)ve_l_i nt = 0;
start_nmove_2_int = 0;
start _nove_3_int =

0;
if (!busy_add && (xl == x_add)) begin
next _int = add2;
next = waitcycle
start_add_int = 1;
end
else if (!busy_add) begin
X2_int = x_add;
y2_int = y_add;
path_2_| |nt = pat h;

imge2_int = |evel;

next = wai tcycl e;

if ((stage == 2) || (stage == 4)) begin
next _int = nove_targets;
start_nove_1_int = 1;

start _nove_2_int = 1;

end

el se begin

next _int = add3;
start_add_int = 1;

end
end
el se next = add2;
end
add3: begi n

stage_i nt = stage;

start_add_int = O;

x1l_int = X1,

yllint = yi;

X2_int = x2;

y2_int = y2;

path_1_int = path_reg_1;
path_2_int = path_reg_2;
level _int = level;
start_m)ve_l_l nt = 0;
start_nove_2_int = 0;
start_move_3_int = 0;

if (!busy_add && (xl == x_add || x2 == x_add)) begin
next _int = add3;
next = waitcycle;
start_add_int = 1;
end
else if (!busy_add) begin
x3_int = x_add;
y3_int = y_ add;
pat h_3_i nt pat h;
i mage3_i nt I evel ;
next = wai tcycl e;
next _int = nove _targets;
start_nove_1_int

start_nmove_2_int = 1;
start _nove_3_int = 1;
end
el se next = add3;
end
nove_t argets: begi n
stage_i nt = stage;
level _int = level;
start_add_int = 0;
start_nmove_1_int = 0;
start_nove_2_int = 0;
start _nove_3_int = 0O;
x1_int = x1_out;
yl_int =yl out;
X2_int = x2_out;
y2_int = y2_ out;
x3_int = x3_out;
y3_int = y3 out;
I magel_int = imgel;
i mge2_int = imge2;
i mge3_int = imges3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
pat h_3_i nt = path_reg_3;

next = nove_targets;
if (!busy_nove_1 && !busy_nove_2 &&
!busy_rrove 3 && hit) begin
next = nove_targets;

imagel_int = 0;
imge2_int = 0;
imge3_int = 0;

end

else if (!busy_nove_1 && !busy_nove_2
&& |busy move_3) begin
next = wai tcycl e;
next _int = set_| evel ;

i mgel_int = 0;
imge2_int = 0;
imge3_int = 0;

end

else if (!busy_nove_1 && inmgel) begin
imagel_int = 0;
next = nove_targets;

end

else if (!busy_nove_2 && inmge2) begin
imge2_int = 0;
next = nove_targets;

end

else if (!busy_nove_3 && inmmge3) begin
image3d_int = 0;
next = nove_targets;

end
el se next = nove_targets;
end

set _| evel : if (stage < 5) begin

next = waitcycle;
next _int = addi;

level _int = level;
stage_int = stage + 1;
start_add_int = 1;

wai tcycl e:

wai tcycl e2:

endscr een:

defaul t:

end

else if (level < 4) begin
next = waitcycle;
next _int = addi;
stage_int = 1;
level _int = level + 1;
start_add_int = 1;
end
el se begin
next = waitcycle;
x1l_int = 0;
yl int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 0;
y3_int = 0;
level _int = 4;
stage_int = 0;
imgel_int = 0;
imge2_int = 0;
imge3_int = 0;
start_add_int = O;
start_move_1_int = 0;
start_nmove_2_int = 0;
start_nmove_3_int = 0;
next _int = endscreen;
end
begi n
next = waitcycle2;
next _int = state_int;
level _int = level;
stage_i nt = stage;
imgel_int = imgel;
i mge2_int = imge2;
imge3_int = inmges3;
x1l_int = x1;
yl int = yl;
X2_int = x2;
y2_int = y2;
x3_int = x3;
y3_int = y3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
path_3_int = path_reg_3;
end
begi n
next = state_int;
level _int = level;
stage_i nt = stage;
imgel_int = imgel;
i mge2_int = imge2;
i mge3_int = inmges3;
x1l_int = x1;
yl int = yl;
X2_int = x2;
y2_int = y2;
x3_int = x3;
y3_int = y3;
path_1_int = path_reg_1;
path_2_int = path_reg_2;
path_3_int = path_reg_3;
end
begi n
x1l_int = 0;
yl int = 0;
x2_int = 0;
y2_int = 0;
x3_int = 0;
y3_int = 0;
level _int = 4;
stage_int = 0;
imgel_int = 0;
imge2_int = 0;
imge3_int = 0;
start_add_int = O;
start_nmove_1_int = 0;
start_nmove_2_int = 0;
start_nmove_3_int = 0;
next = endscreen;
end
begi n
next = |DLE;
level _int = level;
imgel_int = imgel;

i mge2_int = imge2;
i mge3_int = inmges3;
end
endcase
endnodul e

/* This nmodule acts as the top level file for the
entire ganmeplay system
*/

modul e controller(clk, reset, hit, id,
x1, yl, imagel, sizel,
X2, y2, image2, si ze2,
x3, y3, imge3, size3,
level, kills);

input clk, reset, hit;

input[1:0] id;

output[2:0] inemgel, image2, inmage3, sizel, size2, size3, level;

output[5:0] kills;

output[6:0] x1, yl, x2, y2, x3, y3;

reg reset_sync;

wire[1: 0] rand;

wire sanpl e;

wire[6:0] x1_out, yl out, x2_out, y2 out, x3_out, y3_out;

wire[2:0] inagel_out, sizel out, inage2_out, size2_out, imge3_out, size3_out;

control fsmcontroller(.clk(clk), .reset(reset_sync), .hit(hit), .id(id),
.sanpl e(sanpl e), .rand(rand),
.x1_1n(x1), .yl in(yl), .x2_in(x2), .y2_in(y2),
.x3_in(x3), .y3_in(y3),
.x1(x1_out), .yl(yl out),
.imagel(inag el _out), .si ze1(5| zel out),
. X2(x2_out), .Y2(y2_ out)
.image2(i magez out), .sli ze2(si ze2_out),
.x3(x3_out), .y3(y3 out)
.image3(i mage3 out) .Sl ze3(5| ze3 _out),
.level (level), .i mage3 in(i magel));
sanpl e_timer sanpler(.clk(clk), reset(reset _sync), .| evel (level),
. sanpl e(sarrpl e));
rndnum rng(.clk(clk), .reset(reset_sync), .rand_nun(rand));
address_sel ector select(.clk(clk), .reset(reset_sync),
CX1(x1_ out) .yl(yl_out),
.imagel(i magel out) .Sl zel(si zel out),
.X2(x2_out), .y2(y2_ out)
i mage2(i mage2 out), .si ze2(5| ze2_out),
.x3(x3_out), .y3(y3_ out)
.image3(i mageS out), .si ze3(si ze3_out),
.x1_f(x1), .yl_f(yl),
.imagel_f (inagel), .sizel f(sizel),
.x2_f(x2), .y2_f(y2),
.image2_f (inage2), .size2_f(size2),
.x3_f(x3), .y3_f(y3),
.image3_f (i nmage3), .size3_f(size3d),
chit(hit), .id(id), .level(level), .kills(kills));

al ways @ (posedge cl k) reset_sync <= reset;

endnodul e

/**

Filenane: frame_tiner.v

Aut hor: Dave Kl oster

Customtinmer used to time the durations
that targets appear in targeting node.

***/

modul e frame_timer(clk, reset, count, tine_up);

/1 SET TO THE AMOUNT OF TI ME TO WAIT.

/ /' VALUE DEPENDS ON DES| RED TI ME AND

/1 THE FREQUENCE OF THE CLOCK.

paranmeter TIMER COUNT = 20' d800000;

[/ paranmeter TIMER COUNT = 24' d50; /| TESTI NG VALUE
/1 USI NG 10MHz CLOCK, COUNTI NG TO .08 SECONDs.

i nput clk, reset, count;
out put time_up;

reg tinme_up;

reg [19:0] Q@

al wvays @ (posedge cl k or posedge reset) begin
if (reset) begin

Q <= 20' bO;
time_up =0
end
else if (count) begi n
Q<= Q+)
if (Q== = TI MER . COUNT) begin
time_up = 1;
Q <= 0;
end
else tinme_up =
end
el se begln
Q<=0
tinme_up = 0;
end
end // always @ (posedge clk or posedge reset)
endnodul e // frame_timer

/**************************************

Fil enane: gun_interface.v

Aut hor: Dave Kl oster

Provi des accurate and synchroni zed
trigger and hit signals interfaced
fromthe NES Zapper.

*************************************/

modul e gun_interface(clk, reset, sensor, trigger, shot, hit);
i nput cl k, reset, sensor,trigger;

out put shot, hit;
reg shot, hit;

reg sensor_sync, trigger_sync, sensor _tenp, trigger_tenp;

//TI MER | NSTALL
start, stop, time_up;

shot _tinmer tlrrer(
.clk(cl k),
.reset(reset),
.start(start),
.stop(stop),
.time_up(tine_up)

/1 BLANK TI MER | NSTALL
reg bl ank_start, bl ank_st op, bl ank_ti ne_up;
bl ank_timer timer2(
.clk(cl k),
.reset(reset),
.start (bl ank start)
. stop(bl ank_st op),
.tinme_up(blank_ti rre_up)

reg [1:0] state, next;

/ 1 FSM PARAMETERS
parameter |DLE
par amet er LOOK
parameter WAI T ;
parameter BLANK = 3;

// CLOCK LOOP
al wvays @ (posedge clk or posedge reset) begin
/] synchroni ze signals
sensor_tenp <= sensor;
Sensor_sync <= sensor_tenp;
trigger_tenp <= ~trigger;
trigger_sync <= trigger_tenp;

i
NP

if (reset) state <= | DLE;
el se state <= next;
end // always @ (posedge clk or posedge reset)

/| FSM STATE | MPLEMENTATI ON
always @ (state or trigger_sync or sensor_sync or tine_up) begin

[/ default val ues
hit = 0;

shot = 0;

start = 0;

bl ank_start = 0;
bl ank_stop = 0;

stop = 0;
case (state)

| DLE: begin
stop = 1;
bl ank_stop = 1;
if (trigger_sync) begin
shot = 1,
next = BLANK;
end
el se next = |DLE;
end

BLANK: begin
shot = 1;
start = 1,
bl ank_start = 1;
if (blank_tine_up) next = LOOK;
el se next = BLANK;

end

LOOK: begin
shot = 1;
start = 1;

bl ank_stop = 1;
if (sensor_sync) begin
hit = 1;

next = WAIT,
end
else if (time_up) next = |IDLE;
el se next = LOXK;
end
WAI T: begin
shot = 1;
hit = 1;
if (time_up) next = |DLE;
el se next = WAIT;
end
default: next = IDLE;

endcase // case(state)
end // always @ (state or trigger_sync or sensor_sync or tinme_up)
endnodul e // gun_interface

/***~k****~k****~k*************************
* | mage Drawi ng FSM

This nmobdul e overl ays the target inages
and hit counter onto the ROM

S

*

* Aut hor: Faye Kasenset
~k*~k****~k*************************l

modul e | mage_Draw FSM cl k, reset, start, done,

Img_id, ing_x, ing_y,
i mg_rom addr, ram addr,
ramwe, state);

input clk, reset, start;

input [6:0] ing_id;

input [6:0] inmg_x, ing_y;

out put [15:0] i nmg_rom addr;

out put [11:0] ram addr;

output [2:0] state;

out put ramwe;

out put done;

reg done;

reg ramwe, ramwe_int;

reg [2:0] state, next;

reg [15:0] addr_offset, addr_offset_int;
reg [4:0] length, length_int;

reg [4:0] width, width_int;

reg wrestart, winc, |_restart, |_inc;
wire [4:0] w_addr, |_addr;

// Wdth and Length counters.
size_counter widthi(.clk(clk),
.reset(reset),
.restart(w_restart),
.inc(w_inc),
.addr (w_addr));
size_counter lengthl(.clk(clk),
.reset(reset),

.restart(l _restart),
.inc(l_inc),

.addr (T _addr));

/1 1mage | D paraneters
par amet er BLANK = 7' b000111;
par amet er START_TARGET = 7' b110000;

par amet er FRI SBEE28 = 7' b001000;
par amet er FRI SBEE24 = 7' b001001;
par amet er FRI SBEE20 = 7' b001010;
par amet er FRI SBEE16 = 7' b001011;
par amet er FRI SBEE12 = 7' b001100;
par amet er GHOST28 = 7' b010000;
par amet er GHOST24 = 7' b010001;
par amet er GHOST20 = 7' b010010;
par amet er GHOST16 = 7' b010011;
par amet er GHOST12 = 7' b010100;
par amet er FI SH28 = 7' b011000;
par amet er FI SH24 = 7' b011001;
par amet er FI SH20 = 7' b011010;
par amet er FI SH16 = 7' b011011;

par amet er FI SH12 = 7' b011100;

par amet er BOTTLE28 = 7' b100000
par amet er BOTTLE24 = 7' b100001
par amet er BOTTLE20 = 7' b100010
par amet er BOTTLE16 = 7' b100011;
par amet er BOTTLE12 = 7' b100100;

/1 ROM address offsets
par anet er START_TARGET_OFFSET = 16' hFAFC,

par anet er FRI SBEE28_OFFSET = 16' hFDDC,
par anet er FRI SBEE24_OFFSET = 16' hFEAO;
par anet er FRI SBEE20_OFFSET = 16' hFF30;
par anet er FRI SBEE16_OFFSET = 16' hFF94;
par anet er FRI SBEE12_OFFSET = 16' hFFD4;

par amet er GHOST28_CFFSET = 16' hFBCD;

par amet er GHOST24_OFFSET = 16' hFC84;
par amet er GHOST20_OFFSET = 16' hFD14;
par amet er GHOST16_OFFSET = 16' hFD78;
par amet er GHOST12_OFFSET = 16' hFDBS;
par amet er Fl SH28_COFFSET = 16' hF6C4;
par amet er Fl SH24_COFFSET = 16' hF788;
par amet er Fl SH20_COFFSET = 16' hF818;
par amet er Fl SH16_COFFSET = 16' hF87C,

par amet er FI SH12_OFFSET = 16' hF8BC,
par anet er BOTTLE28_OFFSET = 16' hF8EO;

par anet er BOTTLE24_OFFSET = 16' hF9A4;
par anet er BOTTLE20_OFFSET = 16' hFA34;
par anet er BOTTLE16_OFFSET = 16' hFA98;
par anet er BOTTLE12_OFFSET = 16' hFADS;

par amet er ZERO OFFSET = 16' hA00O;

/1 State variabl es.
par amet er IDLE = O;
par amet er SETUP_PARAMS = 1;
par amet er START_WRI TE = 2

paraneter WAIT WRITE = 3;
par amet er WRI TE_CHECK = 4;
par amet er STOP_WRI TE = 5;

assign ing_romaddr = addr_offset + (width + 1)*| _addr + w_addr;
assign ramaddr = (32*(inmg_y + | _addr)) + (inmg_x + w_addr);

al wvays @ (posedge cl k) begin
if (!reset) begin
state <= | DLE;
width <= 5' b0;
length <= 5'b0;
addr _of fset <= 16' b0;
ramwe <= 0;
end
el se begin
state <= next;
width <= width_int;
length <= length_int;
addr _of fset <= addr_offset_int;
ramwe <= ramwe_int;
end
end

always @ (state or width or length or | _addr or w_ addr) begin
ramwe_int = ramwe;
addr _offset_int = addr_of fset;
width_int = width;

length_int = length
w_restart = 0,
w_inc = 0;
| _restart = 0;
| _inc = 0;
done = 0;
case (state)
| DLE: begin
ramwe_int = 0;
if (start) begin
next = SETUP_PARAMS;
| _restart = 1;
w_restart = 1,
end
el se next = |DLE;
end
SETUP_PARAMS: begi
ramwe_int = 0;
next = |DLE;
if (inmg_id == BLANK) begin
| _restart = 1;
w_restart = 1,
done = 1,
next = |DLE;
end
el se begin
next = START_WRI TE;
width_int =6 - ing_id[2:0];
length_int = 27 - (ing_id[2:0]*4);
if (inmg_id == START_TARGET) begin
daddr_offset _int = START_TARGET_OFFSET;
en
if (img_id == FRI SBEE28) begin
daddr_offset _int = FRI SBEE28_COFFSET;
en
if (img_id == FRI SBEE24) begin
daddr_offset _int = FRI SBEE24_CFFSET;
en
if (img_id == FRI SBEE20) begin
addr _of fset_int = FRI SBEE20_OFFSET;
end

if (img_id == FRI SBEE16) begin

addr _of fset_int FRI SBEE16_OFFSET;
end
if (img_id == FRI SBEE12) begin

addr _of fset_int FRI SBEE12_OFFSET;
end
if (img_id == GHOST28) begin

addr _of fset_int GHOST28_OFFSET;
end
if (img_id == GHOST24) begin

addr _of fset_int GHOST24_OFFSET;
end
if (ing_id GHOST20) begin

addr _of fset_int = GHOST20_OFFSET;
end
if (ing_id GHOST16) begin

addr _offset_int = GHOST16_OFFSET;
end

if (img_id == GHOST12) begin
addr _offset_int = GHOST12_OFFSET;
next = START_WRI TE;

end

if (img_id == FISH28) begin
addr _of fset_int Fl SH28_OFFSET;

end
if (img_id == FISH24) begin
addr _offset_int = FlI SH24_OFFSET;
end
if (img_id == FI SH20) begin
addr _offset_int = FlI SH20_OFFSET;
end
if (img_id == FISH16) begin
addr _offset_int = Fl SH16_OFFSET;
end
if (img_id == FISH12) begin
addr _offset_int = FlI SH12_OFFSET;
end
if (img_id == BOTTLE28) begin
addr _of fset_int = BOTTLE28_OFFSET;
end
if (img_id == BOTTLE24) begin

addr _of fset_int BOTTLE24_COFFSET;

end

if (inmg == BOTTLE20) begin
addr offset _int = BOTTLE20_OFFSET;
end
if (inmg == BOTTLE16) begin
addr offset _int = BOTTLE16_OFFSET;
end
if (img_id == BOTTLE12) begin
addr offset _int = BOTTLE12_OFFSET;
end
if (ing_id[6] == 1'bl) begin
width_int = 3;

length_int = 11;
daddr_offset _int = ZERO OFFSET + (48 * ing_id[5:0]);
en
end // else: lif(ing_id == BLANK)
end
START_WRI TE: begl n
ram ve int = 1;
next = WAIT_ VR TE;
end
WAI T_WRI TE: begin
ramwe_int = 1;
next = STOP_WRI TE;
end
STOP_WRI TE: begi n
ram ve int = 0;
next = WRI TE_ CHECK;
end
WRI TE_CHECK: begin
ramwe_int = 0;
/1 Done with row?
if (w.addr == width) begin
/1 Increment | _addr.
w restart = 1;
/] Last row?

if (l_addr == length) begin
| restart = 1;
done = 1;
next = IDLE;

end

// Ctherw se, go to next row.
el se begin
| _inc = 1;
next = SETUP_PARAMNS;
end
end
// 1Increment w_addr, continue.
el se begin

w_inc = 1;
next = SETUP_PARAMNS;
end
end
endcase // case(state)

end
endnodul e // | nage_Draw_FSM

/* This modul e generates a random one or zero,
based on an input seed and how many cl ock
cycl es have passed since power has turned on.

*/

modul e | fsr(clk, reset, seed, nsb);
input clk, reset;

input [19:0] seed;

out put nsb;

reg msb;

reg [19:0] q;

wire [19:0] n_g;

assign n_qg[18:0] = g[19:1];
assign n_g[19] = q[19] % afé] ~ da[s] ~ q[1];

al ways @(posedge cI k) begi n
if (reset) q <=

else q <= n_q;

msh <= q[19]

end

endnodul e

/* This module controls a single target, sending out a series
of coordinates based on an input path, the input coordinates,

and how long it has been since the target was created.
*/

modul e novefsn(clk, reset, start, path, sanple,
X_in, y_in, x_out, y_out,
si ze);
input clk, reset,
input[2:0] path;
input[6:0] x_in, y_in;
out put busy;
out put [6: 0] x_out,
out put[2: 0] size;

busy,

start, sanple;

y_out;

reg busy,
reg[3: 0]
reg[6: 0]
reg[6: 0]
reg[2: 0]
reg[3: 0]

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

busy_int;
direction, direction_int;
x_out, y_out, x_int, y_int;
count, count_int;
size, size_int;
state, next, state_int,

IDLE = 0;
wait_sanmple = 1;
get _direction = 2;
nove = 3;

out = 4
waitcycle = 5;

wai tcycl e2 = 6;

next _int;

zero_arc_right = 0;
one_arc_right =
two_arc_right =
three_arc_right
zero_arc_left =
one_arc_left =
two_arc_left =
three_arc_left

3,

HliNE

5;
6,
= 7;

al ways @ (posedge cl k) begin
if (reset) begin
state <= | DLE;
state_int <= | DLE;
count <= 0;
size <= 7,
end
el se begin
state <= next;
count <= count_int;
size <= size_int;

state_int <= next_int;
end

Xx_out <= x_int;

y_out <=y int;

direction <= direction_int;
busy <= busy_int;
end

always @ (state or next or start or busy or sanple or path
or Xx_in or y_in or size or count)
case(state)
| DLE: if (start) begin
busy_int = 1;
next = waitcycle;
next _int = wait_sanpl e;

= n;
. oy
size_int = 0;

©
»
®
o
®
=~ —Q
=

n
N
)
=27
>SS IS

S0~~~
—~+3

_||P
m

ol
SOND ST

< X

wai t _sanpl e: i X_in =0 & y_in == 0) begin

else if (sanple) begin

next = get_direction;
busy_int = 1;
count _int = count;

get _direction:

x_in
y_In

size_

end
el se
next

el se
case
zero
if
e
e
e
e
e
e
e

e
on

two_arc_ri
if (count < 19) direct
else if (count > 18 &&

t
t

int

begin

begi n

(path)

arc_ri ght

“(count < 14) directi

se if (count > 13 &&
direction_int = 1;

se if (count > 23 &&
direction_int = 2;

se if (count > 27 &&
direction_int = 3;

se if (count > 29 &&
direction_int = 4;

se if (count > 30 &&
direction_int = 5;

se if (count > 32 &&
direction_int = 6;

se if (count > 35 &&
direction_int = 7;

se if (count > 41) di
e_arc_right:

X_in =0 & & y_in

on_int = O;
count < 24)
count < 28)
count < 30)
count < 31)
count < 33)
count < 36)
count < 42)

rection_int =

i (count < 17) direction_int = O;
else if (count > 16 && count < 25)

direction_int = 1;

else if (count > 24 &&

direction_int = 2;

else if (count > 27 &&

direction_int = 3;

else if (count > 29 &&

direction_int = 5;

else if (count > 30 &&

direction_int = 6;

else if (count > 34 &&

direction_int = 7,
else if (count > 38)
ght:

direction_int = 1;

else if (count > 24 &&

direction_int = 2;

else if (count > 27 &&

direction_int = 3;

else if (count > 29 &&

direction_int = 6;

else if (count > 31 &&

direction_int = 7;

count < 28)
< 30)
< 31)

< 35)

count
count
count
count < 39)
di

rection_int

on_int = 0;
count < 25)

< 28)
< 30)
< 32)
< 36)

count

count

count

count

else if (count > 35) direction_int
three_arc_right:

if (count < 22) direction_int =0

else if (count > 21 && count < 26)
direction_int = 1;

else if (count > 25 && count < 28)
direction_int = 2;

else if (count > 27 && count < 30)
direction_int = 3;

else if (count > 29 && count < 32)
direction_int = 6;

else if (count > 31 && count < 36)

direction_int = 7;
else if (count > 35)

zero_arc_left:

if (count < 14) directi
else if (count > 13 &&
15;

direction_int =

direction_int

on_int = 0;
count < 24)

else if (count > 23 && count < 28)

0) begin

8,

nove:

direction_int = 14;
else if (count > 27 &&
direction_int = 13;
else if (count > 29 &&
direction_int = 12;
else if (count > 30 &&
direction_int = 11;
else if (count > 32 &&
direction_int = 10;
else if (count > 35 &&
direction_int = 9;
else if (count > 41) di
one_arc_left:
i (count < 17) directi
else if (count > 16 &&
direction_int = 15;
else if (count > 24 &&
direction_int = 14;
else if (count > 27 &&
direction_int = 13;
else if (count > 29 &&
direction_int = 11;
else if (count > 30 &&
direction_int = 10;
else if (count > 34 &&
direction_int = 9;
else if (count > 38) di
two_arc_left:
iT (count < 19) direct
else if (count > 18 &&
direction_int = 15;
else if (count > 24 &&
direction_int = 14;
else if (count > 27 &&
direction_int = 13;
else if (count > 29 &&
direction_int = 10;
else if (count > 31 &&
direction_int = 9;
else if (count > 35) di
three_arc_left:
if (count < 22) directi
else if (count > 21 &&
direction_int = 15;
else if (count > 25 &&
direction_int = 14;
else if (count > 27 &&
direction_int = 13;
else if (count > 29 &&
direction_int = 10;
else if (count > 31 && co
direction_int = 9;
else if (count > 35) dlre
default direction_int = 0;
endcase

if (count > 53) begin
next = out;
busy_int =1

x_int =0
y_int =0
size_int =7
end

el se begin

count _int = count + 1

next = out;

busy_int = 1;

if ((dlrectlon == 1) || (di
x_int = x_in + 1;

else if ((dlrectlon == 15)
x_int = x_in -

else if ((di Trection > 1) && (direction < 7))

Xx_int = x_in + 2;

else if ((directio
x_int = x_in - 2;

else x_int = x_in

if ((direction == 3) || (di
y_int =y_in - 1;

count < 30)
count < 31)
count < 33)
count < 36)
count < 42)
rection_int =

on_int = 0;
count < 25)

count < 29)
count < 30)
count < 31)
count < 35)
count < 39)
rection_int =

on_int = 0;
count < 25)

count < 28)
count < 30)
count < 32)
count < 36)
rection_int =

on_int = 0;
count < 26)

count < 28)
count < 30)
count < 32)
unt < 36)

ction_int = 8;

rection == 7))

|| (direction

rection == 13)

)

9))

else if ((direction

int =

y_in

y_
el se |f ((dlrectlon < 3)

y_ = in 2;
el se |f ((dlrectlon > 5) && (direction < 11))

==5) ||

+ 1;

y_int = y_ in+ 2;
else y_int y_in;
if (count < 9) size_int = 0;
else if (count > 8 & count < 18)
size_int = 1;
else if (count > 17 && count < 27)
size_int = 2;
else if (count > 26 && count < 36)
size_int = 3;
else if (count > 35 & count < 45)
size_int = 4;
else if (count > 44) size_int = 5;
end
out: if(xin::O&&y_in::O) begi n
next = |DLE;
busy_int = 0;
x_int = x_in;
y_int =y _in;
size_int = 7;
end
el se begln
next = waitcycle2;
next _int = wait sarrpl e;
busy_int = 1;
X_int = x_out;
y_int = y_out
size_int = size;
count_int = count;
end
wai tcycl e: begi n
next = state_int;
x_int = x_in;
y_int =y _in;
size_int = size;
busy_int = 1;
end
wai tcycl e2: begi n
next = state_int
X_int = x_out;
y_int =y_out;
busy_int = 1;
size_int = size;
count _int = count;
end
defaul t: begi n
next = |DLE;
busy_i nt = busy;
x_int = x_in;
y_int =y _in;
size_int = 7;
direction_int = direction;
end
endcase
endnodul e
/* This nmodul e creates a two-bit random nunber
/fromtwo separate LFSRs.
*
modul e rndnun(cl k, reset, rand_num;
input clk, reset;
output [1:0] rand_num

paranmeter seedl
par anmet er seed2

| fsr bitzero(.clk(clk),
I fsr bitone(.clk(clk),

endnodul e

20' b00010110111000111000;
20' b01110011010111000011;

.reset(reset),
.reset(reset),

. seed(seedl),
. seed(seed?2),

.nmsb(rand_nuni
msb(rand nuni 1

/* This nmodul e outputs a sanple pulse at a given

rate, which is determ ned by the input |evel.
*/
modul e sanple_tiner(clk, reset, level, sanple);
input clk, reset;
input [2:0] level;
out put sanpl e;
reg sanpl e;
reg [19:0] count, countlimt;

0
]

(direction

1
));

(direction > 13))

);

par anmet er sanpl eone = 999999; //10f ps
paranmet er sanpl etwo = 666666; //15fps
paramet er sanpl et hree = 454545; [/ 22f ps
paramet er sanpl ef our = 285714; //35fps

/| paranmeter testsanple = 8; //used for simulation

al ways @ (posedge cl k) begin
if (reset) countlint <= 0;

else if (level == 1) countlimt <= sanpl eone;
else if (level == 2) countlimt <= sanpl etwo;
else if (level == 3) countlimt <= sanpl ethree;
else if (level == 4) countlimt <= sanpl efour;
else countlimt <= 0;
if (reset) begin
count <= 0;
sanpl e <= 0;
end
else if (countlimt == 0) begin
count <= 0;
sanpl e <= 0;
end
else if (countlinmt == sanpl eone && level !=1)
count <= 0;
sanpl e <= 0;
end
else if (countlinmt == sanpletwo && level = 2)
count <= 0;
sanpl e <= 0;
end
else if (countlimt == sanplethree && | evel
count <= 0;
sanpl e <= 0;
end
else if (countlimt == sanplefour && level != 4) begin
count <= 0;
sanpl e <= 0;
end
else if (count == countlimit) begin
count <= 0;
sanpl e <= 1;
end

el se begin
count <= count + 1;
sanpl e <= 0;
end
end
endnodul e

/***

Fi |l ename: shot_timer.v

Aut hor: Dave Kl oster

Sets the time values for the shot/hit cycle
for the gun interface of the NES Zapper

**/

modul e shot _timer(clk, reset, start, stop, time_up);

/1 SET TO THE AMOUNT OF TI ME TO WAIT.

[/ VALUE DEPENDS ON DES| RED TI ME AND

/1 THE FREQUENCE OF THE CLOCK.

paranmeter TIMER_COUNT = 22' d3200000;

/1 USI NG 10MHz CLOCK, COUNTI NG TO .32 SECONDs.

input clk,reset,start, stop;

out put time_up;
reg tine_up;

reg [21:0] Q@
reg on;

al wvays @ (posedge cl k or posedge reset) begin
if (reset) begin

Q <= 22' bO;
time_up =0
on = 0;

end

else if (stop) begi n
Q <= 22' b0,
ti rre_up = 0;
on = 0;

end

1= 3) begin

else if (Q == TIMER COUNT) begin
tinme_up = 1;

on = 0;

end

else if (on) begin
Q<=Q+ 1;
on = 1;

end

else if (start) begin
Q <= 22' bi;
on = 1;

end

end // always @ (posedge clk or posedge reset)
endnodul e // shot _ti nmer

/1 This nmodul e keeps count for the |Inmage Draw FSM

/1 1t counts fromO to up to 64 (we assume no
/] target will be larger than 64x64 pixels.

nmodul e size_counter(clk,
reset,
restart,
inc,
addr) ;

input clk, reset, restart, inc;

out put [4:0] addr;
reg [4:0] addr;

al wvays @ (posedge cl k) begin
/| Reset takes precedence.
if (!reset) addr <= 0;
/'l Restart?
else if (restart) addr <= 0;
/1 Increment?
else if (inc) addr <= addr + 1;
el se addr <= addr;
end

endnodul e // bkgd_rom addr _counter

/**

Fi |l enane: target_node_controller.v

Aut hor: Dave Kl oster

Controls the display of white boxes to
be read by the Light Gun when a shot

has been fired.
~k*~k****~k**************************/

nmodul e target_node_controller (clk, reset,
target A size, targetA x, targetAy,
targetB size, targetB_x, targetB_y,
target C size, targetC x, targetC.y,
shot,
current _target,
RAM addr ess,
ROM addr ess

)i
i nput clk, reset;

input [2:0] targetA size, targetB_size, targetC size;
input [4:0] targetA x, targetB x, targetC x;

input [6:0] targetAy, targetB y, targetC.y;
i nput shot ;

output [1:0] current_target;
reg [1:0] current _target;

out put [15:0] ROM address;
reg [15:0] ROM address, ROM address_int;

out put [11:0] RAM address;
reg [11:0] RAM addr ess, RAM address_int;

wire [4:0] current _x;

wire [6:0] current _y;

assign current _x[4:0] = RAM address[4:0];
assign current _y[6:0] = RAM address|[11:5];

/| ADDRESS LOCATI ONS FOR ALL- BLACK

/1 OR ALL- WH TE DATA BI TS.
paraneter [15:0] bl ack_address
par anet er [15:0] white_address
/1

16' hFFFF;
16' hFFFE;

/1 ADDR COUNTER | NSTALL
reg [11:0] addr _count;
addr _counter counter (
.clk(cl k),
.reset(reset),
.count (addr _count),
. addr ess(RAM addr ess_i nt)

/1 FRAME Tl MER | NSTALL

reg franme_count;
reg time_up;
frame_tinmer tiner(

.clk(cl k),

.reset(reset),
.count (frame_ count)
t| me_up(tinme_up)

/| STATES

par amet er I DLE = O;

par amet er BLANK = 1,
par amet er TARCET_A = 2;
par amet er TARCET_B = 3;
par amet er TARCET_C = 4;
reg [2:0] state, next;

al wvays @ (posedge clk or posedge reset) begin
if (reset) state <= | DLE;
el se state <= next;

ROM address <= ROM address_int;
RAM addr ess <= RAM address_int;

end
always @ (state or shot or tine_up) begin

ROM address_int = bl ack_address;
addr _count = 1;

franme_count = 1;

current _target = 2'b0;

case (state)

| DLE: begin
addr _count = 0;
frane_count = O;

if (shot) next = BLANK;
el se next = | DLE;
end

BLANK: begin

if (time_up) next = TARGET_A;
el se next = BLANK;
end

TARGET_A: begin
current _target = 2'b01
if (current_x > (targetAx - 5'd2)) begin
if (current_x < (targetA x - 5 bl) + {2' b0, ~targetA size}) begin
if (current_y > (targetAy - 7"bl)) begln
if (current_y < target A_y + {2' b0, ~target A_si ze, 2' b0}) begin
ROM address_i nt = white_address;
end
end
end
end

if (tinme up) next = TARGET_B;
el se next = TARGET A,
end // case: TARGET A~

TARGET_B: begin

current _target = 2'bl0;
if (current_x > (targetB x - 5'd2)) begin

if (current_x < (targetB x - 5 bl) + {2' b0, ~targetB_size}) begin
if (current_y > (targetB_y - 7"bl)) begin
if (current_y < targetB y + {2'b0, ~targetB_size, 2'b0}) begin

ROM address_i nt = white_address;
end
end
end
end

if (time_ up) next = TARGET_C;
el se next = TARGET_B;

end // case: TARGET B~

TARGET_C. begin

current _target = 2'bl1l;
if (current_x > (targetC x - 5'd2)) begin

if (current_x < (targetCx - 5 bl) + {2' b0, ~targetC size}) begin
if (current_y > (targetCy - 7"bl)) begin
if (current_y < targetCy + {2' b0, ~targetC size, 2' b0}) begin

ROM address_i nt = white_address;
end
end
end
end

if (time_up) next = |DLE;
el se next = TARGET_C;

end // case: TARGET _C

default: next = IDLE;

endcase // case(state)

end //

al ways @ (state or shot or tinme_up)

endnodul e // target_node_controller

modul e Top(clk, reset, hit, FS bar, trigger_in, sensor,
hit_id, bkgd_id);

input clk, reset, FS_ bar, trigger_in, sensor;

out put
out put
out put
out put
out put
out put

hit;

[11: 0] ram addr;

[15: 0] rom addr;
ramwe;

[2:0] bkgd_id;

[1:0] hit_id;

wire trigger;
reg FS_bar_sync;

Z.

re

Wi
Wi
Wi
Wi
Wi
Wi

re [11: 0] ram addr;

ram we;

ire [15:0] rom_addr;
ire [2:0] bkgd_id;
re [5:0] targetAld targetB id, targetC.id;
ire [6:0] targetA xtop, targetB x, targetC x,

targetA y, targetB y, targetC.y;

ire [5:0] kills;

/1 Game Mbdul e:
control l er gamel(.clk(clk),

.reset(~reset),
Lhit(hit),

Lid(hit_id),
.x1(target A xtop),
.yl(targetAy),
.magel(targetAld[S 3]),
.sizel(targetA id[2:0]),
.x2(targetB x),
.y2(targetB y),
.1mage2(targetB_id[5:3]),
.size2(targetB id[2:0]),
.x3(targetC x),
.y3(targetCy),
.image3(targetC id[5:3
.size3(targetC_ id[2:0]
.l evel (bkgd_i d),
Ckills(kills));

Vi deo_Control I er vci(.clk(clk),

reset(reset),
. ram addr (ram addr),
.ramwe(ramwe),

rom addr,

ram addr,

ram we,

.rom addr (rom addr),
. FS _bar (FS_bar sync)
. bkgd_i d(bkgd_id),
.target A | |d(targetA id),
.target A xvc(target A_xtop[6: 2]),
.target A y(targetA y),
.targetB_id(targetB_id),
.target B_x(target _x[6 2]),
.targetB_y(targetB y
.target C_I d(target _|d),
.targetC x(targetC x[6:2]),
.targetC y(targetC.y)
.trigger(trigger),
Lhit_id(hit_id),
kil Ts(kills));
gun_i nterface gunl(.clk(clk),
.reset(~reset),
. sensor (sensor),
.trigger(trigger_in),
.shot (trigger),
chit(hit));
/1 Synchronize input from M26847
al wvays @ (posedge cl k) FS_bar_sync <= FS_bar;
endnodul e

~—

/**

* Video Controller Top Mdul e

* Top level file for the video control nodule.

* Controls output to MC6847 and sw tches between
* targetting and draw ng nodes.
*
*
*

Aut hor: Faye Kasenset
**/

modul e Video_Controller(clk, reset, ramaddr, ramwe,
rom addr, FS bar, bkgd_id,
targetA id, targetA xvc, targetA.y,
targetB id, targetB x, targetB_y,
targetC.id, targetC x, targetC.y,
trigger, hit_id, kills);

nput clk, reset;

nput [5:0] kills;

i

i

i nput FS_bar

i nput trigger;

i nput [2:0] bkgd_i d;

i nput [5:0] targetA id, targetB id, targetC.id;
i nput [4:0] target A xvc, targetB x, targetC x;
i nput [6:0] targetA y, targetB_ y, targetC.y;
out put [11:0] ram addr;

out put ramwe;

output [15:0] rom addr;
output [1:0] hit_id;

wire target _ramwe;

wire [11:0] target _ram addr;
wire [15:0] target_rom addr;
wire [1:0] hit_id;

wire [11:0] bkgd_i mage_r am addr;
wire [15:0] bkgd_i mage_r om addr ;
Wi d_i mage_ram we;

re bkg
wire [2:0] bkgd image_state;

/| Targetting Mbde FSM

target _node_controller target_control 1(.clk(cl k),
.reset (~reset),
.target A size(targetA id[2:0]),
.target A x(targetA xvc),
.target A y(targetA y),
.targetB_: S|ze(targetB id[2:0]),
.targetB x(targetB x),
.targetB_y(targetB_ y),
.target C_ S|ze(targetC|d[2 0]),
.target C x(targetC x),
.targetC y(targetC.y),
.shot (trigger),
.current _target (hit_id),
. RAM addr ess(target_ram addr),
. ROM _addr ess(target_rom addr))

// Regul ar Drawi ng Mode FSM

Bkgd_I mage_Control | er bkgd_i mg_cont 1(. cl k(cl k),
.reset(reset),
. FS_bar (FS_bar),
.trigger(trigger),

kills(kills),

rom addr (bkgd i mage_rom addr),
bkgd_i d_ext (bkgd_i d),
targetA id(targetA I d)

targetB id(targetB id),
targetC id(targetC.id),
target A x({2' b00, targetA xvc}),
targetB x({2' b0, targetB x}),
target C x({2' b0,targetC x}),
target A y(targetA y),
.targetB_y(targetB_y),
.target C_y(target C

y),
. ram addr (bkgd_i nage_r am addr),
.ram we_bar (bkgd_i mage_ram we),
.state(bkgd_i mage_state));

assign ramwe = FS bar ? 1 : (trigger ? 0 : bkgd_i mage_ram we);
assign ram addr = FS bar ? 8'bZZ : (trl gger ? target_ram addr

: d_i mage_ram addr);
assign romaddr = trigger ? target_romaddr : bkgd_inmage_rom addr;

endnodul e // Video_Controller

SHOOT TO

Start Screen

Level 1

Level 2

Level 3

Level 4

ircui

Video C

ircui

Sound C

