
6.111 Final Project Report Due: May 13, 2004

Paratroopers
Tushara C. Karunaratna, Chun-Chieh Lin, George Heming

Project TA: Jia Fu Cen

Contents

1 Introduction 1

2 Design Overview 1

3 Camera input subsystem 1
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Description of hardware used for Video Capture . . . . . . . . . . . . . . . . . . . . . 2
3.3 Control and Processing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Testing and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Conclusions and Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Game Controller 9
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Shoot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Output FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Collission detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.7 Updating game state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Video Output subsystem 12
5.1 Output Generator FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Video Display Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A Selected Verilog code for Camera Input subsystem 15

B Selected Verilog code for Game Controller 22

C Selected Verilog code for Video Output subsystem 28



List of Figures

1 Block diagram of the Video Capture Unit. . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Controller of the Video Capture Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Digitizer FSM of the Video Capture Unit. . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Calibrator FSM of the Video Capture Unit. . . . . . . . . . . . . . . . . . . . . . . . 6
5 Processor FSM of the Video Capture Unit. . . . . . . . . . . . . . . . . . . . . . . . 7
6 Major FSM of the game controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 The game FSM of the game controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 The Video Output subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
9 State transition diagram for the Output Generator FSM. . . . . . . . . . . . . . . . 13
10 Chroma Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11 Generating VSync. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
12 Monitor cable pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



1 Introduction

We present a hardware implementation of the classic Paratroopers video game, in which we have
replaced the analog joystick with the motion and gestures of a human player in a playing area. Our
design uses video input from a camera to detect the motion of the player and translates this motion
into positional data to control the player’s gun position. A player uses arm gestures to trigger the
gun by raising and then lowering his arm. This game play concept was inspired by the recent use
of video games as exercising aids. Our objective was to give the player a workout while enjoying a
classic video game.

The Paratroopers video game has a simple objective, which is to destroy enemy helicopters,
bombs and paratroopers as they appear on the screen. During the game the helicopters release
bombs and paratroopers at random positions while moving across the screen. The player, rep-
resented by a gun sprite at the bottom of the screen, has the objective of shooting these enemy
objects before they hit the ground or move out of the screen. The player is allowed to move left or
right, in addition to shooting.

2 Design Overview

The system is partitioned into 3 functionally distinct parts, a Video Capture Unit (VCU), a Game
Control Unit (GCU) and a Video Display Unit (VDU). The Video Capture Unit captures the
motion of the player and processes this video to extract positional information, which is fed as
input to the GCU to update the state of the game. The GCU is the game engine, which simulates
the game play. It manages the tasks of creating and destroying objects, updating the position
of objects, detecting collisions and maintaining score and player health information. The VDU
displays the current state of the game as simulated by the GCU on a video monitor.

Game play begins with a calibration stage in which the video capture unit detects the height of
the player and establishes a height threshold for indicating a shoot gesture. The calibration stage
consists of 2 prompt screens on the Video Display Unit. The first prompts the user to stand in the
playing area with arms lowered, while the second screen prompts for a raised hand. Each screen
lasts five 5 seconds during which time the Video Capture Unit determines the appropriate values
for the shooting threshold. The Video Capture Unit does this calibration by examining each frame
of video to find the dark pixels corresponding to objects in the playing area and averaging over all
frames the first dark pixels encountered. The calibration data is transmitted to the Video Display
Unit.

Once the playing parameters are configured, the Game Controller proceeds to the level selec-
tion screen where the player can select the difficulty of the game play by moving left or right to
respectively increase or decrease the difficulty of the game. The position of the player in the playing
area indicates the level of difficulty. The player confirms his selection of a difficulty level with a
shoot gesture. The confirmation causes actual game play to begin and it continues until the players
health points decrease to zero. At this point, a game over screen is displayed on the Video Output.
The player may restart the game by walking out and back into the playing area.

3 Camera input subsystem

This section discusses the implementation and design of input motion input part of the system.
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3.1 Overview

The Video Capture Unit is responsible for translating the left and right motion and hand gestures
of the player into positional information and a shoot signal, which are fed as inputs to the Game
Controller. Capturing a monochrome NTSC video signal of the playing area and processing it
to extract the relevant information achieves this function. In addition the VCU does the initial
calibration to establish a height threshold to correspond to a shoot gesture. This calibration occurs
at the beginning of each game and is necessitated by the need to adjust for different player heights.

The Video Capture Unit consists of hardware for sampling and storing the Video Signal and
control and processing logic for processing the sampled video data. The hardware consists of an
NTSC camera, an Analog-to-Digital converter, a monolithic sync separator and an SRAM to store
the sampled video. The control logic is partitioned into four modules: a Controller, Digitizer,
Calibrator and Processor. The Digitizer captures the digitized video from the analog-to-digital
converter and stores it in the Line Buffer. The calibrator processes the data in the line buffer
during the calibration stage to determine the shoot threshold and communicates with the Video
Display Unit to display the computed threshold. The Processor uses the Line Buffer data to
determine position and shoot gestures during game play and communicates this information to
the Game Controller. The controller coordinates the operation of the Calibrator, Digitizer and
Processor using sync information from the monolithic sync separator. Figure 1 shows the overall
system organization of the Video Capture Unit.
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Figure 1: Block diagram of the Video Capture Unit.

3.2 Description of hardware used for Video Capture

GS4981 (Monolithic Sync Separator) The sync separator is responsible for extracting the
vertical and horizontal sync signals from the NTSC signal from the video camera.
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AD775 (Analog-to-Digital Converter) The AD775 is a flash based converter capable of sam-
pling rates as high as 35Mhz at a resolution of eight bits. In this project, it was operated at the
system clock frequency of 10Mhz, making it possible to take at least two samples of the video signal
in determining the value of each pixel.

SRAM Line Buffer The Line Buffer is a 16-byte memory element used to hold pixel data
corresponding to one horizontal line of the NTSC video signal. The choice of a 16-byte depth for
the SRAM was dictate by our initial design decision to display the output of the game at a resolution
of 128 x 96 pixels. Storing one bit of information per pixel, 0 corresponding to a value below the
threshold and 1 for values above the threshold, it was sufficient to have 128 bits or 16-bytes of data
per horizontal line. The 96 pixel vertical resolution also meant that it was possible to process a line
of video between digitizing intervals. This eliminated the need to buffer an entire frame of video
(approximately 500 lines), which would have been processed during the vertical blanking interval
of the NTSC signal (approximately 22 lines) sample the video rather coarsely (roughly every fifth
line)

3.3 Control and Processing Logic

Controller FSM The controller is a finite state machine (FSM), which takes as inputs the
horizontal (h-sync) and vertical sync (v-sync) signals from the sync separator. Based on this sync
information, the controller instructs the digitizer to start sampling the video.

Each frame of the NTSC signal consists of 525 horizontal lines and thus to achieve a vertical
resolution of 96 pixels on the output display, it was sufficient to sample approximately every fifth
line of the video signal.

The Controller FSM has 8 states and transitions between them based on the h-sync and v-sync
input provided by the GS4981. On a reset, the controller transitions into the INITIALIZE state for
one clock cycle where various counters are set to their appropriate initial values. After initialization,
the FSM transitions into the WAIT VSYNC LOW stage, where it waits to detect the active low
vertical sync signal, which indicates the end of a video frame. Once the end of a frame is detected
in the WAIT VSYNC HIGH state by the v-sync signal going high, the Controller FSM waits in
the DELAY VBLANK state to account for the vertical blanking period of the NTSC. After the
blanking period, the controller instructs the Digitizer FSM, based on the h-sync signal and the
counter variable, to sample the active video on every fifth line after a horizontal blanking period
of roughly 7us which is accounted for by the DELAY HBLANK state. The start signal to the
Digitizer is asserted in the START SAMPLE state. The Controller remains in the WAIT sample
state until it gets a done signal from the digitizer. Figure 2 depicts the state transition diagram of
the Controller FSM.

Digitizer FSM The Digitizer FSM after initialization, triggered by a reset signal, in the INI-
TIALIZE state waits in the IDLE state for a start signal from the Controller FSM. When the start
signal is received, the Digitizer transitions into the SAMPLE1 followed by SAMPLE2 states where
it reads in a digitized sample from the analog-to-digital converter. The average value of the two
samples is compared with the external threshold input to determine the value of a corresponding
pixel in the STORE BITS state. In the STORE BITS stage, the Digitizer FSM keeps track of the
pixel positions in the video and assembles them into 16-bytes, with the LSB of the nth byte rep-
resenting the 2n horizontal pixel of each line. The Digitizer transitions between the STORE BITS
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Figure 2: Controller of the Video Capture Unit.

and SAMPLE states until all sixteen bytes are filled, at which point it transitions into the WRITE1
state. Here the done signal is asserted to inform the controller that sampling is complete. The time
constraints imposed by the interval between successive h-syncs is met by asserting the done signal
as soon as sampling is complete. This ensures that the line count maintained by the Controller
FSM is accurate. The WRITE1, WRITE2, WRITE3 and INCR ADDR states are used to write
the bytes into the Line Buffer. At the end of sixteen writes, a start proc signal is asserted to inform
the calibrator and processor to start processing stored line of video. The addr sel signal is also
switched to give the calibrator or processor access to the Line buffer.

Calibrator FSM The Calibrator FSM establishes a shoot threshold value for a player during
the calibration phase of game play. After initialization in the INITIALIZE state on a reset, the
Calibrator FSM waits in the IDLE state until it the start signal, provided by the digitizer FSM, is
asserted. When the start signal is asserted, the Calibrator transitions into the LOAD LINE state
where it reads in sixteen bytes of data from the Line Buffer into an internal 128-bit register. It then
transitions into the CALIBRATE state where it determines values for the shoot thresholds. Each of
the two thresholds is initialized to 96 (corresponding to the bottom of the screen). The Calibrator
FSM keeps track of the line it is currently processing and sets the threshold value to the first line
number it encounters for which the 128-bit internal register is greater than 0, which indicates a
blank line in the video. This process is averaged over roughly 1900 frames corresponding to 10
seconds of video to establish the final value, which is fed as input to the Processor FSM. To display
the output of the calibration process, the Calibrator transitions into the WAIT VID REQ state
where it waits for a video request signal to be asserted by the Video Display Unit. Once the request
is received, the Calibrator transitions into the SETUP DATA state where the value of the internal
register is either maintained or changed to all 1s if the line number corresponds with the threshold
value. The nth to (n+8)th bits of the register are setup as the data to be transmitted to the Video
Display Unit, where n is the transmission count. Once the data is setup, the Calibrator asserts it’s
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Figure 3: Digitizer FSM of the Video Capture Unit.

response/ready signal and transitions into the VERIFY TRANSMIT state where it waits for the
request signal to go low, confirming receipt of the data, at which point it sets the response output
low and transitions back into the WAIT VID REQ state. This asynchronous transmission process
is continued until all sixteen bytes are transmitted and then the Calibrator transitions back to the
IDLE state to wait for the next start signal from the Digitizer. The digitizer remains in the IDLE
state indefinitely once the maximum frame count is reached, indicating the end of the calibration
stage. At this point memory access is handed over to the processor unit by asserting the addr sel
output. Figure 4 represents the state transition diagram of the Calibrator.

Processor FSM The processor FSM computes the position of the player in the playing area
and determines if the shoot gesture has been asserted. The Processor FSM transitions into the
INITIALIZE state on a reset where various counters are set to their initial values and transi-
tions into the IDLE after one clock cycle where it waits for the start signal from the Digitizer
FSM. Upon receiving the start signal in the IDLE state, the Processor FSM transitions into the
INIT HIGH BYTE state where it reads the first byte of data corresponding to address 0x0 from
the Line Buffer after which it transitions into the SETUP LOW BYTE state where it reads the
second byte corresponding to address 0x1 from the Line Buffer. Once the two bytes have been
setup, the Processor computes the left and right bounds of any object using a windowing algo-
rithm in the COMPUTE BOUNDS state. The algorithm relies on the assumption that the player
occupied at least eight pixels and hence moves an 8-bit wide sliding window over the two bytes
read from memory. If the bits in the window have the value 0xff, then the left bound is set to the
value of the pointer to the beginning of the window. If not such sequence is found, the pointer is
incremented until it reaches address 0xf. After computing the left bound, the bytes are reversed
and the same computation is done to find the right bound of the player. Once the bounds are
computed for the first two bytes, the second byte read in is shifted into the high byte position
and the next byte in memory is read. This process continues until all sixteen bytes are read from
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Figure 4: Calibrator FSM of the Video Capture Unit.

the Line Buffer. The shifting and loading operations are perfomed in the states SHIFT BYTE,
LOAD ADDR LOW BYTE and LOAD DATA LOW BYTE states.

The final value assigned to the left and right bounds are the minimum and maximum values
respectively, computed over all lines in a fram. The COMPUTE BOUNDS state also computes if a
shoot signal has been asserted by comparing lines corresponding to the first black pixel it encounters
with the its shoot low and shoot high inputs, which are provided by the Calibrator FSM. If the
first black pixel is encountered in a line lower than the shoot high input, the shoot output is set
high and if it is lower than the shoot low input, the output is set low. This in effect implements
a level signal, which is converted to a pulse by the Game Controller Unit. This design choice for
the shoot signal is to avoid automatic rapid fire, caused by a player keeping their arm up during
game play. Once the entire frame has been read, that is 96 lines have been processed, the Processor
transitions to the TRANSMIT state where it assigns it position and shoot outputs to the values in
their corresponding internal values. These output values are held until the next position update at
the next of the subsequent frame. After transmission, the Processor waits in the IDLE state for the
next start signal from the processor. Figure 5 shows the state transition diagram for the Processor
FSM.

3.4 Testing and Debugging

The entire project was simulated in the Max+Plus II development environment. Each module was
individually tested by checking for correct state transitions and internal variable states on various
inputs which had to be specified manually by forcing input values in the Max+Plus II simulation
environment. The critical tests for the Controller FSM were with regards to certifying that delay
states met their timing requirements and that other state transitions behaved according to the
specifications of the h-sync and v-sync inputs. For the Digitizer FSM testing was focussed on the
bit accumulation process. It was crucial that the sampled pixels were stored in the correct position
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Figure 5: Processor FSM of the Video Capture Unit.

in each byte and that the bytes were written to the Line Buffer so as to represent the order in
which the data was received from the AD775. Also it was crucial that the entire operation for the
Digtizer finish within 63.1 us which corresponds to one horizontal line of NTSC video. Although
I had initially estimated taking the average of four samples for each pixel, the simulation revealed
that it number had to be revised to two samples per pixel. Even with the reduced samples per pixel
rate, the done signal to the Controller FSM had to be asserted before the process of storing the
pixels in the Line Buffer began. These tight timing constraints were the result of a design choice to
guarantee at least 1us delay before the next h sync signal. In retrospect, this contraint may have
been overly cautious and restricting. The crucial parts of the Processor FSM was guaranteeing the
level behavior of the shoot signal and the correct computation of the position as the mid-point of
the leftmost and rightmost pixels in a frame. For the Calibrator FSM the tests were focussed on
the asynchronous communication interface and the computation of the threshold. The latter was
difficult to do in simulation, as it required manully simulating the NTSC signal over 96 lines, a
rather tedious process. The alternative testing strategy was to use the Video Display Interface, but
this was dependent on the hardware sampling process being functional.

The hardware testing and debugging was a frustrating experience which ultimately led to the
demise of the project. After setting up the AD775 according to its specifications, I noticed that
the values produced by the AD775 did not correlate with the NTSC video signal. In particular,
the values seemed to have a fixed pattern even when I was certain that the NTSC signal wasn’t
periodic. I ensured the variability of the video signal by moving my hand in front of the camera
lens, varying the aperture on the lens from fully open to closed and pointing the camera in different
directions, observing the signal on an oscillioscope each time. My hypothesis for this behavior was
that the reference voltages on the AD775 were not properly set. To this end, I enlisted the help
of the lab assistants to confirm that I had correctly setup the AD775. Once the setup had been
confirmed, I proceeded to write a test controller for a digital-to-analog converter to try to reproduce
the ouput of the analog-to-digital converter. This setup revealed the same results. After several
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hours of trying to fine tune the reference voltages with potentiometers, it was suggest by one TA
to amplify the video signal before feeding it to the AD775, as the signal range may be too small.
Once I contructed the amplifying circuit and tested it with the video to make sure I had the correct
gain and the video signal was indeed amplified, I proceeded to test the output through the Video
Display Unit interface. The observed output did not resemble the camera view and showed little
variability with moving objects in the scene. At this point, I had had run out of ideas and given
up out of frustration. In retrospect I realize my folly in not attempting to substituting the AD775
with another one, but rather assuming the error was with the thresholds.

3.5 Conclusions and Reflections

The design presented in this paper is in theory a fundamentally sound one, which is well partitioned
into functionally distinct units that reflect the operation of the Video Control Unit. The one
crucial limiting factor in this design, which was overlooked in my implementation, however is that
the success of the entire unit depends on successfully implementing the analog-to-digital conversion
circuitry. Having recently completed Lab exercise 3 which dealt with similar issues, I was confindent
that I would be able to implement this phase of the project when needed, and thus focussed my
efforts on design memory efficient data structures and relatively fast algorithms for processing the
data, assuming it was available. The algorithm chosen in retrospect seems very susceptible to noise,
but this limitation may be mitigated by adjusting the 0-1 pixel threshold by trial-and-error and
ensuring a certain level of lighting and contrast in the playing area. More precise algorithms may
be difficult to implement, as they will involve some form of pre-processing of the digitized video,
say median filtering, to reduce the noise. Alternatively, the video may be sampled at at finer level
than is needed , but this will require substantially more storage and perhaps a faster system clock
rate.

In conclusion, to successfully implement such an ambitious project, it is essential for any digital
designer to be as familiar with analog circuitry and interfaces as he is with digital. Such knowledge
will minimize the amount of time spent on debugging analog circuits and increase the time available
for testing the entire system design outside of simulation, and fine tuning as necessary.
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4 Game Controller

4.1 Introduction

The game controller waits for the video input to calibrate, specifies a difficulty level, and then starts
the game. It takes the output of the video camera controller as the input to the game, and outputs
the positions of the sprites to the video output controller. It also uses a random number generated
with a random number generator to ensure that the game is different each time it is played.

Figure 6: Major FSM of the game controller.

The game FSM is the FSM that actually controls the game play. It specifies the general sequence
of operation for the game, and it uses several minor FSMs to perform the computation.

The game FSM waits for the frame request from the output, then it outputs the current state
of the game in the form of the locations of the sprites. Then the game updates the state of the
game by creating, moving, and destroying the sprites. Then it checks for the collisions, like bullets
hitting the paratroopers, or the bombs hitting the ground, and determines which objects have to
be destroyed. The checking also calculates the damage in health points the player sustains during
the frame, and if the player’s health reaches zero, the game ends.

4.2 Random Number Generator

To make sure that the game is different each time it is played, a random number generator is used
to give randomness to the game. The best way to do it would be to use the video input, but since
the video input was taking too long to finish, an alternative one was created.

The random number generator is run on a ten-megahertz clock, and it takes in a signal from
a 1.84 megahertz clock as its input. It contains an eight-bit register, which is updated every clock
cycle. Every clock cycle of the ten-megahertz clock, the input is sampled, and one of the bits of
the eight-bit register is replaced by the exclusive-or of the input with the previous value.
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Figure 7: The game FSM of the game controller.

The random number generator cycles through the eight bits, and it is not reset with the rest
of the system. Over time, the value contained in the register becomes fairly random, and the
probability of the possible values is roughly uniformly distributed.

4.3 Shoot Register

Each time the shoot signal from the input is raised, the shoot register is set. The shoot register
also takes a reset signal, which is passed in from the FSMs when the request is processed.

4.4 RAM

The game controller uses two registers, numheli and numobject, to specify the number of each type
of objects currently on the screen. The locations of each sprite is stored in a RAM.

The RAM is stored and used by the game FSM, and it is split into two sections. The first part
of it stores the positions of the helicopters, and the second part stores the positions of the bombs
and the paratroopers. For each part, the objects are continuously sorted, so the valid objects are
stored in the lower addresses.

The gun and the bullets are not stored in the RAM because the gun is always on the screen with
its location being specified by the video input, and the bullets are stored in registers to facilitate
faster checking.

4.5 Output FSM

The output FSM interfaces with the video output, and gives it the sprites and their locations. The
interface consists of a request signal, a ready signal, and an eight bit output bus.

When the video output requests a new frame, it sets the request signal high. The output FSM
then puts an output in the bus, and sets the ready signal high. The video output lowers the request
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signal when it takes the data. The output FSM then lowers the ready signal, after which the video
output raises the request signal again. When all the data of the current frame is transmitted, an
end frame codeword is sent through the bus, and the video output waits until the next frame to
request again.

The output FSM follows that interface, and for each of the sprites, it sends a codeword to denote
the type of the sprite, the horizontal position of the sprite, and the vertical position of the sprite.
Therefore, information about each sprite takes three signals to send. The end frame codeword is
designed to be different from any other possible message, so the interface takes at most a frame to
synchronize the states of the game controller and the video output.

4.6 Collission detection

The check FSM checks for the collisions between the sprites and the bullets, and also checks whether
the bombs and paratroopers hit the ground. It modifies the RAM accordingly, and calculates the
damage the player receives.

When the check FSM finds that a bullet overlaps with a bomb, a paratrooper, or a helicopter,
it marks both of them for removal. If the check FSM finds that a bomb or paratrooper hits the
ground, it also makes it for removal, and also increments the damage calculation for the frame.
Each time a paratrooper hits the ground, the player receives one point of damage, and each time
a bomb hits the ground, the player is dealt two points of damage.

4.7 Updating game state

The update FSM creates, moves, and destroys the sprites, and it is the most complicated of the
FSMs in the game controller. The bullets are created when a shoot signal is received before the
frame, and the update FSM resets the shoot register.

For each frame, the update FSM determines whether to create a new helicopter by checking
how far the previous helicopter going in that direction has moved. If the previous helicopter is
sufficiently far away, a new one is created. Whether the previous helicopter is far enough away is
dependent on a parameter calculated using the random number available at the time.

When a helicopter reaches a location specified in its slot in the RAM, it drops a paratrooper or
a bomb. Then the next location it will drop an object is generated using the random number input.
Whether the dropped object is a bomb or a paratrooper is also randomly determined, with the
probability of a bomb being three-eighths and the probability of a paratrooper being five-eighths.

The update FSM moves the existing sprites by modifying the RAM. How fast the sprites move
is determined by the difficulty level. The bullets, however, move at a pixel per frame regardless of
the level.

The bullets marked for removal are removed immediately by the update FSM. The other sprites,
however, are displayed as explosions for fifteen frames before they are removed. During the fifteen
frames the sprites are displayed as explosions, they do not move or affect the game-play in any way.
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5 Video Output subsystem

The Video Output subsystem acts as the interface from other two subsytems to the video monitor.
This subsystem consists of the Output Generator which continuously updates an external RAM
with the image to be displayed on the monitor, and the Video Display Interface which continuously
reads the image from the RAM and generates the HSync, VSync, and R,G,B signals taken in by
the video monitor.

During game play, the Output Generator receives asynchronous signals from the Game Con-
troller, translates these signals into lists of objects to be displayed on the screen, and writes, onto
the RAM, the image to be displayed on the monitor. The sprites for the various types of objects,
such as helicopters and paratroopers, are read from an internal ROM. During calibration, the Out-
put Generator receives asynchronous signals from the Camera Input subsystem, translates these
signals into a stream of pixels corresponding to the image captured by the camera, and writes the
image onto the RAM.

The Video Display Interface consists of the MC6847 video controller chip, along with some
some analog circuitry, and generates the HSync, VSync, and the R,G,B signals corresponding to
the image stored on the RAM. The NMS input of the MC6747 chip is asserted low by the Output
Generator when the image in the RAM is being updated, so that the MC6847 will not attempt to
update the display while the RAM is being written. When the Output Generator finishes updating
the RAM, the NMS signal is raised, so that the MC6847 will update the display with the current
image. Once the display has been updated, the MC6847 lowers the NFS signal, and at this time
the Output Generator starts updating the RAM with the next image, and the cycle repeats.

Figure 8 illustrates the interconnections among the various components of the Video Output
subsystem. Sections 5.1 and 5.2 describe the operation of the Output Generator and the Video
Display Interface respectively.

Figure 8: The Video Output subsystem.
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5.1 Output Generator FSM

Figure 9 illustrates the FSM of the Output Generator. The game play and calibrate signals are
inputs to the FSM through switches, and instruct the FSM to move into the game display mode
or the calibration display mode respectively.

Figure 9: State transition diagram for the Output Generator FSM.

When in the game display mode, the FSM repeatedly requests three values from the Game
Controller: the type of object, the x-coordinate, and the y-coordinate. As each triple is received,
the sprite of the specified type is loaded, and is written at the specified location of the RAM. When
the received signal has the value no more objects, the FSM raises the NMS signal and moves into
the Display state. The FSM moves back to the Start state when the NFS signal is lowered by the
MC6847.

When in the calibration mode, the FSM repeatedly requests, and writes to the RAM, a pixel
from the Camera Input subsystem. The end of the frame is reached when the end of frame signal is

13



received, at which point the MC6847 chip is instructed to display the image stored in the memory.
The Output Generator communicates with the Game Controller and the Camera Input Subsys-

tem using the request/ready interface which is described in previous sections (and also illustrated
in Figure 9).

5.2 Video Display Interface

The MC6847 is used in the Color Graphics Three mode, which provides a resolution of 128x96 and
4 colors. The phi A, phi B, and Y outputs are converted to the R, G, B signals using the chroma
decoder shown in Figure 10.

Figure 10: Chroma Decoder.
Taken from old 6.111 course notes.

The NFS (field sync) signal is converted to the VSync (vertical sync) signal using the circuitry
shown in Figure 11. The two potentiometers can be adjusted to fix flickering or moving up and
down of the image on the monitor.

The signals generated by the Video Display Interface are provided to the monitor cable which
is illustrated in Figure 12.

5.3 Testing

The Video Output Subsystem was tested independently of the other two subsystems. To test correct
operation during calibration display mode, a PAL was programmed to implement the request/ready
interface expected from the Camera Input subsystem, and to deliver a stream of pixels that had
a particular pattern. A clock different from the one given to the FPGA was used, to ensure
that conditions are equivalent to a situation of inter-kit communcation. The correct pattern was
observed on the display.

To test correct operation during game play mode, a game simulator module was written and
synthesized onto the FPGA. This simulator implements the request/ready interface, and when
requested, provides a list of helicopters, bombs, paratroopers and gun, and changes the positions
of these objects in a known manner. The module was too large to fit into a PAL, but the module
used a clock different from the one given to the Camera Input subsystem to ensure that conditions
are equivalent to a situation of inter-kit communication. The objects were displayed and moved
correctly.
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Figure 11: Generating VSync.
Taken from old 6.111 course notes.

Figure 12: Monitor cable pins.
Taken from old 6.111 course notes.

A Selected Verilog code for Camera Input subsystem

Listing 1: Calibrator
module c a l i b r a t o r ( c lk , r e s e t , s t a r t , v ideo reque s t ,

mem data , addr ,
v ideo re sponse ,
v ideo data , end of f rame ,
shoot low , shoot high , addr s e l ,
s t a t e
// phase
) ;

input c lk , r e s e t , s t a r t , v ide o r e qu e s t ;
input [ 7 : 0 ] mem data ;
output [ 3 : 0 ] addr ;
output v ideo re sponse ;
output [ 7 : 0 ] v ideo data ;
output end o f f r ame ;
output [ 6 : 0 ] shoot low , shoot h igh ;
output a dd r s e l ;

// begin : debug
output [ 3 : 0 ] s t a t e ;
// output phase ;
/∗
output [ 6 : 0 ] l ine number ;
∗/

//end : debug

reg [ 3 : 0 ] s ta t e , next ;
reg [ 3 : 0 ] addr in t ;
reg a dd r s e l ; / / 1 : c a l i b r a t o r a c c e s s e s memory 0 : p ro ce s s o r a c c e s s e s memory

// c a l i b r a t i o n phase
reg phase ;

// video data to Video Output Unit
reg [ 1 2 7 : 0 ] l i n e b u f f e r ;
reg [ 7 : 0 ] v i de o da t a i n t ;
reg v ideo re sponse ;
reg end o f f r ame ;

// shoot l e v e l r e g i s t e r s .
reg [ 6 : 0 ] s ho o t h igh in t ; // l i n e number between 0 − 96
reg [ 6 : 0 ] s h o o t l ow in t ; / / l i n e number between 0 − 96

// counter v a r i ab l e s
reg [ 1 0 : 0 ] frame count , f r ame count in t ; / / counter f o r frames proce s s ed in c a l i b r a t i o n mode
reg [ 3 : 0 ] byte count , by te c ount in t ; / / bytes read from memory
reg [ 6 : 0 ] l ine number , l i ne number in t ; / / l i n e number
reg [ 3 : 0 ] transmit count , t ran sm i t count in t ;
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// cons tant s
parameter MAXADDR = 4 ’ hf ;
parameter LINES PER FRAME = 96 ; / / 9 6 ; / / should be 96
parameter MAXFRAMECOUNT = 1500;//1500 ;// should be 1500 f o r 5 s ec s // in c r e a s e to match number o f seconds dur ing c a l i b r a t i o n .
parameter HALF MAX FRAME COUNT = 750 ; // should be 7 5 0 f o r 5 s e c s o f c a l i b r a t i o n

// s t a t e s
parameter INITIALIZE = 0;
parameter IDLE = 1;
parameter LOAD LINE = 2;
parameter CALIBRATE = 3;
parameter WAIT VID REQ = 4;
parameter SETUP DATA = 5;
parameter VERIFY TRANSMIT = 6;

always @ ( posedge c lk ) begin

i f ( r e s e t ) next = INITIALIZE;
e l s e s ta t e = next ;

l ine number = l ine number in t ;
byte count = byt e count in t ;
f rame count = f rame count in t ;
t ransmi t count = tr ansmi t c ount in t ;

case ( s t a t e )

INITIALIZE : begin
by te c ount in t = 4 ’ h0 ;
f rame count = 0 ;
l ine number = 0 ;
s h o o t h ig h i n t = 96 ;
s ho o t l ow int = 96 ;
l i n e b u f f e r = 128 ’ h0 ;
phase = 0 ;
addr in t = 0 ;
next = IDLE;

end

IDLE : begin
i f ( f rame count == MAXFRAMECOUNT) begin

next = IDLE ;
a dd r s e l = 1 ;

end
e l s e i f ( s t a r t ) begin

next = LOAD LINE;
a dd r s e l = 0 ;

end
e l s e next = IDLE ;

end

LOAD LINE : begin

i f ( byte count == 4 ’ hf ) begin

// f i l l l a s t byte
l i n e b u f f e r [ 1 2 7 : 1 2 0 ] = mem data ;

// r e s e t address and byte count
addr in t = 0 ;
byt e c oun t in t = 0 ;

// i n c r e a s e l i n e count
l ine number in t = l ine number + 1 ;

// increment frame count
i f ( l ine number == LINES PER FRAME) begin

l ine number in t = 0 ; // r e s e t l i n e count
f rame count in t = frame count + 1 ;
end o f f r ame = 1 ; // a s s e r t end−of−frame s i g na l

end e l s e l ine number in t = l ine number + 1 ;

// i f h a l f MAX FRAMES, go to phase 2
i f ( f rame count == HALF MAX FRAME COUNT) phase = 1 ;
e l s e phase = 0 ;

// stop c a l i b r a t i o n a f t e r MAX FRAMECOUNT i s reached
// i f ( f rame count == MAXFRAMECOUNT) next = IDLE;
// e l s e next = CALIBRATE;

next = CALIBRATE;

end e l s e begin

// increment byte count
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byt e c oun t in t = byte count + 1 ;
addr in t = addr + 1 ;

case ( byte count )
0 : l i n e b u f f e r [ 7 : 0 ] = mem data ;
1 : l i n e b u f f e r [ 1 5 : 8 ] = mem data ;
2 : l i n e b u f f e r [ 2 3 : 1 6 ] = mem data ;
3 : l i n e b u f f e r [ 3 1 : 2 4 ] = mem data ;
4 : l i n e b u f f e r [ 3 9 : 3 2 ] = mem data ;
5 : l i n e b u f f e r [ 4 7 : 4 0 ] = mem data ;
6 : l i n e b u f f e r [ 5 5 : 4 8 ] = mem data ;
7 : l i n e b u f f e r [ 6 3 : 5 6 ] = mem data ;
8 : l i n e b u f f e r [ 7 1 : 6 4 ] = mem data ;
9 : l i n e b u f f e r [ 7 9 : 7 2 ] = mem data ;
1 0 : l i n e b u f f e r [ 8 7 : 8 0 ] = mem data ;
1 1 : l i n e b u f f e r [ 9 5 : 8 8 ] = mem data ;
1 2 : l i n e b u f f e r [ 1 0 3 :9 6 ] = mem data ;
1 3 : l i n e b u f f e r [ 1 1 1 :1 0 4 ] = mem data ;
1 4 : l i n e b u f f e r [ 1 1 9 :1 1 2 ] = mem data ;

endcase / / case ( byte count )

next = LOAD LINE;

end // e l s e : ! i f ( byte count == 4 ’ hf )

end // case : LOAD LINE

CALIBRATE: begin

// s e t t h re s ho ld s
i f ( l i n e b u f f e r > 0) begin //may need to change f o r no i s e to l e ra nc e

// s e t high shoot thre sho ld
i f ( phase ) begin

i f ( shoot h igh > l ine number )
// implement averaging l a t e r
// sh oo t h i g h l e v e l = sh oo t h i g h l e v e l + l ine number ;
s h o o t h i gh i n t = l ine number ;

e l s e s ho o t h ig h i n t = shoot h igh ;
end e l s e begin

// se t low shoot thre sho ld
i f ( shoot low > l ine number )

// implement averaging l a t e r
// s ho o t l ow l e v e l = s ho o t l ow l e v e l + l ine number ;
s ho o t l ow int = l ine number ;

e l s e s h o o t l ow in t = shoot low ;
end

end // i f ( l i n e b u f f e r > 0)

// transmit bytes
next = WAIT VID REQ;

// r e s e t t ransmi s s i on count ;
t ransmi t count = 0 ;

end // case : CALIBRATE

WAIT VID REQ : begin
i f ( v ide o re qu e s t ) begin

next = SETUP DATA;
/∗
i f ( t r ansmi t count == 15) begin

t r ansmi t c ount in t = 0 ;
next = LOAD LINE;

end e l s e begin
t r ansmi t c ount in t = transmi t count + 1 ;
next = SETUP DATA;

end
∗/

end
e l s e next = WAIT VID REQ;

end // case : WAIT VID REQ

SETUP DATA: begin
case ( t ransmi t count )

0 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 7 : 0 ] ;
1 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 1 5 : 8 ] ;
2 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 2 3 : 1 6 ] ;
3 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 3 1 : 2 4 ] ;
4 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 3 9 : 3 2 ] ;
5 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 4 7 : 4 0 ] ;
6 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 5 5 : 4 8 ] ;
7 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 6 3 : 5 6 ] ;
8 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 7 1 : 6 4 ] ;
9 : v i de o da t a i n t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 7 9 : 7 2 ] ;
1 0 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 8 7 : 8 0 ] ;
1 1 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 9 5 : 8 8 ] ;
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1 2 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 1 0 3 : 9 6 ] ;
1 3 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 1 1 1 : 1 0 4 ] ;
1 4 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 1 1 9 : 1 1 2 ] ;
1 5 : v id e o da t a in t = (( l ine number == shoot low ) | | ( l ine number == shoot h igh ) ) ? 8 ’ h f f : l i n e b u f f e r [ 1 2 7 : 1 2 0 ] ;

endcase / / case ( t ra smi t count )

next = VERIFY TRANSMIT;
end // case : SETUP DATA

VERIFY TRANSMIT: begin
i f ( v ide o r eque s t ) begin

// acknowledge r eque s t
v ideo re sponse = 1 ;
next = VERIFY TRANSMIT;

end e l s e begin
v ideo re sponse = 0 ;
end o f f r ame = 0 ;
i f ( t ransmi t count == 15) begin

/∗
i f ( l ine number == LINES PER FRAME) next = IDLE ;
e l s e begin

t ransmi t c ount in t = 0 ;
next = LOAD LINE;

end
∗/

t r an sm i t c ount in t = 0 ;
next = IDLE;

end
e l s e begin

t r an sm i t c ount in t = transmi t count + 1 ;
next = WAIT VID REQ;

end
end

end
endcase / / case ( s ta t e )

end / / always @ ( posedge c lk )

a s s i g n addr = addr in t ;
a s s i g n shoot low = shoo t l ow in t ;
a s s i g n shoot h igh = shoo t h i gh in t ;
a s s i g n v ideo data = v id e o da t a in t ;

endmodule / / c a l i b r a t o r
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Listing 2: Processor
module pro c e s so r ( c lk , r e s e t , s t a r t , in data , shoot low , shoot high ,

addr , po s i t i on , shoot ,
// begin : debug
s t a t e
/∗
l ine number , low addr , h igh addr
∗/

// end : debug
) ;

input c lk , r e s e t , s t a r t ;
input [ 7 : 0 ] in data ;
input [ 6 : 0 ] shoot low ;
input [ 6 : 0 ] shoot h igh ;

output [ 3 : 0 ] addr ;
output [ 7 : 0 ] p o s i t i o n ;
output shoot ;

// begin : debug
output [ 3 : 0 ] s t a t e ;
/∗
output [ 6 : 0 ] l ine number ;
output [ 7 : 0 ] low addr , h igh addr ;
∗/

//end : debug

reg [ 3 : 0 ] s ta t e , next ;
reg [ 3 : 0 ] addr in t ;

// output r e g i s t e r s
reg shoot , s h o o t i n t ;
reg [ 7 : 0 ] p o s i t i o n ;

// l e f t and r i g ht coo rd inate s
reg [ 7 : 0 ] l e f t , r i g ht ;
reg [ 7 : 0 ] sum ;

//16− p i x e l bu f f e r with corresponding addre s s e s
reg [ 7 : 0 ] low byte , h igh byte ;
reg [ 7 : 0 ] low addr , h igh addr ;

// l i n e number
reg [ 6 : 0 ] l ine number , l i ne number in t ;

// Implement i f time permits : : s h i f t e r bu f f needed to avoid us ing Ver i l og ∗ s i gn . Saves some l o g i c

// cons tant s
parameter MAXADDR = 4 ’ hf ;
parameter LINES PER FRAME = 96 ; // ac tua l value should be 96
parameter WINDOW = 8 ’ h f f ;
parameter MAXFRAMECOUNT = 480;
parameter HALF MAX FRAME COUNT = 240;

// s t a t e s
parameter INITIALIZE = 0;
parameter IDLE = 1;
parameter INIT HIGH BYTE = 2;
parameter SETUP LOW BYTE = 3;
parameter INIT LOW BYTE = 4;
parameter COMPUTEBOUNDS = 5;
parameter SHIFT BYTE = 6;
parameter LOAD ADDR LOW BYTE = 7;
parameter LOAD DATA LOW BYTE = 8;
parameter TRANSMIT = 9;

always @ ( posedge c lk ) begin

i f ( r e s e t ) s t a t e = INITIALIZE ;
e l s e s ta t e = next ;

l ine number = l ine number in t ;

case ( s t a t e )

INITIALIZE : begin
addr in t = 4 ’ hf ;
low addr = 4 ’ h1 ;
high addr = 4 ’ h0 ;
l ine number = 0 ;
l e f t = 128;
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next = IDLE; / / change when you implement c a l i b r a t i o n
end

IDLE : begin
addr in t = 4 ’ h0 ;
low addr = 4 ’ h1 ;
high addr = 4 ’ h0 ;
i f ( s t a r t ) begin

l ine number in t = l ine number + 1 ;
next = INIT HIGH BYTE ;

end e l s e next = IDLE ;
end

INIT HIGH BYTE : begin
high byte = in data ;
next = SETUP LOW BYTE;

end

SETUP LOW BYTE: begin
addr in t = 4 ’ h1 ;
next = INIT LOW BYTE;

end

INIT LOW BYTE : begin
low byte = in data ;
next = COMPUTEBOUNDS;

end

COMPUTEBOUNDS: begin

// detec t shoot ge s ture
// check i f hand i s above upper thre sho ld
i f ({ low byte [ 7 : 0 ] , h igh byte [ 7 : 0 ]} > 0 ) begin

// i f l a s t frame was a shoot , don ’ t a s s e r t shoot
i f ( l ine number <= shoot h igh ) s h o o t i n t = 1 ’ b1 ;
e l s e i f ( l ine number >= shoot low ) shoo t i n t = 1 ’ b0 ;
e l s e s h o o t in t = shoot ;

end e l s e s ho o t in t = shoot ; / /may cause problems l a t e r ??

i f ( l e f t == 128) begin
// f ind l e f t boundary o f p laye r i f i t hasn ’ t been found yet
i f ( h igh byte == WINDOW) l e f t = ( high addr ∗ 8 ) ;
e l s e i f ({ high byte [ 6 : 0 ] , low byte [7 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 1 ;
e l s e i f ({ high byte [ 5 : 0 ] , low byte [ 7 : 6 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 2 ;
e l s e i f ({ high byte [ 4 : 0 ] , low byte [ 7 : 5 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 3 ;
e l s e i f ({ high byte [ 3 : 0 ] , low byte [ 7 : 4 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 4 ;
e l s e i f ({ high byte [ 2 : 0 ] , low byte [ 7 : 3 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 5 ;
e l s e i f ({ high byte [ 1 : 0 ] , low byte [ 7 : 2 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 6 ;
e l s e i f ({ high byte [ 0 ] , low byte [ 7 : 1 ]} == WINDOW) l e f t = ( high addr ∗ 8 ) + 7 ;
e l s e i f ( low byte == WINDOW) l e f t = ( low addr ∗ 8 ) ; / / need to r e s o l v e address mapping to po s i t i o n
e l s e l e f t = 128;

end e l s e l e f t = l e f t ; / / i f ( l e f t == 8 ’ h f f )

// f ind r i ght boundary
i f ( low byte == WINDOW) r igh t = ( low addr ∗ 8 ) + 7 ;
e l s e i f ({ high byte [ 0 ] , low byte [ 7 : 1 ]} == WINDOW) r i gh t = ( low addr ∗ 8 ) + 6 ;
e l s e i f ({ high byte [ 1 : 0 ] , low byte [ 7 : 2 ]} == WINDOW) r igh t = ( low addr ∗ 8 ) + 5 ;
e l s e i f ({ high byte [ 2 : 0 ] , low byte [ 7 : 3 ]} == WINDOW) r igh t = ( low addr ∗ 8 ) + 4 ;
e l s e i f ({ high byte [ 3 : 0 ] , low byte [ 7 : 4 ]} == WINDOW) r igh t = ( low addr ∗ 8 ) + 3 ;
e l s e i f ({ high byte [ 4 : 0 ] , low byte [ 7 : 5 ]} == WINDOW) r igh t = ( low addr ∗ 8 ) + 2 ;
e l s e i f ({ high byte [ 5 : 0 ] , low byte [ 7 : 6 ]} == WINDOW) r igh t = ( low addr ∗ 8 ) + 1 ;
e l s e i f ({ high byte [ 6 : 0 ] , low byte [7 ]} == WINDOW) r i gh t = ( low addr ∗ 8 ) ;
e l s e i f ( h igh byte == WINDOW) r igh t = ( high addr ∗ 8 ) + 7 ; / / need to r e s o l v e address mapping to po s i t i o n
// e l s e r i g ht = 0 ;

next = SHIFT BYTE;

end

SHIFT BYTE : begin

high byte = low byte ;
h igh addr = low addr ;

i f ( addr == MAXADDR && line number == LINES PER FRAME) next = TRANSMIT; / / l i n e s per frame cond i t i on not being met ????
e l s e i f ( addr == MAXADDR) next = IDLE ;
e l s e next = LOAD ADDR LOW BYTE;

end

LOAD ADDR LOW BYTE: begin
addr in t = addr + 1 ;
next = LOAD DATA LOW BYTE;

end

LOAD DATA LOW BYTE: begin
low addr = addr ;
low byte = in data ;
next = COMPUTEBOUNDS;
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end

TRANSMIT: begin

// a s s i g n shoot s i g n a l
shoot = shoo t in t ;

// a s s e r t shoot and po s i t i o n outputs
i f ( l e f t != 8 ’ h f f ) begin

sum = l e f t + r ig ht ;
p o s i t i o n = {1 ’b0 , sum [ 7 : 1 ] } ;

end // e l s e send de f a u l t value ind i c a t i n g no po s i t i o n data av a i l a b l e

// r e s e t l i n e count
l ine number in t = 0 ;
next = IDLE;

end

endcase / / case ( s ta t e )
end / / always @ ( posedge c lk )

a s s i g n addr = addr in t ;

endmodule / / pr oc e s s o r

xx
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B Selected Verilog code for Game Controller

Listing 3: Updating objects
module minoroutput ( c lk , r e s e t , s tartoutput , po s i t i on , outputdone
, out r eque s t , out ready , out bus
, out addr , q
, numheli , numobject , numbullet , bu l l e t1 , bu l l e t2 , bu l l e t3 , bu l l e t4 , t e s t e r ) ;

input c lk ;
input r e s e t ;
input s ta r toutput ;
input [ 6 : 0 ] p o s i t i o n ;
output outputdone ;
input out r eque s t ;
output out ready ;
output [ 7 : 0 ] out bus ;
output [ 4 : 0 ] out addr ;
input [ 2 0 : 0 ] q ;
input [ 4 : 0 ] numheli ;
input [ 4 : 0 ] numobject ;
input [ 2 : 0 ] numbullet ;
input [ 1 3 : 0 ] bu l l e t 1 ;
input [ 1 3 : 0 ] bu l l e t 2 ;
input [ 1 3 : 0 ] bu l l e t 3 ;
input [ 1 3 : 0 ] bu l l e t 4 ;

output [ 4 : 0 ] t e s t e r ; //TESTER

reg [ 4 : 0 ] s t a t e ;
reg [ 4 : 0 ] next ;
reg [ 4 : 0 ] r e t u r n s t a t e ;
reg [ 4 : 0 ] n e x t r e t u rn s t a t e ;
reg [ 4 : 0 ] count ;
reg [ 4 : 0 ] nextcount ;
reg [ 4 : 0 ] addr ;
reg [ 4 : 0 ] nextaddr ;
reg out r eady reg ;
reg [ 7 : 0 ] out bus r eg ;
reg next out r eady ;
reg [ 7 : 0 ] next out bus ;

parameter TROOPER CODE=8’b00000000 ;
parameter BOMB CODE=8’b00000001 ;
parameter HELI1 CODE=8’b00000010 ;
parameter HELI2 CODE=8’b00000011 ;
parameter EXPLODE1 CODE=8’b00000100 ;
parameter EXPLODE2 CODE=8’b00000101 ;
parameter GUN1 CODE=8’b00000110 ;
parameter GUN2 CODE=8’b00000111 ;
parameter HELI1REV CODE=8’b00001000 ;
parameter HELI2REV CODE=8’b00001001 ;
parameter BULLET CODE=8’b00001010 ;
parameter END CODE=8’b11000000 ;

parameter HEIGHT HELI LEFT=7’b0000000 ;
parameter HEIGHT HELI RIGHT=7’b0001000 ;
parameter DROP OFFSET=7’b0000110 ;
parameter ORIGIN HELI LEFT=8’b01111111 ;
parameter ORIGIN HELI RIGHT=8’b11110001 ;
parameter FIRSTHELI=5’b00000 ;
parameter FIRSTOBJECT=5’b01000 ;

parameter INIT=0;
parameter IDLE=1;
parameter WAIT=2;
parameter GUN ONE1=3;
parameter GUN ONE2=4;
parameter GUN ONE3=5;
parameter GUNTWO1=6;
parameter GUNTWO2=7;
parameter GUNTWO3=8;
parameter OBJECT=9;
parameter OBJECT WAIT=10;
parameter OBJECT1=11;
parameter OBJECT2=12;
parameter OBJECT3=13;
parameter OBJECT EXPLODED1=14;
parameter OBJECT EXPLODED2=15;
parameter OBJECT EXPLODED3=16;
parameter HELI=17;
parameter HELI WAIT=18;
parameter HELI ONE1=19;
parameter HELI ONE2=20;
parameter HELI ONE3=21;
parameter HELI TWO1=22;
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parameter HELI TWO2=23;
parameter HELI TWO3=24;
parameter BULLET=25;
parameter BULLET1=26;
parameter BULLET2=27;
parameter BULLET3=28;
parameter END=29;
parameter END2=30;

always @ ( posedge c lk )
begin
i f ( r e s e t )

begin
s ta t e<=INIT ;
count <=0;
out r eady reg <=0;
out bus reg <=0;
end

e l s e
begin
s ta t e<=next ;
count<=nextcount ;
r e t u rn s t a t e <=nex t r e t urn s t a t e ;
out r eady reg<=next out r eady ;
out bus reg<=next out bus ;
addr<=nextaddr ;
end

end

always @ ( s t a t e )
begin
nextaddr=addr ;
next=s ta t e ;
nextcount=count ;
next out r eady=out ready reg ;
next out bus=out bus r eg ;
n e x t r e t u rn s t a t e=r e t u rn s t a t e ;
case ( s ta t e )
INIT :

next=IDLE ;
IDLE :

i f ( s ta r toutput ) next=GUN ONE1;
WAIT:

begin
i f ( out r eque s t ==1) next=r e tu rn s t a t e ;
next out r eady=0;
end

GUN ONE1:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=GUN ONE2;
end

next out r eady=1;
next out bus=GUN1 CODE;
end

GUN ONE2:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=GUN ONE3;
end

next out r eady=1;
next out bus={1’b0 , p o s i t i o n }−8’b00000111 ;
end

GUN ONE3:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=GUNTWO1;
end

next out r eady=1;
next out bus=8’b01010011 ;
end

GUNTWO1:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=GUNTWO2;
end

next out r eady=1;
next out bus=GUN2 CODE;
end

GUNTWO2:
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begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=GUNTWO3;
end

next out r eady=1;
next out bus={1’b0 , p o s i t i o n }+8’b00000001 ;
end

GUNTWO3:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT;
nextcount =0;
end

next out r eady=1;
next out bus=8’b01010011 ;
end

OBJECT:
begin
i f ( count<numobject )

begin
next=OBJECT WAIT;
nextaddr=FIRSTOBJECT+count ;
end

e l s e
begin
next=HELI ;
nextcount =0;
end

end
OBJECT WAIT:

next=OBJECT1 ;
OBJECT1 :

begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT2 ;
end

next out r eady=1;
i f (q[20]==0 && q [0]==0) next out bus=TROOPERCODE;
e l s e i f ( q[20]==0 && q [0]==1) next out bus=BOMB CODE;
e l s e next out bus=EXPLODE1 CODE;
end

OBJECT2 :
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT3 ;
end

next out r eady=1;
i f (q [20]==0) next out bus={1’b0 , q [ 1 9 : 1 3 ] } ;
e l s e next out bus={1’b0 , q [19 :13 ]} −8 ’ b00000100 ;
end

OBJECT3 :
begin
i f ( out r eque s t==0)

begin
next=WAIT;
nextcount=count+1;
i f (q [20]==0) n e x t r e t u rn s t a t e=OBJECT;
e l s e n ex t r e t u rn s t a t e=OBJECT EXPLODED1;
end

next out r eady=1;
next out bus={1’b0 , q [ 1 2 : 6 ] } ;
end

OBJECT EXPLODED1:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT EXPLODED2;
end

next out r eady=1;
next out bus=EXPLODE2 CODE;
end

OBJECT EXPLODED2:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT EXPLODED3;
end

next out r eady=1;
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next out bus={1’b0 , q [ 19 : 13 ]}+8 ’ b00000100 ;
end

OBJECT EXPLODED3:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=OBJECT;
end

next out r eady=1;
next out bus={1’b0 , q [ 1 2 : 6 ] } ;
end

HELI :
begin
i f ( count<numheli )

begin
next=HELI WAIT;
nextaddr=FIRSTHELI+count ;
end

e l s e
begin
next=BULLET;
nextcount =0;
end

end
HELI WAIT:

next=HELI ONE1 ;
HELI ONE1:

begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI ONE2;
end

next out r eady=1;
i f (q[20]==0 && q [19]==0) next out bus=HELI1 CODE;
e l s e i f ( q[20]==0 && q [19]==1) next out bus=HELI2REV CODE;
e l s e next out bus=EXPLODE1 CODE;
end

HELI ONE2:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI ONE3;
end

next out r eady=1;
next out bus=q [ 1 8 : 1 1 ] ;
end

HELI ONE3:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI TWO1;
end

next out r eady=1;
i f (q [19]==0) next out bus={1’b0 ,HEIGHT HELI LEFT} ;
e l s e i f ( q [19]==1) next out bus={1’b0 ,HEIGHT HELI RIGHT} ;
end

HELI TWO1:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI TWO2;
end

next out r eady=1;
i f (q[20]==0 && q [19]==0) next out bus=HELI2 CODE;
e l s e i f ( q[20]==0 && q [19]==1) next out bus=HELI1REV CODE;
e l s e next out bus=EXPLODE2 CODE;
end

HELI TWO2:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI TWO3;
end

next out r eady=1;
next out bus=q [18 :11 ]+8 ’ b00001000 ;
end

HELI TWO3:
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=HELI ;
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nextcount=count+1;
end

next out r eady=1;
i f (q [19]==0) next out bus={1’b0 ,HEIGHT HELI LEFT} ;
e l s e i f ( q [19]==1) next out bus={1’b0 ,HEIGHT HELI RIGHT} ;
end

BULLET:
i f ( count [2 :0 ] < numbullet && count==5’b00000 && (& bu l l e t 1 [ 6 : 0 ] ) != 1 ) next=BULLET1 ;
e l s e i f ( count [2 :0 ] < numbullet && count==5’b00001 && (&bu l l e t 2 [ 6 : 0 ] ) != 1 ) next=BULLET1 ;
e l s e i f ( count [2 :0 ] < numbullet && count==5’b00010 && (&bu l l e t 3 [ 6 : 0 ] ) != 1 ) next=BULLET1 ;
e l s e i f ( count [2 :0 ] < numbullet && count==5’b00011 && (&bu l l e t 4 [ 6 : 0 ] ) != 1 ) next=BULLET1 ;
e l s e i f ( count [2 :0 ] < numbullet )

begin
next=BULLET;
nextcount=count+1;
end

e l s e next=END;
BULLET1 :

begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=BULLET2 ;
end

next out r eady=1;
next out bus=BULLET CODE;
end

BULLET2 :
begin
i f ( out r eque s t==0)

begin
next=WAIT;
ne x t r e t u rn s t a t e=BULLET3 ;
end

next out r eady=1;
i f ( count==5’b00000 ) next out bus={1’b0 , bu l l e t 1 [ 1 3 : 7 ] } ;
i f ( count==5’b00001 ) next out bus={1’b0 , bu l l e t 2 [ 1 3 : 7 ] } ;
i f ( count==5’b00010 ) next out bus={1’b0 , bu l l e t 3 [ 1 3 : 7 ] } ;
i f ( count==5’b00011 ) next out bus={1’b0 , bu l l e t 4 [ 1 3 : 7 ] } ;
end

BULLET3 :
begin
i f ( out r eque s t==0)

begin
next=WAIT;
nextcount=count+1;
ne x t r e t u rn s t a t e=BULLET;
end

next out r eady=1;
i f ( count==5’b00000 ) next out bus={1’b0 , bu l l e t 1 [ 6 : 0 ] } ;
i f ( count==5’b00001 ) next out bus={1’b0 , bu l l e t 2 [ 6 : 0 ] } ;
i f ( count==5’b00010 ) next out bus={1’b0 , bu l l e t 3 [ 6 : 0 ] } ;
i f ( count==5’b00011 ) next out bus={1’b0 , bu l l e t 4 [ 6 : 0 ] } ;
end

END:
begin
i f ( out r eque s t ==0) next=END2;
next out r eady=1;
next out bus=END CODE;
end

END2:
begin
next=IDLE ;
next out r eady=0;
end

endcase
end

a s s i g n out ready=out ready reg ;
a s s i g n out bus=out bus r eg ;
a s s i g n out addr=addr ;
a s s i g n outputdone=( s t a t e==END2) ;

a s s i g n t e s t e r [ 4 : 0 ]= numheli ; //TESTER

endmodule
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Listing 4: Random number generation
module random ( clk , in , rand ) ;

input c lk ;
input in ;
output [ 7 : 0 ] rand ;

reg [ 7 : 0 ] rand reg ;
reg [ 7 : 0 ] next rand ;
reg [ 2 : 0 ] s t a t e ;
reg [ 2 : 0 ] next ;

always @ ( posedge c lk )
begin
s ta t e<=next ;
rand reg<=next rand ;
end

parameter BIT0=0;
parameter BIT1=1;
parameter BIT2=2;
parameter BIT3=3;
parameter BIT4=4;
parameter BIT5=5;
parameter BIT6=6;
parameter BIT7=7;

always @ ( s t a t e )
begin
next rand=rand reg ;
case ( s ta t e )
BIT0 :

begin
next=BIT1 ;
next rand [0 ]= rand reg [ 0 ] ˆ in ;
end

BIT1 :
begin
next=BIT2 ;
next rand [1 ]= rand reg [ 1 ] ˆ in ;
end

BIT2 :
begin
next=BIT3 ;
next rand [2 ]= rand reg [ 2 ] ˆ in ;
end

BIT3 :
begin
next=BIT4 ;
next rand [3 ]= rand reg [ 3 ] ˆ in ;
end

BIT4 :
begin
next=BIT5 ;
next rand [4 ]= rand reg [ 4 ] ˆ in ;
end

BIT5 :
begin
next=BIT6 ;
next rand [5 ]= rand reg [ 5 ] ˆ in ;
end

BIT6 :
begin
next=BIT7 ;
next rand [6 ]= rand reg [ 6 ] ˆ in ;
end

BIT7 :
begin
next=BIT0 ;
next rand [7 ]= rand reg [ 7 ] ˆ in ;
end

endcase
end

a s s i g n rand=rand reg ;

endmodule
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C Selected Verilog code for Video Output subsystem

Listing 5: Top level module

module video output ( c lk ,
r e s e t ,
ext addr , / / [ 1 2 : 0 ]
nfs ,
nms ,
ext data , / / [ 7 : 0 ]
G b , W b,

ca l ib ,
request ,
ready ,
p ixe l s , / / [ 7 : 0 ]
endframe ,

game ,
do game sim ) ;

input c lk ;
input r e s e t ;
inout [ 1 2 : 0 ] ext addr ;
input n f s ;
output nms ; reg nms ;
inout [ 7 : 0 ] ex t data ;
output G b ;
output W b;

input c a l i b ;
output r eque s t ; reg r eque s t ;
input ready ; reg ready sync ;
input [ 7 : 0 ] p i x e l s ; reg [ 7 : 0 ] p i x e l s s y nc ;
input endframe ; reg endframe sync ;

input game ;
input do game sim ;

reg read , wr i t e ;
wire [ 2 : 0 ] c n t r s t a t e ;
wire data oen , addre s s l oad , data sample ;
reg [ 1 2 : 0 ] ram address ;
reg [ 7 : 0 ] da ta wr i t e ;
reg [ 7 : 0 ] data read ;
reg addre s s oen ;
c o n t r o l l e r mycont ro l l e r ( c lk , 1 , G b , W b , ram address ,

ext addr , data write , data read , ext data , read ,
write , c n t r s t a t e , data oen , addre s s l oad , data sample ,
addre s s oen ) ;

reg [ 6 : 0 ] image address ;
wire [ 1 5 : 0 ] image q ;
image rom image rom1 ( image address , image q ) ;

reg [ 6 : 0 ] gun address ;
wire [ 1 5 : 0 ] gun q ;
gun rom2 gun rom21 ( gun address [ 4 : 0 ] , gun q ) ;

reg [ 6 : 0 ] d i g i t s a d d r e s s ;
wire [ 7 : 0 ] d i g i t s q ;
d ig i t s r om dig i t s rom1 ( d i g i t s add r e s s , d i g i t s q ) ;

wire s im ready ;
wire [ 7 : 0 ] s im p i x e l s ;
gamesim mygamesim( c lk ,

r e s e t ,
do game sim ,

request ,
sim ready ,
s im p i x e l s ) ;

reg [ 5 : 0 ] s t a t e ;
parameter DISPLAY = 0;
parameter START WRITING = 1;

parameter WRITE CALIB = 2;

28



parameter WAIT READY = 3;
parameter GRAB DATA = 4;
parameter GRAB DATAOTHER = 5;
parameter WRITE 2 = 6;
parameter WRITE 3 = 7;
parameter WRITE 4 = 8;

parameter BLANKGAME = 19 ;
parameter BLANK GAME 2 = 20 ;
parameter BLANK GAME 3 = 21 ;
parameter BLANK GAME 4 = 22 ;

parameter WRITE GAME = 9;
parameter WAIT GAME READY = 10 ;
parameter GRAB GAME DATA = 11 ;
parameter WRITE GAME 2 = 12 ;
parameter WRITE GAME 3 = 13 ;
parameter WRITE GAME 4 = 14 ;
parameter WRITE GAME 5 = 15 ;
parameter WRITE GAME 6 = 16 ;
parameter WRITE GAME 7 = 17 ;

reg [ 7 : 0 ] h a l f l i n e ;
reg [ 7 : 0 ] wr i t e byte1 ;
reg [ 7 : 0 ] wr i t e byte2 ;
reg which byte ;
parameter REVERSE = 27 ;
parameter SMOOTH WRITE = 23 ;
parameter SMOOTHREAD = 24 ;
parameter SMOOTH READ 2 = 25 ;
parameter SMOOTH WRITE 2= 26;

reg [ 1 : 0 ] t ex t count ;
parameter WRITE TEXT = 28 ;
parameter WRITE TEXT 2 = 29 ;
parameter WRITE TEXT 3 = 30 ;
parameter WRITE TEXT 4 = 31 ;
parameter WRITE TEXT 5 = 32 ;
parameter WRITE TEXT 6 = 33 ;
parameter WRITE TEXT 7 = 34 ;

parameter DONE WRITING = 18 ;

reg [ 7 : 0 ] g rabbed p ixe l s ;
reg grabbed other ;

reg [ 7 : 0 ] type ;
reg [ 7 : 0 ] xpos ;
reg [ 7 : 0 ] ypos ;
reg [ 1 : 0 ] game grabbed count ;
reg [ 3 : 0 ] d i g i t ;

reg [ 3 : 0 ] row ;
reg wh ich ha l f ;
wire [ 5 : 0 ] th ing ;
a s s i gn thing = ( xpos [ 7 : 2 ] + which ha l f + 1 ) ;

always @( posedge c lk ) begin
i f ( do game sim ) begin

ready sync <= sim ready ;
p ix e l s s yn c <= s im p i x e l s ;

end
e l s e begin

ready sync <= ready ;
p ix e l s s yn c <= p i x e l s ;

end
endframe sync <= endframe ;

i f ( r e s e t ) begin
nms <= 0;
addre s s oen <= 1;
read <= 0;
wr i t e <= 0;
ram address <= 13 ’d 0 ;
r eque s t <= 0;
s ta t e <= START WRITING;

end
e l s e i f ( s t a t e != DISPLAY) begin

// wr i t e the d i s p lay ram
case ( s t a t e )

START WRITING: begin
nms <= 0;
addre s s oen <= 1;
read <= 0;
wr i t e <= 0;
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ram address <= 13 ’d 0 ;
r eque s t <= 0;
i f ( c a l i b )

s t a t e <= WRITE CALIB ;
e l s e i f ( game ) begin

game grabbed count <= 2’d 0 ;
s t a t e <= BLANKGAME;

end
end

// ∗∗∗ c a l i b r a t i o n ∗∗∗
WRITE CALIB : begin

i f ( ! ready sync ) begin
reque s t <= 1;
s t a t e <= WAIT READY;

end
end

WAIT READY: begin
i f ( ready sync ) begin

s t a t e <= GRAB DATA;
end

end

GRAB DATA: begin
grabbed p ixe l s <= p i x e l s ;
da ta wr i t e [7] <= p ix e l s [ 7 ] ;
da ta wr i t e [6] <= p ix e l s [ 7 ] ;
da ta wr i t e [5] <= p ix e l s [ 6 ] ;
da ta wr i t e [4] <= p ix e l s [ 6 ] ;
da ta wr i t e [3] <= p ix e l s [ 5 ] ;
da ta wr i t e [2] <= p ix e l s [ 5 ] ;
da ta wr i t e [1] <= p ix e l s [ 4 ] ;
da ta wr i t e [0] <= p ix e l s [ 4 ] ;
grabbed other <= 0;
r eque s t <= 0;
i f ( endframe sync )

s t a t e <= DONE WRITING;
e l s e

s t a t e <= WRITE 2 ;
end

GRAB DATA OTHER: begin
data wr i t e [7] <= grabbed p ixe l s [ 3 ] ;
da ta wr i t e [6] <= grabbed p ixe l s [ 3 ] ;
da ta wr i t e [5] <= grabbed p ixe l s [ 2 ] ;
da ta wr i t e [4] <= grabbed p ixe l s [ 2 ] ;
da ta wr i t e [3] <= grabbed p ixe l s [ 1 ] ;
da ta wr i t e [2] <= grabbed p ixe l s [ 1 ] ;
da ta wr i t e [1] <= grabbed p ixe l s [ 0 ] ;
da ta wr i t e [0] <= grabbed p ixe l s [ 0 ] ;
grabbed other <= 1;
s t a t e <= WRITE 2 ;

end

WRITE 2 : begin
wr i t e <= 1;
s t a t e <= WRITE 3 ;

end
WRITE 3 : begin

wr i t e <= 0;
s t a t e <= WRITE 4 ;

end
WRITE 4 : begin

i f ( c n t r s t a t e == 3 ’b 0 ) begin
i f ( ram address < 13 ’d 3 0 7 1 ) begin

ram address <= ram address + 13 ’d 1 ;
i f ( grabbed other )

s t a t e <= WRITE CALIB ;
e l s e

s t a t e <= GRAB DATA OTHER;
end
e l s e

s ta t e <= DONE WRITING;
end

end
// ∗∗∗ end o f c a l i b r a t i o n ∗∗∗

// ∗∗∗ game play ∗∗∗
BLANKGAME: begin

i f ( ( ram address < 13 ’d 3 2 ) | |
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( ram address >= 13 ’d 3 0 4 0 ) )
data wr i t e <= 8’b 11111111 ;

e l s e i f ( ram address [ 4 : 0 ] == 5 ’b 00000)
data wr i t e <= 8’b 11000000 ;

e l s e i f ( ram address [ 4 : 0 ] == 5 ’b 11111)
data wr i t e <= 8’b 00000011 ;

e l s e
data wr i t e <= 8’b 00000000 ;

s t a t e <= BLANK GAME 2;
end
BLANK GAME 2 : begin

wr i t e <= 1;
s t a t e <= BLANK GAME 3;

end
BLANK GAME 3 : begin

wr i t e <= 0;
s t a t e <= BLANK GAME 4;

end
BLANK GAME 4 : begin

i f ( c n t r s t a t e == 3 ’b 0 ) begin
i f ( ram address < 13 ’d 3 0 7 1 ) begin

ram address <= ram address + 13 ’d 1 ;
s ta t e <= BLANKGAME;

end
e l s e begin

s ta t e <= WRITE GAME;
end

end
end

WRITE GAME: begin
i f ( ! ready sync ) begin

reque s t <= 1;
s t a t e <= WAIT GAME READY;

end
end

WAIT GAME READY: begin
i f ( ready sync ) begin

s t a t e <= GRAB GAME DATA;
end

end

GRAB GAME DATA: begin
i f ( game grabbed count == 2 ’d 0 )

type <= p ix e l s s yn c ;
e l s e i f ( game grabbed count == 2 ’d 1 )

xpos <= p ix e l s s yn c ;
e l s e i f ( game grabbed count == 2 ’d 2 )

ypos <= p ix e l s s yn c ;
game grabbed count <= game grabbed count + 2 ’d 1 ;
r eque s t <= 0;

i f ( p i x e l s s yn c == 8 ’b 11000000)
s t a t e <= DONE WRITING;

e l s e
i f ( game grabbed count < 2 ’d 2 )

s ta t e <= WRITE GAME;
e l s e

s ta t e <= WRITE GAME 2;
end

WRITE GAME 2 : begin
ram address <= {ypos [ 7 : 0 ] , 5 ’ b 00000} + xpos [ 7 : 2 ] ;

// image address <= type [ 6 : 0 ] ∗ 7 ’ d 1 2 ;
// gun address <= ( type [6 : 0 ] −7 ’ d 6 ) ∗ 7 ’ d 1 2 ;
i f ( type < 8 ’d 6 )

image address <= type [ 6 : 0 ] ∗ 7 ’ d 1 2 ;
e l s e i f ( type == 8 ’d 8 )

image address <= 7’d 24 ;
e l s e i f ( type == 8 ’d 9 )

image address <= 7’d 36 ;
gun address <= ( type [6 : 0 ] − 7 ’ d 6 ) ∗ 7 ’ d 1 2 ;

i f ( ( type == 8 ’d 1 1 | | type == 8 ’d 1 2 ) ) begin
s t a t e <= WRITE TEXT;

end
e l s e begin

row <= 0;
s t a t e <= WRITE GAME 3;

end
end

WRITE GAME 3 : begin
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which ha l f <= 0;
s t a t e <= WRITE GAME 4;

end

WRITE GAME 4 : begin
i f ( ! wh i ch ha l f ) begin

i f ( type < 8 ’d 6 )
h a l f l i n e <= image q [ 1 5 : 8 ] ;

e l s e i f ( type == 8 ’d 6 | | type == 8 ’d 7 )
h a l f l i n e <= gun q [ 1 5 : 8 ] ;

e l s e i f ( type == 8 ’d 8 | | type == 8 ’d 9 )
h a l f l i n e <= image q [ 7 : 0 ] ;

e l s e i f ( type == 8 ’d 10)
i f ( row == 4 ’d 0 )

h a l f l i n e <= 8’b 11000000 ;
e l s e

h a l f l i n e <= 8’b 00000000 ;
end
e l s e begin

i f ( type < 8 ’d 6 )
h a l f l i n e <= image q [ 7 : 0 ] ;

e l s e i f ( type == 8 ’d 6 | | type == 8 ’d 7 )
h a l f l i n e <= gun q [ 7 : 0 ] ;

e l s e i f ( type == 8 ’d 8 | | type == 8 ’d 9 )
h a l f l i n e <= image q [ 1 5 : 8 ] ;

e l s e i f ( type == 8 ’d 10)
h a l f l i n e <= 8’b 00000000 ;

end
s t a t e <= REVERSE;

end

REVERSE: begin
i f ( type == 8 ’d 8 | | type == 8 ’d 9 ) begin

h a l f l i n e [0] <= ha l f l i n e [ 7 ] ;
h a l f l i n e [1] <= ha l f l i n e [ 6 ] ;
h a l f l i n e [2] <= ha l f l i n e [ 5 ] ;
h a l f l i n e [3] <= ha l f l i n e [ 4 ] ;
h a l f l i n e [4] <= ha l f l i n e [ 3 ] ;
h a l f l i n e [5] <= ha l f l i n e [ 2 ] ;
h a l f l i n e [6] <= ha l f l i n e [ 1 ] ;
h a l f l i n e [7] <= ha l f l i n e [ 0 ] ;

end
s t a t e <= SMOOTH WRITE;

end

SMOOTH WRITE: begin
case ( xpos [ 1 : 0 ] )

2 ’d 0 : begin
wr i t e byte1 <= h a l f l i n e [ 7 : 0 ] ;
wr i t e byte2 <= 8’b 00000000 ;

end
2 ’d 1 : begin

wr i t e byte1 <= {2 ’b 0 0 , h a l f l i n e [ 7 : 2 ] } ;
wr i t e byte2 <= { h a l f l i n e [ 1 : 0 ] , 6 ’ b 000000} ;

end
2 ’d 2 : begin

wr i t e byte1 <= {4 ’b 0 0 00 , h a l f l i n e [ 7 : 4 ] } ;
wr i t e byte2 <= { h a l f l i n e [ 3 : 0 ] , 4 ’ b 0000} ;

end
2 ’d 3 : begin

wr i t e byte1 <= {6 ’b 000000 , h a l f l i n e [ 7 : 6 ] } ;
wr i t e byte2 <= { h a l f l i n e [ 5 : 0 ] , 2 ’ b 0 0} ;

end
endcase
which byte <= 0;
s t a t e <= SMOOTHREAD;

end

SMOOTHREAD: begin
read <= 1;
s t a t e <= SMOOTH READ 2;

end

SMOOTH READ 2: begin
read <= 0;
s t a t e <= SMOOTH WRITE 2;

end

SMOOTH WRITE 2 : begin
i f ( c n t r s t a t e == 3 ’b 0 ) begin

i f ( ! which byte )
data wr i t e <= wr i t e byte1 | data read ;

e l s e
data wr i t e <= wr i t e byte2 | data read ;

//don ’ t d i sp la y par t s that are out o f bounds
i f ( ( ram address [ 12 : 5 ] == ( ypos+row ) ) )
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s ta t e <= WRITE GAME 5;
e l s e

s ta t e <= WRITE GAME 7;

end
end

WRITE GAME 5 : begin
wr i t e <= 1;
s t a t e <= WRITE GAME 6;

end

WRITE GAME 6 : begin
wr i t e <= 0;
s t a t e <= WRITE GAME 7;

end

WRITE GAME 7 : begin
i f ( c n t r s t a t e == 3 ’b 0 ) begin

i f ( ! which byte ) begin
// ram address <= ram address + 13 ’d 1 ;
ram address <= {ypos [ 7 : 0 ] , 5 ’ b 00000} + thing + (13 ’ d 3 2 ∗ row ) ;
which byte <= 1;
s ta t e <= SMOOTHREAD;

end
e l s e begin

i f ( ! wh i ch ha l f ) begin
// ram address <= ram address + 13 ’d 1 ;
wh i ch ha l f <= 1;
s t a t e <= WRITE GAME 4;

end
e l s e begin

i f ( row < 11) begin
ram address <= ram address + 13 ’d 3 0 ;
image address <= image address + 7 ’d 1 ;
gun address <= gun address + 7 ’d 1 ;
row <= row + 4 ’d 1 ;
s t a t e <= WRITE GAME 3;

end
e l s e begin

game grabbed count <= 2’d 0 ;
s t a t e <= WRITE GAME;

end
end

end
end

end

WRITE TEXT: begin
i f ( type == 8 ’d 11)

ram address <= 13 ’d 28 5 1 ;
e l s e

ram address <= 13 ’d 28 7 9 ;
d i g i t <= xpos − ( xpos / 8 ’ d 1 0 ) ∗ 8 ’ d 1 0 ;
xpos <= xpos / 8 ’ d 1 0 ;
t ex t count <= 2’d 0 ;
s t a t e <= WRITE TEXT 2 ;

end

WRITE TEXT 2 : begin
d i g i t s a dd r e s s <= d i g i t ∗ 7 ’ d 7 ;
s t a t e <= WRITE TEXT 3 ;

end

WRITE TEXT 3 : begin
s t a t e <= WRITE TEXT 4 ;

end

WRITE TEXT 4 : begin
data wr i t e <= d i g i t s q ;
s t a t e <= WRITE TEXT 5 ;

end

WRITE TEXT 5 : begin
wr i t e <= 1;
s t a t e <= WRITE TEXT 6 ;

end

WRITE TEXT 6 : begin
wr i t e <= 0;
s t a t e <= WRITE TEXT 7 ;

end

WRITE TEXT 7 : begin
i f ( c n t r s t a t e == 3 ’b 0 ) begin

i f ( t ex t count < 2 ’d 2 ) begin
ram address <= ram address − 13 ’d 1 ;
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d i g i t <= xpos − ( xpos / 8 ’ d 1 0 ) ∗ 8 ’ d 1 0 ;
xpos <= xpos / 8 ’ d 1 0 ;
t ex t count <= text count + 2 ’d 1 ;
s ta t e <= WRITE TEXT 2;

end
e l s e begin

s ta t e <= WRITE GAME;
end

end
end
// ∗∗∗ end o f game play ∗∗∗

DONE WRITING: begin
nms <= 1;
addre s s oen <= 0;
read <= 1;
s t a t e <= DISPLAY;

end
de f au l t : beg in

s t a t e <= START WRITING;
end

endcase
end
e l s e begin

// l e t the d i s p lay chip read from the ram
i f ( ! n f s ) begin

s t a t e <= START WRITING;
end
e l s e begin
end

end
end

endmodule
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