
 WIRELESS
ROVER

6.111 FINAL PROJECT REPORT

RYAN DAMICO - RYAN MANUEL

 12 MAY, 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 - INTRODUCTORY DIGITAL SYSTEMS LABORATORY

ABSTRACT

This document details the design and development of a
wireless rover capable of remote operation and wireless
data transmission. Discussion includes design
specifications, methodology, testing, and debugging.
Emphasis is placed on designing a robust system and
employing good general engineering practices.

TA: J IA FU

 2

WIRELESS ROVER
6.111 FINAL PROJECT REPORT

TABLE OF CONTENTS

OVERVIEW ..4
BASE CONTROL STATION (RYAN MANUEL)..4
WIRELESS INTERFACE (RYAN DAMICO) ..4
ROVER (RYAN DAMICO) ...4
MINI-FPGA (RYAN DAMICO)..5

MODULE DESCRIPTION AND IMPLEMENTATION...5
BASE CONTROL STATION (RYAN MANUEL)..5

Major Finite State Machine Module ...5
PlayStation Controller Finite State Machine ...6
Stack Finite State Machine...7
Store Data Finite State Machine...7
Replay Finite State Machine ...8

WIRELESS TRANSCEIVER (RYAN DAMICO)..8
Data packet format ...8
Transmit Interface Module ..9
Receive Interface Module ..11

DESIGN METHODOLOGY ...12
BASE CONTROL STATION ...12
WIRELESS INTERFACE ...12

TESTING ...13
BASE CONTROL STATION ...13
WIRELESS INTERFACE ...14

APPENDIX ...14
BASE CONTROL STATION ...14

Excerpts from controller_fsm.v...14
Excerpts from store_data.v ..15
Data on the PlayStation Interface..16
The Playstation Controller Pinouts ..16
The PSX Controller Signals..17
The PSX Controller Data ..18

WIRELESS INTERFACE ...18
Pulse-Width Modulation code..18
Code to load the CC1010 wireless microcontroller with data from an FPGA..19
Top level instantiations for transmit and receive interface modules...19
FSM from receive interface module ...20
Demonstrates shifting data to match incoming bitstream. Contains code to visually verify the data after transmission (must
be enabled)...20

 3

LIST OF FIGURES

FIGURE 1: BLOCK DIAGRAM FOR BASE STATION .. 1
FIGURE 2: FSM FOR THE PLAYSTATION CONTROLLER .. 6
FIGURE 3: DIAGRAM STACK FSM .. 7
FIGURE 4: COMMAND AND SENSOR DATA PACKET BREAKDOWN................... 9
FIGURE 5: FPGA/WIRELESS TRANSCEIVER INTERFACE 10
FIGURE 6: LOGIC ANALYZER CAPTURE OF SYNCHRONOUS SERIAL

INTERFACE... 10
FIGURE 7: TRANSMIT INTERFACE MODULE FSM ... 11
FIGURE 8: RECEIVE INTERFACE MODULE FSM .. 11

 4

Overview

Base Control Station (Ryan Manuel)

The goal of this part of the lab was to create a base station that would take in input from a
PlayStation controller to control the rover. In addition, the base control station records a
history of the robots movements so that the user can playback this history in reverse.

The PlayStation controller controls the rover in a fairly straightforward manner. The four
directional controls on the controller tell the rover which direction to go and the other
buttons provide control for the various tools on the rover like the light and claw. The
station takes the input from the controller and sends appropriate commands to the rover.

At the same time, the rover saves the motor speeds in a RAM. To save space the base
station records only the motor speeds and how long the rover has been going at that speed.
If the rover gets stuck and wants to reverse its history, it simply reads the history in reverse
out of the RAM and reverses the motor speeds for the same length of time.

Wireless Interface (Ryan Damico)

The rover depends on a wireless link with the base station to receive movement commands
and transmit sensor data. Wireless data transmission is implemented with a Chipcon
CC1010 integrated RF transceiver and microcontroller. The microcontroller runs C code,
and acts as the major FSM for the entire system. Doing so allowed great flexibility in quickly
debugging the myriad problems and complexities associated with the transceiver. The
transceiver controls two major modules on the FPGA, the transmit interface module and the
receive interface module. The transmit interface module is invoked by the microcontroller
when data needs to be transmitted, and the receive interface module is invoked when a
packet has been received and must be handed off to the FPGA.

The major FSM for the system is a simple send, receive, send, receive loop. This simple
setup was sufficient to instruct the rover and base station to send data and receive
commands regularly, though many hours were spent writing C code that implemented the
hardware send and receive abstractions.

Rover (Ryan Damico)

The wireless rover was built from LEGOs and
designed specifically for 6.111. It features dual
treads with independent, speed-adjustable motors,
a high torque gripping claw with rubber grips, an
inclination control to pitch the claw up and down
to prevent dragging of objects, a search light,
three integrated protoboards, dual battery bays,
and an independent wireless video camera system.

 5

Mini-FPGA (Ryan Damico)

The wireless rover utilizes a custom-built mini-
FPGA to allow it to be truly mobile. Based on
the schematics for the FPGAs used in lab kits, the
mini-FPGA includes an Altera Flex10K10 and
EPROM, JTAG programming connector,
swappable crystal oscillator, 5 debugging LEDs,
and a 50-connector adapter offering access to 20
I/O pins, power, and the onboard oscillator. The
mini-FPGA will be made available to future 6.111
students allowing them to design powerful,
portable systems.

Module Description and Implementation

Base Control Station (Ryan Manuel)

While designing this traffic control system, it was easiest to break the system up into several
modules and interconnect them. This modularization made the system easier to visualize
and describe on paper. It also
allowed for easier testing and
debugging because one could just
debug and test each small module
individually as opposed to
debugging and testing one
big system. The breakdown of the
system can be seen in Error!
Reference source not found..
There is an overlaying major/minor
FSM structure that will be discussed
more below. There is also a
PlayStation controller and RAM that
are external to the FPGA. Also
there are modules whose jobs were
to format and convert data that is either sent to or received from the wireless module. Lastly
we had a simple display module that was going to display temperature values via hex LEDs
and heading of the robot via 8 LEDs located in the compass positions.

Major Finite State Machine Module

The control for the base station relies on a major/minor FSM structure. The FSM cycles
through each state at 20 Hz. In each state other minor FSMs are initiated and then the
major FSM waits around until the minor FSM is finished before it moves on to the next
FSM.

FSM

 …

Controller

reset

clock Divider (20 Hz)

Values
Sent to
Robot

Calculator

Wireless
Interface

RAM

Display
Values

Calculator

Display

Minor
FSM 1

Figure 1: Block Diagram for Base Station

 6

The basic control is fairly simple and for the sake of brevity, the FSM diagram is omitted.
The FSM waits in the idle state until it receives a sample signal. At this point the FSM starts
the controller FSM. Then depending on whether a user has indicated they want to replay the
history or not, the FSM either moves to the store data state or replay state. Once either of
these have finished, the FSM moves back to the IDLE state.

PlayStation Controller Finite State Machine

The PlayStation Controller FSM is in charge of controlling the communication between the
base station and the PlayStation Controller. The interface to the PlayStation Controller is
fairly simple. Data is sent between the controller and the FPGA serially in groups of eight
bits. In between each byte an ack signal is sent from the controller to the FPGA to let the
FPGA know it is ready for the next round of eight bits.

The FSM begins in an IDLE state and waits around until it hears a start signal. When the
FSM receives this signal, it moves to the INIT_CONTROLLER state and begins a
handshaking process between the controller and the base station. The handshaking process
begins when the FPGA sets the att signal low and sends 0x01 to the controller. This gets
the controller’s attention and initializes the controller. After the FPGA receives an ack from
the controller, the FSM moves into the REQUEST_DATA state where it sends 0x42 to the
controller telling the controller to send its button data. After another ack signal, the FPGA
moves to GET_READY_FOR_DATA state where it waits for the controller to send it a
byte signal letting the FPGA know that the data is coming. This ends the handshaking
process.

After an ack is received in the GET_READY_FOR_DATA state, the FSM moves into the
READ_BUTTONS1 state where it receives information on several of the buttons from the
controller. The FSM waits for another ack and then receives data on more buttons. After
another ack and another round of data the controller is finally finished and without waiting
for a further ack the FSM sets att high and switches back to the IDLE state.

Figure 2: FSM for the PlayStation Controller

WAI
T

READ
BUTTONS

2

READ
BUTTONS

1

Get
Ready

For Data

Request
Data

Init
Controller

!start

start

Data Received

Command Sent

 7

The entire process can be seen visually in Figure 2.

Stack Finite State Machine

The job of the Stack Finite State Machine is to implement a stack interface to the RAM.
The stack allows two operations: push and pop. Push first adds the current motor speeds to
the RAM. The motor speeds are stored as one eight bit piece of data comprised of four bits
of right motor data and four bits of left motor data. After the speeds are added to the RAM,
the push operation then increments the top of the stack by one and adds the duration of the
motor speeds. The duration is also an eight bit data value that represents the number of
cycles that the rover had been traveling at the motor speeds that were just stored. Finally,
the top of the stack is again incremented.

Pop simply reverses the process of a push. First, the duration of the motor speeds is
removed from the RAM and the top of the stack is decremented. Then, the motor speeds
themselves are read from the RAM and the top of the stack is decremented again.

See Figure 3.

Figure 3: Diagram Stack FSM

Store Data Finite State Machine

The Store Data FSM is in charge of recording the history of the rover’s movements. Each
time start is set high for this FSM, the FSM checks if the rover’s current speed is the same as
the rover’s previous speed. If it is, then the FSM simply increments a duration counter.
Otherwise, the FSM initiates a push on the Stack FSM with the old motor speeds and the
old duration counter as the values being pushed on the stack.

If the user has just requested a replay of history, then the FSM pushes the old motor speeds
and the old duration counter right away. This is because the system is about ready to start a
replay and needs to have the most current data stored in the RAM in order to accurately

IDLE

INIT_
PUSH1

PUSH_
MOTORS

INIT_
PUSH2

PUSH_
DURATION INIT_

POP1
POP_
MOTORS

INIT_
POP2

POP_
DURATION

!push
&& !pop

push
pop

 8

backtrack. For the sake of brevity I won’t include a diagram of the FSM since it’s fairly
simple. It has an IDLE state, a DETERMINE_DATA state that figures out if information
needs to be stored, and a WAIT_FOR_STORE state that waits for the memory to complete
the storing process.

Replay Finite State Machine

The Replay FSM is in charge or playing back history for the user. When start is set high for
this FSM, the FSM checks to see if the user has requested a replay or if a replay is already
underway. If neither is the case, then the FSM goes back to IDLE.

If a replay is underway or is about to be started, the FSM checks a counter to see if it is 0
meaning the current set of motor speeds has been held for as long as it said in memory. If
the counter is positive, then the FSM decreases the counter by 1. If the counter is 0, then
another set of motor speeds and durations need to be popped from the stack.
Consequently, the FSM moves to a state where it initiates a pop and waits for it to finish.
Once finished, the FSM sets the counter to the duration retrieved from memory and the
motor speeds to the speeds retrieved from memory.

Wireless Transceiver (Ryan Damico)

Data packet format

During nominal operation, the rover and base station are constantly sending information
back and forth over the wireless link. This flow of data is responsible for regulating the
rover’s mechanical operation, as well as returning sensor data from the rover to the base
station. Segmenting this data into packets in a way that is manageable and fault-tolerant
ensures reliable operation of the rover.

There are two types of data packets the rover and base station use to communicate:
command packets and senor packets. Command packets instruct the rover to operate in a
specific way, controlling such parameters as motor speeds and state of the gripping claw.
Sensor packets contain information gathered by the rover’s onboard sensors, including
ambient temperature and heading.

The size of both command packets and sensor packets is held constant at 5 bytes. This
design parameter was chosen so that each packet is long enough to contain an entire rover
command or set of sensor values. This makes each packet independent of the next, making
the system fault-tolerant of dropped packets, a common problem in wireless systems. By
sending command and sensor information in complete chunks, the loss of one or several
packets will not affect the ability to decipher future packets. The rover and base station are
designed to only update their systems on reception of a complete packet, so in the event of
transmission problems, the rover and base station will simply maintain their configuration
until a verified packet is received.

 9

The command and sensor data packets are segmented as shown in Figure 4. The command
data packet contains a complete snapshot of the rover’s operation. The motor speeds are
specified in sign-magnitude format (direction and speed), the search light is either on or off,
the claw inclination is specified in magnitude, and the claw motion is either opening, closing,
or idle. The sensor data packet contains the 8-bit magnitude value of the temperature sensor
(in Celsius, so there is no reasonable need for a sign bit). Likewise the heading is an 8-bit
representation of the rover’s direction as read from a Hall-effect analog compass. It is
noteworthy that the CC1010 inserts a 4-byte preamble at the beginning of each packet
before transmission (the details of which are beyond the scope of this project). However it
is important to take into consideration because though transparent to the FPGA, this
virtually doubles the size of each packet, reducing how quickly they can be transmitted.

Figure 4: Command and sensor data packet breakdown

Space not used by actual data is consolidated into a verification segment, and is used to
protect against certain errors. Because of the levels of abstraction between the CC1010 and
FPGA, there are only two possible errors that can occur during data handling. One is that
the packet is malformed or lost during physical transmission or reception, which is handled
by the CC1010. The CC1010 includes automatic CRC error detection, and will not notify
the FPGA of a received packet unless it knows it is intact. The other is that the FPGA
encounters a sync error while loading the transmit buffer or downloading the receive buffer
(causes include motor-induced noise or wire inductances). In this case it is possible that all
or part of a packet is incorrectly received. Since packets are transmitted from MSB to LSB, a
sync error will affect all lower-order bits from where the error occurred. Thus, by placing
the verification data in this suspect region, the FPGA can be hard-coded to look for that
value at the end of every packet. If there was a sync error, the FPGA will know and discard
the data.

Transmit Interface Module

When the wireless transceiver executes a transmit command, it reads data from a buffer in
RAM and broadcasts its contents to the other transceiver. Since this transmit buffer is
located within the wireless transceiver but the data originates from the FPGA, the two units
must transfer data before a transmission can occur. The transmit interface module is
responsible for communication between the two.

 10

Figure 5: FPGA/Wireless transceiver interface

Data is transferred from the FPGA to the wireless transceiver’s transmit buffer through a
high speed synchronous serial connection. Three data paths between modules facilitate
transfering of data: a transmit request line (request_Tx_data), a sync pulse line (sync_in), and
a data line (data_out) (see Figure 5). Upon initiation of a transfer, the wireless transceiver
sends a series of sync pulses to the FPGA. The FPGA in turn sends the data to the
transmitter one bit at a time, updating at the edge of each sync pulse. This process lasts until
all 40 bits of the 5-byte data packet have been uploaded (see Figure 6).

Figure 6: Logic analyzer capture of synchronous serial interface

The transmit interface module is controlled by a five-state FSM (see Figure 7). It begins in
the Idle state, where the sync pulse counter is reset. The FSM then transitions into the Wait
start state, looping back on itself until a request is received to upload data to the transmit

sync pulses

data bits

 11

Figure 7: Transmit interface module FSM

buffer. When the request arrives via a pulse on the request_Tx_data input, the FSM
transitions to the Update data state. Here the 40-bit reg containing the data packet is shifted
to the left by one and the most significant bit is sent to the data_out output. After the data
has been updated and the count incremented, the FSM continues to the Wait sync high state,
followed by the Wait sync low state. These states wait until the negative edge of the next sync
pulse before continuing operation. If there is still data left to load into the wireless
transceiver (i.e. count < 39), the FSM returns to the Update data state and reiterates the loop.
Otherwise the FSM returns to the Idle state, resets the count variable, and waits for the next
transmit request.

Receive Interface Module

When the wireless transceiver receives a packet, it stores the incoming data into an onboard
receive buffer stored in RAM. To capture this information and distribute it to the
appropriate subsystems, the FPGA must download the data from the transceiver. The
receive interface module is responsible for this function, using a high speed synchronous
serial interface to download the data.

The operation of the receive interface module is analogous to the transmit interface module,
and is connected to the wireless transceiver in a similar way (see Figure 5). Its FSM begins in
an Idle state, resetting its counter and preparing to store the incoming 40 bits into two reg’s
(Max+PlusII allows no more than 32 bits to be explicitly stored in one reg). It then
transitions into the Wait packet received state. Here the FSM loops back on itself until the
Rx_data_received input is pulsed high. It then moves into the Delay state, waiting for 50
microseconds and generating the low half of the sync pulse. After the timer expires, the
FSM transitions to the Send sync state. Here it sets the sync output high and waits an
additional 50 milliseconds (the minimum time required for the wireless’s microcontroller to
pick up the signal). Once the timer expires, the FSM moves into the Update data state,
acquiring the data bit from the wireless transceiver and shifting it into an internal reg. At
this point the FSM will either transition back to the Delay state or the Idle state, depending if
it has finished receiving all 40 bits.

Figure 8: Receive interface module FSM

 12

Design Methodology

Base Control Station

A balance needed to be maintained in the base control station between having a sampling
rate that was too high or too low. If the sampling rate was too high, then the major FSM
might not have enough time to finish all of its work. If the sampling rate was too low, then
the rover might not seem responsive enough to what the user is doing with the PlayStation
controller.

The original design of our project called for a PlayStation II controller. We felt that this
controller’s analog joysticks would provide better control over the rover’s speed and
direction. After many unsuccessful attempts to get the PlayStation II controller to work and
a bit more research, we discovered that the PlayStation II controller expects a clock rate that
is much higher than any clock found in our lab kits (at least 35 Mhz or so).

Since the old FPGA’s can’t handle clock rates much faster than 10 Mhz we decided to look
into using a PlayStation I controller. Fortunately, the PlayStation I controller worked. There
was still some trial and error to get the timing of commands and received data exactly right
but we eventually arrived at a relatively stable configuration. See 0 for more information
about the interface of the PlayStation controller.

One important design decision in this process was to include a timeout for the ack signal
coming from the controller. We would have periodic problems where the ack signal
wouldn’t register in the FPGA and consequently the controller FSM would hang indefinitely.
By including a timeout we were able to stop these periodic problems from causing the
system to be completely unresponsive.

Wireless Interface

The design of the wireless rover incorporated many design practices and methodologies that
were learned in labs one through three.

The wireless microcontroller was made the major FSM in an effort to modularize the system
in a way that would allow reliable operation as well as fast development and debugging. By
triggering the FPGA transmit and receive interfaces from the wireless microcontroller in a
master/slave format, the Verilog modules were self-sufficient and did not need to be
constantly reprogrammed. They were designed first, and most of the time after that was
spent designing and debugging the wireless code on the microcontroller.

Serial transmission was chosen for loading data to and from the FPGA and wireless buffers
to minimize the wiring and add complexity to the project. FSMs had to be written both in
Verilog and C, which was a unique task and involved generalizing principles learned in 6.111
to environments outside of Verilog and Max+PlusII. The results were very satisfying, and
worked out well.

 13

Error detection was a major part of the design philosophy for the wireless rover. Adding
support to detect occasional synchronization errors by comparing verification data worked
well, and added reliability to the system. However, the most dangerous error proved to be
when a missing synchronization bit caused either the FPGA or wireless microcontroller to
stall because it was waiting for a nonexistent bit to arrive. Missing sync bits were very rare,
but happened occasionally and caused the entire system to lock up. In the case of the
transmit interface module, which waits for 40 sync pulses before finishing, a missing sync
would cause it to get stuck in the Wait sync high state. This was corrected by having the
wireless microcontroller hold the request_Tx_data signal high as long as it was send data to
the FPGA. The transmit interface module was then modified to still start on the rising edge
of the request_Tx_data signal, but reset on its negative edge. That way, even if it missed a
sync pulse, the module would force a reset when the transceiver was done sending data. The
analogous case for the microcontroller’s receive code, which waits for 40 sync bits, involved
setting interrupt handlers for watchdog timers, which forced a reset if all 40 bits were not
received on time. In retrospect, implementing a digital system across two programming
languages and processing environments was an incredible opportunity to generalize concepts
learned throughout the course.

Testing

Base Control Station

The testing process for the base control station was relatively straightforward. We began
working on the interface to the PlayStation controller right from the start. We first coded up
the FSM for the controller. Before testing it on the FPGA we needed to make sure that
appropriate signals would be generated and received appropriately. This was accomplished
by simulating the FSM on MaxII+.

Once we were relatively certain the FSM was functioning properly, we set up a simple
program that would just sample the controller continuously and would light up LEDs
whenever certain buttons were pressed. At this point we started discovering how important
pull-up resistors on two of the wires coming in from the controller were for any sort of
consistent behavior of the system. After a lot of trial and error we finally found a somewhat
stable combination of pull-up resistors that worked.

After testing the controller, we moved on to creating and testing the RAM interfaces.
Before we tried to do anything too complex with the RAM we first tested the RAM itself
using a program created in an earlier project. We did this as a sanity check to make sure the
RAM was functioning properly and to make sure our assumptions about the timing
constraints of the RAM were correct.

Once we were relatively certain the RAM was working, we started implementing the Stack,
Replay, and Store_Data FSMs and the overall major FSM that would control everything.
Admittedly here we skipped some physical testing of each FSM but we were able to
successfully test each FSM on MaxII+. It took some time to figure out the exact control

 14

logic that was necessary to ensure that the replays would go all the way back to the beginning
of memory, stop replaying, and then start sampling and storing controller data again.

Once we were relatively certain all of the FSMs were working properly we set up a main
program that incorporated everything and loaded it onto the FPGA. To debug, our main
program outputted speeds of the two motors as well as the current top of the stack on hex
LEDs. This was so that we could tell if the correct speeds were being read and written to
the correct addresses during storing and replay. Once we had everything working
satisfactorily we were ready to incorporate the base station with the wireless module.

Wireless Interface

Testing was carried out by using the logic analyzer, status LEDs on the FPGA, and the
wireless module’s built-in interface to Telnet applications. The logic analyzer was used
primarily to observe data transfers between the FPGA and wireless controller (see Figure 6),
and helped spot an error in the receive interface module. It was behaving erratically,
displaying different data every time it communicated with the wireless unit. On close
inspection, the sync pulse train was seen to be “jumping” around, occasionally misaligning
with the data bits. This helped determined that an error in the Verilog code prevented the
sync pulse timer from resetting, causing the first pulse to have a random duration, skewing
all future pulses. The visual indication of the LEDs was helpful in observing slow time-
varying signals that were perceptible by the human eye. Examples included watching when
the transmit or receive interface modules were invoked, or when a module got stuck in a
certain state. It also helped verify the functionality of the receive interface module by slowly
scrolling the 40 received bits after they were transferred, to verify the transaction completed
properly.

The design and construction of the wireless rover was an excellent opportunity to apply the
teachings and design practices learned in 6.111. Tackling design problems similar to real-
world situations was an invaluable experience that will undoubtedly benefit future digital
design projects.

Appendix

Selected Verilog Code

Base Control Station

Excerpts from controller_fsm.v

Here is an example of how we received button data from the controller. Enable_clock is
a signal that enables the clock that is output to the controller. The clock signal only goes
to the controller when a data byte is being sent or received.

assign select = data_receive_1[0];
assign start = data_receive_1[3];
assign up = data_receive_1[4];

 15

assign right = data_receive_1[5];
assign down = data_receive_1[6];
assign left = data_receive_1[7];

…

ROUND4:
begin
 if(count < 7)
 begin
 next = ROUND4;
 count_int = count + 1;
 enable_clock_int = 1;
 case(count)
 0:
 data_receive_1_int[0] = data_receive;
 1:
 data_receive_1_int[1] = data_receive;
 2:
 data_receive_1_int[2] = data_receive;
 3:
 data_receive_1_int[3] = data_receive;
 4:
 data_receive_1_int[4] = data_receive;
 5:
 data_receive_1_int[5] = data_receive;
 6:
 data_receive_1_int[6] = data_receive;
 default
 data_receive_1_int = data_receive_1;
 endcase
 end
 else if(ack && count == 7)
 begin
 data_receive_1_int[7] = data_receive;
 count_int = count + 1;
 next = ROUND4;
 enable_clock_int = 1;
 end
 else if(count == 7)
 begin
 data_receive_1_int[7] = data_receive;
 count_int = 0;
 next = WAITFORACK4;
 enable_clock_int = 0;
 end
 else if(ack)
 begin
 count_int = count;
 next = ROUND4;
 enable_clock_int = 0;
 end
 else
 begin
 next = WAITFORACK4;
 count_int = 0;
 enable_clock_int = 0;
 end
end

Excerpts from store_data.v

Here is the section of code that deals with determining if data should be stored and if so,
what.

DETERMINE_DATA:
begin

if({right_motor, left_motor} == data_motor_prev)

 16

 begin
 if(!replay)
 begin
 next = IDLE;
 write_data_length_int = write_data_length + 1;
 end
 else
 begin
 data_motor_prev_int = 0;
 write_data_length_int = write_data_length + 1;
 write_data_motor_int = data_motor_prev;
 push_int = 1;
 next = WAIT_FOR_STORE;
 end
 end
 else
 begin
 if(!replay)
 begin
 data_motor_prev_int = {right_motor, left_motor};
 write_data_motor_int = data_motor_prev;
 push_int = 1;
 next = WAIT_FOR_STORE;
 end
 else
 begin
 data_motor_prev_int = 0;
 write_data_motor_int = {right_motor, left_motor};
 write_data_length_int = 1;
 push_int = 1;
 next = WAIT_FOR_STORE;
 end
 end
end

Data on the PlayStation Interface

This information is taken from http://www.gamesx.com/controldata/psxcont/psxcont.htm.

The Playstation Controller Pinouts
 LOOKING AT THE PLUG

 PIN 1->| o o o | o o o | o o o |
 _____________________________/

PIN # USAGE

1. DATA
2. COMMAND
3. N/C (9 Volts unused)
4. GND
5. VCC
6. ATT
7. CLOCK
8. N/C
9. ACK

DATA
Signal from Controller to PSX.
This signal is an 8 bit serial transmission synchronous to the falling edge of
clock (That is both the incoming and outgoing signals change on a high to low
transition of clock. All the reading of signals is done on the leading edge to
allow settling time.)

COMMAND

 17

Signal from PSX to Controller.
This signal is the counter part of DATA. It is again an 8 bit serial transmission
on the falling edge of clock.

VCC
VCC can vary from 5V down to 3V and the official SONY Controllers will still
operate. The controllers outlined here really want 5V.
The main board in the PSX also has a surface mount 750mA fuse that will blow if
you try to draw to much current through the plug (750mA is for both left, right
and memory cards).

ATT
ATT is used to get the attention of the controller.
This signal will go low for the duration of a transmission. I have also seen this
pin called Select, DTR and Command.

CLOCK
Signal from PSX to Controller.
Used to keep units in sync.

ACK
Acknowledge signal from Controller to PSX.
This signal should go low for at least one clock period after each 8 bits are sent
and ATT is still held low. If the ACK signal does not go low within about 60 us
the PSX will then start interrogating other devices.

It should also be noted that this is a bus of sorts. This means that the wires are all
tied together (except select which is seperate for each device). The DATA and ACK pins
can be driven from any one of four devices. To avoid contentions on these lines they are
open collectors and can only be driven low. If used with an FPGA DATA and ACK must use a
pull-up resistor.

The PSX Controller Signals

All transmissions are eight bit serial LSB first. All timing in the PSX controller bus is
synchronous to the falling edge of the clock. One byte of the transmissions will look
like this.
 |BIT 0|BIT 1|BIT 2|BIT 3|BIT 4|BIT 5|BIT 6|BIT 7|
 CLOCK -----___---___---___---___---___---___---___---___-----------

 DATA -----000000111111222222333333444444555555666666777777--------
 * * * * * * * *
 CMND -----000000111111222222333333444444555555666666777777--------

 ACK --__-

The logic level on the data lines is changed by the transmitting device on the falling
edge of clock. This is then read by the receiving device on the leading edge (at the
points marked *) allowing time for the signal to settle. After each COMMAND is received
by a selected controller, that controller needs to pull ACK low for at least one clock
tick. If a selected controller does not ACK the PSX will assume that there is no
controller present.

When the PSX wants to read information from a controller it pulls that devices ATT line
low and issues a start command (0x01). The Controller Will then reply with its ID
(0x41=Digital). At the same time as the controller is sending this ID byte the PSX is
transmitting 0x42 to request the data. Following this the COMMAND line goes idle and the
controller transmits 0x5A to say "here comes the data".

This would look like this for a digital controller

ATT -__
 | Byte 1 | | Byte 2 | | Byte 3 |
CLOCK ---_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_-----
 0xFF 0x41 0x5A
DATA -------------------------__________--__----__--__----__--__----
 0x01 0x42
CMND -----_____________-----__--________--__------------------------

ACK --------------------__-------------------__-----------------__-

 18

After this command initiation proccess the controller then sends all its data bytes (in
the case of a digital controller there is only two). After the last byte is sent ATT will
go high and the controller does not need to ACK.

The data transmision for a digital controller would look like this (where
A0,A1,A2...B6,B7 are the data bits in the two bytes).

 ATT _______________________________________-------
 | Byte 4 | | Byte 5 |
 CLOCK ---_-_-_-_-_-_-_-_-----_-_-_-_-_-_-_-_--------

 DATA ---D0D1D2D3D4D5D6D7----E0E1E2E3E4E5E6E7-------

 CMND --

 ACK --------------------__------------------------

 NOTE: No ACK.

The PSX Controller Data

 Standard Digital Pad

 BYTE CMND DATA

 01 0x01 idle
 02 0x42 0x41
 03 idle 0x5A Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
 04 idle data SLCT STRT UP RGHT DOWN LEFT
 05 idle data L2 R2 L1 R1 /\ O X |_|

 All Buttons active low.

Wireless Interface

Pulse-Width Modulation code
Useful code for controlling the speed of DC motors. Use with H-bridges to add direction
control. Can be modified to control position of servos (see comments).

module PWM (clk, reset, duty_cycle, enable, LED_status, LED_2status, d_enable);
 input clk, reset;
 output [3:0] LED_status;
 output d_enable;
 reg d_enable;
 reg [3:0] LED_status;
 input [3:0] duty_cycle; // 4 bits of speed control (percentage)... could be increased
later
 output enable, LED_2status;
 reg [19:0] count;
 reg enable_int;

 assign LED_2status = enable;
 assign enable = enable_int;

 always @ (posedge clk) begin
 LED_status = duty_cycle;
 if (reset == 1) // no reset
 count <= 0; // for fast simulation
 else if (count == 62) begin // 62 -> about 30 KHz for motors; 36864 -> 50 Hz for
servo
 d_enable = 1;
 count <= 0;
 if (duty_cycle != 0) // don't even start the pulse if the duty cycle is 0
 enable_int <= 1;

 19

 end
 else begin
 d_enable = 0;
 count <= count + 1; //60/15
 if ((enable == 1 & count <= duty_cycle*(4)) | duty_cycle == 15)
 enable_int <= 1;
 else
 enable_int <= 0;
 end
 end
endmodule

Code to load the CC1010 wireless microcontroller with data from an FPGA
Serial transmission follows protocol described earlier.

void load_Tx_buffer() {
 int count = 0;
 int Tx_buffer_temp = -1;
 printf("LOAD_TX_BUFFER() CALLED\n");

 // reset buffer
 for (n = 0; n < TEST_STRING_LENGTH; n++) {
 Tx_buffer[n] = 0x00;
 }

 YLED = LED_ON;

 PORTBIT(0,0) = 1;
 halWait(1, CC1010EB_CLKFREQ);
 PORTBIT(0,0) = 0;

 for (n = 0; n < TEST_STRING_LENGTH; n++) {
 for (count=7; count>=0; count--) {
 Tx_buffer[n] += (0x11 & PORTBIT(2,0)) << count;
 Tx_buffer_temp = PORTBIT(2,0);
 printf("%d ", Tx_buffer_temp); // read and display data *takes a LONG TIME if
enabled!
// halWait(1, CC1010EB_CLKFREQ);
 PORTBIT(1,2) = 1; //
ready_next = 1
// halWait(100, CC1010EB_CLKFREQ);
 PORTBIT(1,2) = 0; //
ready_next = 0
// halWait(100, CC1010EB_CLKFREQ);
 }
 printf("> data byte %d = %X\n", n, Tx_buffer[n]); // read and display data
*takes a LONG TIME if enabled!
 }
 YLED = LED_OFF;

 printf("\n");
 // transmit();
}

Top level instantiations for transmit and receive interface modules
Demonstrates simple unpacking of command data packet, minus verification

module tx_rx_top (clk, ready_next, data_out, sync_pulse, start, reset, Rx_received,
data_in, // need
 //latched_data, // latched Rx data
 LED_I, d_count, //busy, LED_data, // don't need
 RM_on, RM_dir, LM_on, LM_dir, claw_on, claw_dir, angle_on,
light // motor, etc. values
);

 20

output RM_on, RM_dir, LM_on, LM_dir, claw_on, claw_dir, angle_on, light;

input clk, ready_next, start, reset;
output LED_I;
output data_out, sync_pulse;
input Rx_received, data_in;
reg data_out, sync_pulse;
output [3:0] d_count;
reg [39:0] latched_data;

tx_buffer_v tx_buffer_v (.clk(clk), .ready_next(ready_next), //.d_count(d_count),
//.LED_II(LED_II), .LED_III(LED_III),
 .data_out(data_out), .start(start), .reset(reset),
 .data(32'h6789AB), .data_II(32'hCDEF) // example
values (shows ordering between reg’s)
);

rx_buffer_v rx_buffer_v (.clk(clk), .sync_pulse(sync_pulse), .LED_I(LED_I),
.LED_data(LED_data),
 .data_in(data_in),
.Rx_received(Rx_received), .reset(reset), .latched_data(latched_data)
);
assign d_count = latched_data[24:21];
assign angle_on = (&latched_data[23:16]);
assign claw_dir = (&latched_data[15:8]);
assign claw_on = (&latched_data[7:0]);
assign light = (|latched_data[39:32]);
assign LM_dir = (|latched_data[31:24]);
assign RM_on = (|latched_data[23:16]);
assign RM_dir = (|latched_data[15:8]);
assign LM_on = (|latched_data[7:0]);

endmodule

FSM from receive interface module
Demonstrates shifting data to match incoming bitstream. Contains code to visually verify
the data after transmission (must be enabled).

case (state)
 IDLE: begin
 count_int = 0;
 data_I_int = 32'h00000000; // initial string
 data_II_int = 32'h00000000; // initial string
 next = WAIT_RX_RECEIVED;
 end

 WAIT_RX_RECEIVED: begin
 LED_I = 1;
 if (Rx_received_s) begin // wait for an incoming packet
 next = DELAY;
 end else begin
 count_int = 0; // set to zero in case of sync error
 div_reset = 1;
 next = WAIT_RX_RECEIVED;
 end
 end

 UPDATE_DATA: begin // update data bit to be transmitted
 if (count <= 31) begin // first piece of data stream
 data_I_int = {data_I[30:0], data_in_s};
 end else begin
 data_II_int = {data_II[30:0], data_in_s};
 end
 next = DELAY;

 if (count == 40) begin // end of data stream:
 test_int = {data_I, data_II[7:0]};

 21

 latched_data_int = test_int; // latch new value of data
 next = IDLE;
 end
 else
 count_int = count + 1;
 end

 DELAY: begin
 if (enable)
 next = SEND_SYNC;
 else
 next = DELAY;
 end

 SEND_SYNC: begin // wait for ready_next signal from microcontroller
 sync_pulse_int = 1;
 if (enable)
 next = UPDATE_DATA;
 else
 next = SEND_SYNC;
 end

 DISPLAY_DATA: begin
 if (Rx_received_s) begin
 test_int = test >> 4;
 LED_I = ~LED_I;
 next = DISPLAY_DATA_I;
 end else
 next = DISPLAY_DATA;
 end

 DISPLAY_DATA_I: begin
 if(!Rx_received_s)
 next = DISPLAY_DATA;
 else
 next = DISPLAY_DATA_I;
 end

 default:
 next = IDLE;
 endcase

