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Overview 
 
Base Control Station (Ryan Manuel) 
 
The goal of this part of the lab was to create a base station that would take in input from a 
PlayStation controller to control the rover.  In addition, the base control station records a 
history of the robots movements so that the user can playback this history in reverse.   
 
The PlayStation controller controls the rover in a fairly straightforward manner.  The four 
directional controls on the controller tell the rover which direction to go and the other 
buttons provide control for the various tools on the rover like the light and claw.  The 
station takes the input from the controller and sends appropriate commands to the rover. 
 
At the same time, the rover saves the motor speeds in a RAM.  To save space the base 
station records only the motor speeds and how long the rover has been going at that speed.  
If the rover gets stuck and wants to reverse its history, it simply reads the history in reverse 
out of the RAM and reverses the motor speeds for the same length of time. 
 
Wireless Interface (Ryan Damico) 
 
The rover depends on a wireless link with the base station to receive movement commands 
and transmit sensor data.  Wireless data transmission is implemented with a Chipcon 
CC1010 integrated RF transceiver and microcontroller.  The microcontroller runs C code, 
and acts as the major FSM for the entire system.  Doing so allowed great flexibility in quickly 
debugging the myriad problems and complexities associated with the transceiver.  The 
transceiver controls two major modules on the FPGA, the transmit interface module and the 
receive interface module.  The transmit interface module is invoked by the microcontroller 
when data needs to be transmitted, and the receive interface module is invoked when a 
packet has been received and must be handed off to the FPGA. 
 
The major FSM for the system is a simple send, receive, send, receive loop.  This simple 
setup was sufficient to instruct the rover and base station to send data and receive 
commands regularly, though many hours were spent writing C code that implemented  the 
hardware send and receive abstractions. 
 
Rover (Ryan Damico) 
 
The wireless rover was built from LEGOs and 
designed specifically for 6.111.  It features dual 
treads with independent, speed-adjustable motors, 
a high torque gripping claw with rubber grips, an 
inclination control to pitch the claw up and down 
to prevent dragging of objects, a search light, 
three integrated protoboards, dual battery bays, 
and an independent wireless video camera system. 
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Mini-FPGA (Ryan Damico) 
 
The wireless rover utilizes a custom-built mini-
FPGA to allow it to be truly mobile.  Based on 
the schematics for the FPGAs used in lab kits, the 
mini-FPGA includes an Altera Flex10K10 and 
EPROM, JTAG programming connector, 
swappable crystal oscillator, 5 debugging LEDs, 
and a 50-connector adapter offering access to 20 
I/O pins, power, and the onboard oscillator.  The 
mini-FPGA will be made available to future 6.111 
students allowing them to design powerful, 
portable systems. 
  
 
Module Description and Implementation 
 
Base Control Station (Ryan Manuel) 
 
While designing this traffic control system, it was easiest to break the system up into several 
modules and interconnect them.  This modularization made the system easier to visualize  
and describe on paper.  It also 
allowed for easier testing and 
debugging because one could just 
debug and test each small module 
individually as opposed to 
debugging and testing one  
big system.  The breakdown of the 
system can be seen in Error! 
Reference source not found..  
There is an overlaying major/minor 
FSM structure that will be discussed 
more below.  There is also a 
PlayStation controller and RAM that 
are external to the FPGA.  Also 
there are modules whose jobs were 
to format and convert data that is either sent to or received from the wireless module.  Lastly 
we had a simple display module that was going to display temperature values via hex LEDs 
and heading of the robot via 8 LEDs located in the compass positions. 
 
Major Finite State Machine Module 
 
The control for the base station relies on a major/minor FSM structure.  The FSM cycles 
through each state at 20 Hz.  In each state other minor FSMs are initiated and then the 
major FSM waits around until the minor FSM is finished before it moves on to the next 
FSM. 
 

FSM 
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Figure 1: Block Diagram for Base Station 
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The basic control is fairly simple and for the sake of brevity, the FSM diagram is omitted.  
The FSM waits in the idle state until it receives a sample signal.  At this point the FSM starts 
the controller FSM.  Then depending on whether a user has indicated they want to replay the 
history or not, the FSM either moves to the store data state or replay state.  Once either of 
these have finished, the FSM moves back to the IDLE state. 
 
PlayStation Controller Finite State Machine 
 
The PlayStation Controller FSM is in charge of controlling the communication between the 
base station and the PlayStation Controller.  The interface to the PlayStation Controller is 
fairly simple.  Data is sent between the controller and the FPGA serially in groups of eight 
bits.  In between each byte an ack signal is sent from the controller to the FPGA to let the 
FPGA know it is ready for the next round of eight bits. 
 
The FSM begins in an IDLE state and waits around until it hears a start signal.  When the 
FSM receives this signal, it moves to the INIT_CONTROLLER state and begins a 
handshaking process between the controller and the base station.  The handshaking process 
begins when the FPGA sets the att signal low and sends 0x01 to the controller.  This gets 
the controller’s attention and initializes the controller.  After the FPGA receives an ack from 
the controller, the FSM moves into the REQUEST_DATA state where it sends 0x42 to the 
controller telling the controller to send its button data.  After another ack signal, the FPGA 
moves to GET_READY_FOR_DATA state where it waits for the controller to send it a 
byte signal letting the FPGA know that the data is coming.  This ends the handshaking 
process. 
 
After an ack is received in the GET_READY_FOR_DATA state, the FSM moves into the 
READ_BUTTONS1 state where it receives information on several of the buttons from the 
controller.  The FSM waits for another ack and then receives data on more buttons.  After 
another ack and another round of data the controller is finally finished and without waiting 
for a further ack the FSM sets att high and switches back to the IDLE state.   
 

 
Figure 2: FSM for the PlayStation Controller 
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The entire process can be seen visually in Figure 2. 
 
 
Stack Finite State Machine 
 
The job of the Stack Finite State Machine is to implement a stack interface to the RAM.  
The stack allows two operations: push and pop.  Push first adds the current motor speeds to 
the RAM.  The motor speeds are stored as one eight bit piece of data comprised of four bits 
of right motor data and four bits of left motor data.  After the speeds are added to the RAM, 
the push operation then increments the top of the stack by one and adds the duration of the 
motor speeds.  The duration is also an eight bit data value that represents the number of 
cycles that the rover had been traveling at the motor speeds that were just stored.  Finally, 
the top of the stack is again incremented. 
 
Pop simply reverses the process of a push.  First, the duration of the motor speeds is 
removed from the RAM and the top of the stack is decremented.  Then, the motor speeds 
themselves are read from the RAM and the top of the stack is decremented again.  
 
See Figure 3. 
 

 
Figure 3: Diagram Stack FSM 

 
Store Data Finite State Machine 
 
The Store Data FSM is in charge of recording the history of the rover’s movements.  Each 
time start is set high for this FSM, the FSM checks if the rover’s current speed is the same as 
the rover’s previous speed.  If it is, then the FSM simply increments a duration counter.  
Otherwise, the FSM initiates a push on the Stack FSM with the old motor speeds and the 
old duration counter as the values being pushed on the stack. 
 
If the user has just requested a replay of history, then the FSM pushes the old motor speeds 
and the old duration counter right away.  This is because the system is about ready to start a 
replay and needs to have the most current data stored in the RAM in order to accurately 
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backtrack.  For the sake of brevity I won’t include a diagram of the FSM since it’s fairly 
simple.  It has an IDLE state, a DETERMINE_DATA state that figures out if information 
needs to be stored, and a WAIT_FOR_STORE state that waits for the memory to complete 
the storing process.  
 
Replay Finite State Machine 
 
The Replay FSM is in charge or playing back history for the user.  When start is set high for 
this FSM, the FSM checks to see if the user has requested a replay or if a replay is already 
underway.  If neither is the case, then the FSM goes back to IDLE. 
  
If a replay is underway or is about to be started, the FSM checks a counter to see if it is 0 
meaning the current set of motor speeds has been held for as long as it said in memory.  If 
the counter is positive, then the FSM decreases the counter by 1.  If the counter is 0, then 
another set of motor speeds and durations need to be popped from the stack.  
Consequently, the FSM moves to a state where it initiates a pop and waits for it to finish.  
Once finished, the FSM sets the counter to the duration retrieved from memory and the 
motor speeds to the speeds retrieved from memory. 
 
 
Wireless Transceiver (Ryan Damico) 
 
Data packet format 
 
During nominal operation, the rover and base station are constantly sending information 
back and forth over the wireless link.  This flow of data is responsible for regulating the 
rover’s mechanical operation, as well as returning sensor data from the rover to the base 
station.  Segmenting this data into packets in a way that is manageable and fault-tolerant 
ensures reliable operation of the rover. 
 
There are two types of data packets the rover and base station use to communicate: 
command packets and senor packets.  Command packets instruct the rover to operate in a 
specific way, controlling such parameters as motor speeds and state of the gripping claw.  
Sensor packets contain information gathered by the rover’s onboard sensors, including 
ambient temperature and heading.   
 
The size of both command packets and sensor packets is held constant at 5 bytes.  This 
design parameter was chosen so that each packet is long enough to contain an entire rover 
command or set of sensor values.  This makes each packet independent of the next, making 
the system fault-tolerant of dropped packets, a common problem in wireless systems.  By 
sending command and sensor information in complete chunks, the loss of one or several 
packets will not affect the ability to decipher future packets.  The rover and base station are 
designed to only update their systems on reception of a complete packet, so in the event of 
transmission problems, the rover and base station will simply maintain their configuration 
until a verified packet is received. 
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The command and sensor data packets are segmented as shown in Figure 4.  The command 
data packet contains a complete snapshot of the rover’s operation.  The motor speeds are 
specified in sign-magnitude format (direction and speed), the search light is either on or off, 
the claw inclination is specified in magnitude, and the claw motion is either opening, closing, 
or idle.  The sensor data packet contains the 8-bit magnitude value of the temperature sensor 
(in Celsius, so there is no reasonable need for a sign bit).  Likewise the heading is an 8-bit 
representation of the rover’s direction as read from a Hall-effect analog compass.  It is 
noteworthy that the CC1010 inserts a 4-byte preamble at the beginning of each packet 
before transmission (the details of which are beyond the scope of this project).  However it 
is important to take into consideration because though transparent to the FPGA, this 
virtually doubles the size of each packet, reducing how quickly they can be transmitted. 
 

 
Figure 4: Command and sensor data packet breakdown 

 
Space not used by actual data is consolidated into a verification segment, and is used to 
protect against certain errors.  Because of the levels of abstraction between the CC1010 and 
FPGA, there are only two possible errors that can occur during data handling.  One is that 
the packet is malformed or lost during physical transmission or reception, which is handled 
by the CC1010.  The CC1010 includes automatic CRC error detection, and will not notify 
the FPGA of a received packet unless it knows it is intact.  The other is that the FPGA 
encounters a sync error while loading the transmit buffer or downloading the receive buffer 
(causes include motor-induced noise or wire inductances).  In this case it is possible that all 
or part of a packet is incorrectly received.  Since packets are transmitted from MSB to LSB, a 
sync error will affect all lower-order bits from where the error occurred.  Thus, by placing 
the verification data in this suspect region, the FPGA can be hard-coded to look for that 
value at the end of every packet.  If there was a sync error, the FPGA will know and discard 
the data. 
 
 
Transmit Interface Module 
 
When the wireless transceiver executes a transmit command, it reads data from a buffer in 
RAM and broadcasts its contents to the other transceiver.  Since this transmit buffer is 
located within the wireless transceiver but the data originates from the FPGA, the two units 
must transfer data before a transmission can occur.  The transmit interface module is 
responsible for communication between the two. 
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Figure 5: FPGA/Wireless transceiver interface 

 
Data is transferred from the FPGA to the wireless transceiver’s transmit buffer through a 
high speed synchronous serial connection.  Three data paths between modules facilitate 
transfering of data: a transmit request line (request_Tx_data), a sync pulse line (sync_in), and 
a data line (data_out) (see Figure 5).  Upon initiation of a transfer, the wireless transceiver 
sends a series of sync pulses to the FPGA.  The FPGA in turn sends the data to the 
transmitter one bit at a time, updating at the edge of each sync pulse.  This process lasts until 
all 40 bits of the 5-byte data packet have been uploaded (see Figure 6). 
 

 
Figure 6: Logic analyzer capture of synchronous serial interface 

 
The transmit interface module is controlled by a five-state FSM (see Figure 7).  It begins in 
the Idle state, where the sync pulse counter is reset.  The FSM then transitions into the Wait 
start state, looping back on itself until a request is received to upload data to the transmit  
  

sync pulses

data bits
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Figure 7: Transmit interface module FSM 

 
buffer.  When the request arrives via a pulse on the request_Tx_data input, the FSM 
transitions to the Update data state.  Here the 40-bit reg containing the data packet is shifted 
to the left by one and the most significant bit is sent to the data_out output.  After the data 
has been updated and the count incremented, the FSM continues to the Wait sync high state, 
followed by the Wait sync low state.  These states wait until the negative edge of the next sync 
pulse before continuing operation.  If there is still data left to load into the wireless 
transceiver (i.e. count < 39), the FSM returns to the Update data state and reiterates the loop.  
Otherwise the FSM returns to the Idle state, resets the count variable, and waits for the next 
transmit request. 
 
 
Receive Interface Module 
 
When the wireless transceiver receives a packet, it stores the incoming data into an onboard 
receive buffer stored in RAM.  To capture this information and distribute it to the 
appropriate subsystems, the FPGA must download the data from the transceiver.  The 
receive interface module is responsible for this function, using a high speed synchronous 
serial interface to download the data. 
 
The operation of the receive interface module is analogous to the transmit interface module, 
and is connected to the wireless transceiver in a similar way (see Figure 5).  Its FSM begins in 
an Idle state, resetting its counter and preparing to store the incoming 40 bits into two reg’s 
(Max+PlusII allows no more than 32 bits to be explicitly stored in one reg).  It then 
transitions into the Wait packet received state.  Here the FSM loops back on itself until the 
Rx_data_received input is pulsed high.  It then moves into the Delay state, waiting for 50 
microseconds and generating the low half of the sync pulse.  After the timer expires, the 
FSM transitions to the Send sync state.  Here it sets the sync output high and waits an 
additional 50 milliseconds (the minimum time required for the wireless’s microcontroller to 
pick up the signal).  Once the timer expires, the FSM moves into the Update data state, 
acquiring the data bit from the wireless transceiver and shifting it into an internal reg.  At 
this point the FSM will either transition back to the Delay state or the Idle state, depending if 
it has finished receiving all 40 bits. 
 

 
Figure 8: Receive interface module FSM 
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Design Methodology  
 
Base Control Station 
 
A balance needed to be maintained in the base control station between having a sampling 
rate that was too high or too low.  If the sampling rate was too high, then the major FSM 
might not have enough time to finish all of its work.  If the sampling rate was too low, then 
the rover might not seem responsive enough to what the user is doing with the PlayStation 
controller. 
 
The original design of our project called for a PlayStation II controller.  We felt that this 
controller’s analog joysticks would provide better control over the rover’s speed and 
direction.  After many unsuccessful attempts to get the PlayStation II controller to work and 
a bit more research, we discovered that the PlayStation II controller expects a clock rate that 
is much higher than any clock found in our lab kits (at least 35 Mhz or so).   
 
Since the old FPGA’s can’t handle clock rates much faster than 10 Mhz we decided to look 
into using a PlayStation I controller.  Fortunately, the PlayStation I controller worked.  There 
was still some trial and error to get the timing of commands and received data exactly right 
but we eventually arrived at a relatively stable configuration.  See 0 for more information 
about the interface of the PlayStation controller.   
 
One important design decision in this process was to include a timeout for the ack signal 
coming from the controller.  We would have periodic problems where the ack signal 
wouldn’t register in the FPGA and consequently the controller FSM would hang indefinitely.  
By including a timeout we were able to stop these periodic problems from causing the 
system to be completely unresponsive. 
 
 
Wireless Interface 
 
The design of the wireless rover incorporated many design practices and methodologies that 
were learned in labs one through three.   
 
The wireless microcontroller was made the major FSM in an effort to modularize the system 
in a way that would allow reliable operation as well as fast development and debugging.  By 
triggering the FPGA transmit and receive interfaces from the wireless microcontroller in a 
master/slave format, the Verilog modules were self-sufficient and did not need to be 
constantly reprogrammed.  They were designed first, and most of the time after that was 
spent designing and debugging the wireless code on the microcontroller. 
 
Serial transmission was chosen for loading data to and from the FPGA and wireless buffers 
to minimize the wiring and add complexity to the project.  FSMs had to be written both in 
Verilog and C, which was a unique task and involved generalizing principles learned in 6.111 
to environments outside of Verilog and Max+PlusII.  The results were very satisfying, and 
worked out well. 
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Error detection was a major part of the design philosophy for the wireless rover.  Adding 
support to detect occasional synchronization errors by comparing verification data worked 
well, and added reliability to the system.  However, the most dangerous error proved to be 
when a missing synchronization bit caused either the FPGA or wireless microcontroller to 
stall because it was waiting for a nonexistent bit to arrive.  Missing sync bits were very rare, 
but happened occasionally and caused the entire system to lock up.  In the case of the 
transmit interface module, which waits for 40 sync pulses before finishing, a missing sync 
would cause it to get stuck in the Wait sync high state.  This was corrected by having the 
wireless microcontroller hold the request_Tx_data signal high as long as it was send data to 
the FPGA.  The transmit interface module was then modified to still start on the rising edge 
of the request_Tx_data signal, but reset on its negative edge.  That way, even if it missed a 
sync pulse, the module would force a reset when the transceiver was done sending data.  The 
analogous case for the microcontroller’s receive code, which waits for 40 sync bits, involved 
setting interrupt handlers for watchdog timers, which forced a reset if all 40 bits were not 
received on time.  In retrospect, implementing a digital system across two programming 
languages and processing environments was an incredible opportunity to generalize concepts 
learned throughout the course. 
 
Testing 
 
Base Control Station 
 
The testing process for the base control station was relatively straightforward.  We began 
working on the interface to the PlayStation controller right from the start.  We first coded up 
the FSM for the controller.  Before testing it on the FPGA we needed to make sure that 
appropriate signals would be generated and received appropriately.  This was accomplished 
by simulating the FSM on MaxII+.   
 
Once we were relatively certain the FSM was functioning properly, we set up a simple 
program that would just sample the controller continuously and would light up LEDs 
whenever certain buttons were pressed.  At this point we started discovering how important 
pull-up resistors on two of the wires coming in from the controller were for any sort of 
consistent behavior of the system.  After a lot of trial and error we finally found a somewhat 
stable combination of pull-up resistors that worked. 
 
After testing the controller, we moved on to creating and testing the RAM interfaces.  
Before we tried to do anything too complex with the RAM we first tested the RAM itself 
using a program created in an earlier project.  We did this as a sanity check to make sure the 
RAM was functioning properly and to make sure our assumptions about the timing 
constraints of the RAM were correct. 
 
Once we were relatively certain the RAM was working, we started implementing the Stack, 
Replay, and Store_Data FSMs and the overall major FSM that would control everything.  
Admittedly here we skipped some physical testing of each FSM but we were able to 
successfully test each FSM on MaxII+.  It took some time to figure out the exact control 
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logic that was necessary to ensure that the replays would go all the way back to the beginning 
of memory, stop replaying, and then start sampling and storing controller data again.   
 
Once we were relatively certain all of the FSMs were working properly we set up a main 
program that incorporated everything and loaded it onto the FPGA.  To debug, our main 
program outputted speeds of the two motors as well as the current top of the stack on hex 
LEDs.  This was so that we could tell if the correct speeds were being read and written to 
the correct addresses during storing and replay.  Once we had everything working 
satisfactorily we were ready to incorporate the base station with the wireless module. 
 
Wireless Interface 
 
Testing was carried out by using the logic analyzer, status LEDs on the FPGA, and the 
wireless module’s built-in interface to Telnet applications.  The logic analyzer was used 
primarily to observe data transfers between the FPGA and wireless controller (see Figure 6), 
and helped spot an error in the receive interface module.  It was behaving erratically, 
displaying different data every time it communicated with the wireless unit.  On close 
inspection, the sync pulse train was seen to be “jumping” around, occasionally misaligning 
with the data bits.  This helped determined that an error in the Verilog code prevented the 
sync pulse timer from resetting, causing the first pulse to have a random duration, skewing 
all future pulses.  The visual indication of the LEDs was helpful in observing slow time-
varying signals that were perceptible by the human eye.  Examples included watching when 
the transmit or receive interface modules were invoked, or when a module got stuck in a 
certain state.  It also helped verify the functionality of the receive interface module by slowly 
scrolling the 40 received bits after they were transferred, to verify the transaction completed 
properly. 
 
The design and construction of the wireless rover was an excellent opportunity to apply the 
teachings and design practices learned in 6.111.  Tackling design problems similar to real-
world situations was an invaluable experience that will undoubtedly benefit future digital 
design projects. 
 
 

Appendix 
  
Selected Verilog Code 
 
Base Control Station 
 
Excerpts from controller_fsm.v 
 
Here is an example of how we received button data from the controller.  Enable_clock is 
a signal that enables the clock that is output to the controller.  The clock signal only goes 
to the controller when a data byte is being sent or received. 
 
assign select = data_receive_1[0]; 
assign start = data_receive_1[3]; 
assign up = data_receive_1[4]; 
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assign right = data_receive_1[5]; 
assign down = data_receive_1[6]; 
assign left = data_receive_1[7]; 
 
… 
 
ROUND4: 
begin 
 if(count < 7) 
 begin 
  next = ROUND4; 
  count_int = count + 1; 
  enable_clock_int = 1; 
  case(count) 
  0: 
   data_receive_1_int[0] = data_receive; 
  1: 
   data_receive_1_int[1] = data_receive; 
  2: 
   data_receive_1_int[2] = data_receive; 
  3: 
   data_receive_1_int[3] = data_receive; 
  4: 
   data_receive_1_int[4] = data_receive; 
  5: 
   data_receive_1_int[5] = data_receive; 
  6: 
   data_receive_1_int[6] = data_receive; 
  default 
   data_receive_1_int = data_receive_1; 
  endcase 
 end 
 else if(ack && count == 7) 
 begin 
  data_receive_1_int[7] = data_receive; 
  count_int = count + 1; 
  next = ROUND4; 
  enable_clock_int = 1; 
 end 
 else if(count == 7) 
 begin 
  data_receive_1_int[7] = data_receive; 
  count_int = 0; 
  next = WAITFORACK4; 
  enable_clock_int = 0; 
 end 
 else if(ack) 
 begin 
  count_int = count; 
  next = ROUND4; 
  enable_clock_int = 0; 
 end 
 else 
 begin 
  next = WAITFORACK4; 
  count_int = 0; 
  enable_clock_int = 0; 
 end 
end 

 

Excerpts from store_data.v 
 
Here is the section of code that deals with determining if data should be stored and if so, 
what. 
 
DETERMINE_DATA: 
begin 

if({right_motor, left_motor} == data_motor_prev) 
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 begin 
  if(!replay) 
  begin 
   next = IDLE; 
   write_data_length_int = write_data_length + 1; 
  end 
  else 
  begin 
   data_motor_prev_int = 0; 
   write_data_length_int = write_data_length + 1; 
   write_data_motor_int = data_motor_prev; 
   push_int = 1; 
   next = WAIT_FOR_STORE; 
  end 
 end 
 else 
 begin  
  if(!replay) 
  begin 
   data_motor_prev_int = {right_motor, left_motor}; 
   write_data_motor_int = data_motor_prev; 
   push_int = 1; 
   next = WAIT_FOR_STORE; 
  end 
  else 
  begin 
   data_motor_prev_int = 0; 
   write_data_motor_int = {right_motor, left_motor}; 
   write_data_length_int = 1; 
   push_int = 1; 
   next = WAIT_FOR_STORE; 
  end 
 end 
end 

 

Data on the PlayStation Interface 
 
This information is taken from http://www.gamesx.com/controldata/psxcont/psxcont.htm. 
 

The Playstation Controller Pinouts 
        LOOKING AT THE PLUG 
        ------------------------------- 
 PIN 1->| o  o  o | o  o  o | o  o  o | 
        \_____________________________/ 
     
PIN # USAGE  

1. DATA  
2. COMMAND  
3. N/C (9 Volts unused)  
4. GND  
5. VCC  
6. ATT  
7. CLOCK  
8. N/C  
9. ACK  

DATA  
Signal from Controller to PSX. 
This signal is an 8 bit serial transmission synchronous to the falling edge of 
clock (That is both the incoming and outgoing signals change on a high to low 
transition of clock. All the reading of signals is done on the leading edge to 
allow settling time.)  

COMMAND  
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Signal from PSX to Controller. 
This signal is the counter part of DATA. It is again an 8 bit serial transmission 
on the falling edge of clock.  

VCC  
VCC can vary from 5V down to 3V and the official SONY Controllers will still 
operate. The controllers outlined here really want 5V. 
The main board in the PSX also has a surface mount 750mA fuse that will blow if 
you try to draw to much current through the plug (750mA is for both left, right 
and memory cards).  

ATT  
ATT is used to get the attention of the controller. 
This signal will go low for the duration of a transmission. I have also seen this 
pin called Select, DTR and Command.  

CLOCK  
Signal from PSX to Controller. 
Used to keep units in sync.  

ACK  
Acknowledge signal from Controller to PSX. 
This signal should go low for at least one clock period after each 8 bits are sent 
and ATT is still held low. If the ACK signal does not go low within about 60 us 
the PSX will then start interrogating other devices.  

It should also be noted that this is a bus of sorts. This means that the wires are all 
tied together (except select which is seperate for each device). The DATA and ACK pins 
can be driven from any one of four devices. To avoid contentions on these lines they are 
open collectors and can only be driven low.  If used with an FPGA DATA and ACK must use a 
pull-up resistor.  

The PSX Controller Signals 

All transmissions are eight bit serial LSB first. All timing in the PSX controller bus is 
synchronous to the falling edge of the clock. One byte of the transmissions will look 
like this.  
               |BIT 0|BIT 1|BIT 2|BIT 3|BIT 4|BIT 5|BIT 6|BIT 7| 
    CLOCK -----___---___---___---___---___---___---___---___----------- 
 
    DATA  -----000000111111222222333333444444555555666666777777-------- 
                  *     *     *     *     *     *     *     * 
    CMND  -----000000111111222222333333444444555555666666777777-------- 
 
    ACK   ----------------------------------------------------------__- 
     

The logic level on the data lines is changed by the transmitting device on the falling 
edge of clock. This is then read by the receiving device on the leading edge (at the 
points marked *) allowing time for the signal to settle. After each COMMAND is received 
by a selected controller, that controller needs to pull ACK low for at least one clock 
tick. If a selected controller does not ACK the PSX will assume that there is no 
controller present.  

When the PSX wants to read information from a controller it pulls that devices ATT line 
low and issues a start command (0x01). The Controller Will then reply with its ID 
(0x41=Digital). At the same time as the controller is sending this ID byte the PSX is 
transmitting 0x42 to request the data. Following this the COMMAND line goes idle and the 
controller transmits 0x5A to say "here comes the data".  

This would look like this for a digital controller  
 
ATT    -______________________________________________________________ 
              |   Byte 1     |    |   Byte 2     |    |   Byte 3     | 
CLOCK  ---_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_----- 
                   0xFF                0x41                0x5A  
DATA   -------------------------__________--__----__--__----__--__---- 
                   0x01                0x42 
CMND   -----_____________-----__--________--__------------------------ 
 
ACK    --------------------__-------------------__-----------------__- 
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After this command initiation proccess the controller then sends all its data bytes (in 
the case of a digital controller there is only two). After the last byte is sent ATT will 
go high and the controller does not need to ACK.  

The data transmision for a digital controller would look like this (where 
A0,A1,A2...B6,B7 are the data bits in the two bytes).  
     
    ATT    _______________________________________------- 
              |   Byte 4     |    |   Byte 5     |   
    CLOCK  ---_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_-------- 
 
    DATA   ---D0D1D2D3D4D5D6D7----E0E1E2E3E4E5E6E7------- 
 
    CMND   ---------------------------------------------- 
                                                    *** 
    ACK    --------------------__------------------------ 
 
    NOTE: No ACK. 
     

The PSX Controller Data 

    Standard Digital Pad 
 
    BYTE    CMND    DATA 
 
     01     0x01    idle 
     02     0x42    0x41 
     03     idle    0x5A    Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 
     04     idle    data    SLCT           STRT UP   RGHT DOWN LEFT 
     05     idle    data    L2   R2    L1  R1   /\   O    X    |_| 
 
    All Buttons active low. 

 
 
Wireless Interface 
 
Pulse-Width Modulation code 
Useful code for controlling the speed of DC motors.  Use with H-bridges to add direction 
control.  Can be modified to control position of servos (see comments). 
 
module PWM (clk, reset, duty_cycle, enable, LED_status, LED_2status, d_enable); 
  input clk, reset; 
  output [3:0] LED_status;  
  output d_enable; 
  reg d_enable; 
  reg [3:0] LED_status; 
  input [3:0] duty_cycle; // 4 bits of speed control (percentage)... could be increased 
later 
  output enable, LED_2status; 
  reg [19:0] count; 
  reg enable_int; 
    
  assign LED_2status = enable; 
  assign enable = enable_int; 
 
  always @ (posedge clk) begin 
    LED_status = duty_cycle; 
    if (reset == 1) // no reset 
      count <= 0;  // for fast simulation 
    else if (count == 62) begin // 62 -> about 30 KHz for motors; 36864 -> 50 Hz for 
servo 
      d_enable = 1; 
      count <= 0; 
      if (duty_cycle != 0)  // don't even start the pulse if the duty cycle is 0 
        enable_int <= 1; 
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    end 
    else begin 
      d_enable = 0; 
      count <= count + 1;       //60/15 
      if ( (enable == 1 & count <= duty_cycle*(4) ) | duty_cycle == 15 ) 
        enable_int <= 1; 
      else  
        enable_int <= 0; 
    end 
  end 
endmodule 

 
 
Code to load the CC1010 wireless microcontroller with data from an FPGA 
Serial transmission follows protocol described earlier. 
 
void load_Tx_buffer() { 
 int count = 0; 
 int Tx_buffer_temp = -1; 
 printf("LOAD_TX_BUFFER() CALLED\n"); 
 
 // reset buffer 
     for (n = 0; n < TEST_STRING_LENGTH; n++) { 
  Tx_buffer[n] = 0x00; 
 } 
 
 YLED = LED_ON; 
 
 PORTBIT(0,0) = 1;   
 halWait(1, CC1010EB_CLKFREQ); 
 PORTBIT(0,0) = 0; 
  
 for (n = 0; n < TEST_STRING_LENGTH; n++) { 
  for (count=7; count>=0; count--) { 
   Tx_buffer[n] += (0x11 & PORTBIT(2,0)) << count; 
   Tx_buffer_temp = PORTBIT(2,0); 
   printf("%d ", Tx_buffer_temp); // read and display data *takes a LONG TIME if 
enabled! 
//   halWait(1, CC1010EB_CLKFREQ); 
   PORTBIT(1,2) = 1;       // 
ready_next = 1 
//   halWait(100, CC1010EB_CLKFREQ); 
   PORTBIT(1,2) = 0;       // 
ready_next = 0 
//   halWait(100, CC1010EB_CLKFREQ); 
  } 
  printf("> data byte %d = %X\n", n, Tx_buffer[n]); // read and display data 
*takes a LONG TIME if enabled! 
 } 
 YLED = LED_OFF; 
 
 
 printf("\n"); 
 // transmit(); 
} 

 
 

Top level instantiations for transmit and receive interface modules 
Demonstrates simple unpacking of command data packet, minus verification 
 
module tx_rx_top (clk, ready_next, data_out, sync_pulse, start, reset, Rx_received, 
data_in,  // need 
    //latched_data,  // latched Rx data 
    LED_I, d_count, //busy, LED_data,  // don't need 
    RM_on, RM_dir, LM_on, LM_dir, claw_on, claw_dir, angle_on, 
light  // motor, etc. values 
      ); 
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output RM_on, RM_dir, LM_on, LM_dir, claw_on, claw_dir, angle_on, light; 
 
input clk, ready_next, start, reset; 
output LED_I; 
output data_out, sync_pulse; 
input Rx_received, data_in; 
reg data_out, sync_pulse; 
output [3:0] d_count; 
reg [39:0] latched_data; 
 
 
tx_buffer_v tx_buffer_v (.clk(clk), .ready_next(ready_next), //.d_count(d_count), 
//.LED_II(LED_II), .LED_III(LED_III),  
      .data_out(data_out), .start(start), .reset(reset), 
      .data(32'h6789AB), .data_II(32'hCDEF) // example 
values (shows ordering between reg’s) 
); 
 
rx_buffer_v rx_buffer_v (.clk(clk), .sync_pulse(sync_pulse), .LED_I(LED_I), 
.LED_data(LED_data),  
       .data_in(data_in), 
.Rx_received(Rx_received), .reset(reset), .latched_data(latched_data) 
      ); 
assign d_count = latched_data[24:21]; 
assign angle_on = (&latched_data[23:16]); 
assign claw_dir = (&latched_data[15:8]); 
assign claw_on = (&latched_data[7:0]); 
assign light = (|latched_data[39:32]); 
assign LM_dir = (|latched_data[31:24]); 
assign RM_on = (|latched_data[23:16]); 
assign RM_dir = (|latched_data[15:8]); 
assign LM_on = (|latched_data[7:0]); 
 
endmodule 

 

FSM from receive interface module 
Demonstrates shifting data to match incoming bitstream.  Contains code to visually verify 
the data after transmission (must be enabled). 
 
case (state) 
    IDLE: begin 
   count_int = 0; 
     data_I_int  = 32'h00000000; // initial string 
     data_II_int = 32'h00000000; // initial string 
   next = WAIT_RX_RECEIVED; 
    end 
     
    WAIT_RX_RECEIVED: begin 
     LED_I = 1; 
   if (Rx_received_s) begin // wait for an incoming packet 
     next = DELAY; 
      end else begin 
       count_int = 0; // set to zero in case of sync error 
        div_reset = 1; 
     next = WAIT_RX_RECEIVED; 
   end 
    end 
     
    UPDATE_DATA: begin // update data bit to be transmitted 
   if (count <= 31) begin // first piece of data stream 
     data_I_int = {data_I[30:0], data_in_s}; 
   end else begin 
     data_II_int = {data_II[30:0], data_in_s}; 
   end 
      next = DELAY; 
    
   if (count == 40) begin // end of data stream: 
     test_int = {data_I, data_II[7:0]}; 
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            latched_data_int = test_int; // latch new value of data 
     next = IDLE; 
   end  
   else  
     count_int = count + 1; 
    end  
         
    DELAY: begin 
      if (enable) 
        next = SEND_SYNC; 
      else  
        next = DELAY; 
    end 
         
    SEND_SYNC: begin // wait for ready_next signal from microcontroller 
      sync_pulse_int = 1; 
      if (enable) 
        next = UPDATE_DATA; 
      else  
        next = SEND_SYNC; 
    end    
 
 DISPLAY_DATA: begin 
   if (Rx_received_s) begin 
     test_int = test >> 4; 
      LED_I = ~LED_I; 
      next = DISPLAY_DATA_I; 
    end else  
      next = DISPLAY_DATA; 
 end 
  
 DISPLAY_DATA_I: begin 
   if(!Rx_received_s)  
     next = DISPLAY_DATA; 
   else 
     next = DISPLAY_DATA_I; 
 end 
  
    default: 
      next = IDLE; 
  endcase 


