DEBRA:

Digital Emergency Brake
 Response Alert System

Charvak Karpe

Nathan Ackerman
April 23, 2004

DEBRA

\lrcorner Actually 2 dififerent systems

- I mproving highway safety
- Measuring car performance

Problem: Cars Crash

Approximately 1.5 Million rear endings each year
\lrcorner Rear ending $\sim 23 \%$ of all accidents

- 2,000 deaths
\lrcorner ~950,000 injuries.
\lrcorner Let's make a distinction between fast braking and slow braking vehicles!

DEBRA paradigm

\lrcorner Fast braking vehicles (FBV) realize they are braking quickly
\lrcorner FBV sends visual and RF warning to other cars
FBV flashes brake lights instead of constant on during periods of high deceleration
FBV sends RF information to other cars notifying them of deceleration
\lrcorner Surrounding cars react

- Drivers observe attention gabbing brake pattern

U Units in other cars listen for RF and play audio warning to drivers of FBV in vicinity

Functional Diagram

Accelerometer Module

\rightarrow Acceleration $=\operatorname{sqjtt}\left(x^{\wedge} 2+y^{\wedge} 2-1\right)$
\lrcorner Braking $=[x y] *[x r, y r]$
\lrcorner Operating frequency $=20$ Hz to block vibrations.

- Tests: 0-60mph, braking, 1/4 mile, open time.

Performance Interface

\lrcorner LCD display in cockpit

- Press 0-60 buiton to begin test.
- Timer starts automatically when acceleration is detected.
\lrcorner Acceleration is integrated once to get velocity.
\lrcorner Test stops when velocity reaches 60 .

Quarter Mille

\lrcorner Push button to start test.
\lrcorner Acceleration is integrated twice to get distance.

- Timer starts when acceleration is detected and stops when integrated distance is at least $1 / 4$ mile.

Braking Test

\lrcorner User brings vehicle to desired start speed (e.g. 60 mph), then presses brake test button.
Timer starts when braking is detected, stops when braking stops.
Dual integral of acceleration provides distance output.

Toys

