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Introduction 
 
The purpose of this project was to explore the capabilities of the new Xilinx lab kits by 
creating an innovative video game incorporating audio processing tools. iGamePlay is a 
combination of retro video game mechanics and gameplay with a new twist: gameplay 
elements are affected by sound cues derived from processing an input audio signal. 
iGamePlay features enemies which respond to the beat of an input song. The final system 
includes support for single-player and two-player cooperative and head-to-head modes, 
smooth page-buffered 640x480 VGA video, and a highly satisfactory beat detection 
algorithm.  
 
Overview 
 
The iGamePlay system has three major modules: audio processing, user input/game 
logic, and video. Figure 1 shows a schematic of the overall system. 
 

 
Figure 1. Overall System Schematic 

 
The audio processing unit takes in audio input from an external source. Using the AC97 
codec, the audio data is converted to a digital signal. A custom beat detection algorithm 
then extracts the beats from the music. This information is passed to the user input and 
game logic unit. This unit combines the audio cues with the user input to coordinate the 
internal state of the game. This includes tracking the speed and position of all objects in 
the game world. The game logic unit sends information about the game state to the video 
subsystem, which processes it and draws the game to the screen. The individual 
subsystems are discussed in more detail in the following sections. 
 
Audio  
 
The iGamePlay audio component detects the beats that allow the enemy to move to the 
music. Using the lab kit’s on-board AC97 Codec chip and a simple energy comparison 
algorithm, the audio module was able to detect a range of beats from simple base drums 
more complicated techno and rap songs with strong down beats. The module would then 
relay the beat signal to the game logic to influence enemies’ speed. 
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Getting Digital Audio Data 
 
AC97 Codec 
Before analyzing the music to detect beats, the analog source needed to be sampled with 
an A/D converter. Conveniently, the lab kit houses an AC97 codec chip that can do most 
of the sampling work. AC97 is a general PC audio codec specification published by Intel 
Corporation.  You can view it here: http://www.intel.com/labs/media/audio/. 
The 6.111 lab kits contain the National Semiconductor LM4550 implementation of this 
specification. The LM4550 is in full compliance with respect to the features that it 
implements, but by no means does it implement every feature described in the Intel 
specification. For the purpose of iGamePlay, the LM4550 was more than adequate.   
 
The LM4550 audio codec is a powerful tool for digitizing analog inputs, processing 
analog inputs with its 3D sound circuitry, or playing back digitized samples from a ROM, 
however it cannot function without an AC97 digital controller. The controller is used for 
resetting the codec (necessary on power-on), reading digitized data from the codec’s A/D, 
passing in digitized data to the codec’s D/A, and modifying internal configuration 
registers (more on this later). 
 
Frame Protocol 
All communication between the AC97 codec and its controller occurs along two 1-bit 
serial data streams named sdata_out (from controller to codec) and sdata_in (codec to 
controller). These names are controller relative. Each stream is broken up into segments 
called frames. Each frame is made up of 256 sequential bits. The start of a frame is 
signaled by a control signal named SYNC that is generated by the controller. In a 
properly working controller, SYNC should transition from low to high once every 256 
bits. In compliance with the specification, SYNC should have a duty cycle of 6.25%, in 
other words, it should remain high for 16 of the 256 bits. Any transition of SYNC from 
low to high before 256 bits have been recognized by the codec will be ignored.      
 
How often should a bit be sent across the 1-bit channel from the controller to the codec, 
and how often do bits come back from the codec? After coming out of reset, the codec 
will generate a bit clock at 12.288 MHz (half the 6.111 lab kit system clock speed). On 
the rising edge of the bit clock, the codec samples SYNC and the controller sends the first 
bit of the new frame. On the next falling edge, the codec samples the bit.  
Simultaneously, on the rising edge of the clock, the codec sends the controller 1 bit of 
information for the current frame. The controller is expected to sample the bit on the next 
falling edge of bit clock See Figures 2 and 3 below for timing diagrams. 
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Figure 2. AC97 Output Frame (Controller to Codec) 

 
Figure 3. AC97 Input Frame (Codec to Controller) 

 
 
 
So the controller and codec communicate simultaneously across 2 1-bit channels by 
sending frames. What kind information is contained in each of these frames? The 256 
frame bits are separated into 13 slots. The first slot is a 16-bit tag slot and the remaining 
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12 slots contain 20 bits each, as shown in Figure 4 below. The tag slot is essentially meta-
data and describes whether or not there is valid data in any of the remaining 12 slots. The 
information in the remaining 12 slots differs between sdata_in and sdata_out and is 
described below. 

 
Figure 4. AC97 Frame consisting of 13 slots 

 
Frames from Controller to Codec 
Frames sent from the controller to the codec contain two valuable pieces of information. 
First, there is information used to write or read internal codec configuration registers. 
Second, there is digital audio data begin sent for processing by the codec’s D/A. Eighteen 
bits of digital data can be passed to slots 3 and 4 (left and right channel respectively) or to 
slots 6 and 7 for D/A conversion. More important, however, is the information passed to 
configure the internal registers. Without properly configuring the codec, it will not be 
able to perform any of its powerful audio processing functions. 
 
Configuration Registers 
The AC97 specification contains a description of about thirty internal configuration 
registers that determine how the codec will operate. Several of these registers are 
configurable by the controller and, in many cases, must be written to for the codec to 
function. Among the most important are the registers which apply gain or attenuation on 
incoming and outgoing signals, and the selector mux which decides which input to listen 
to for incoming analog information. By default, all gain/attenuation registers are set to 
mute and the selector mux will listen on the microphone line input. Therefore, to see the 
desired functionality of the codec, all gain/attenuation registers in the critical path 
between inputs and outputs must be un-muted. The gain/attenuation registers can be 
configured between 0 dB and 22.5 dB with a 1.5 dB resolution. In addition to the 
gain/attenuation registers, the codec contains an 18-bit A/D converter with variable 
sampling rate ranging from 4 kHz to 48 kHz with 1 Hz resolution and again, there is an 
internal register that can be set to change this sampling rate. The iGamePlay system used 
the stereo line inputs with a sampling rate of 48 kHz along with the headphone outputs. 
 
Frames from Codec to Controller 
Frames sent from the codec to the controller contain two valuable pieces of information. 
First, the codec can send information to the controller in response to a register read. This 
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information would include an echo of the register address requested for the read in slot 2, 
and the value stored in that address in slot 3. Second, the codec will pass back left and 
right channel digitized PCM data in slots 3 and 4 respectively.   
 
Analyzing Energy in the Music 
 
The beat detection algorithm used for iGamePlay is a modified version of an energy 
analysis method described here: 
http://www.gamedev.net/reference/programming/features/beatdetection/ . 
The basic intuition behind the algorithm is to find sections of the music where the instant 
energy in the signal is greater than some scaling of the average energy of the signal over 
the previous approximate second of music. The assumption made is that the instant 
energy in a signal will be much greater on the beat than between beats. This assumption 
is reasonable for songs with heavy down beats and little mid and high frequency “noise”.   
 
An outline of the original algorithm is as follows: 
 

1. Collect 1024 16 bit digital samples in a buffer a[n]. 

2. Compute instantaneous energy e[n] by: ( )�=
1024

0

2][][ nane . 

3. Compute average 1 second energy <E> by summing over a history buffer that 

contains the 32 previous values of e[n] by: ( )�>=<
32

0

2][
32
1

neE  

4. If e[n] > c*<E>, detect a beat. 
5. Flush out oldest value e[n] from history buffer and insert newest e[n]. 
6. Repeat. 

 
The digitized sample values coming from the A/D are 18 bits 2’s complement numbers 
which correspond to values ranging from (-2^15) through (2^15 – 1). For iGamePlay, 
these values were all shifted to positive numbers between 0 and (2^16-1) by flipping the 
most significant bit. By normalizing to all positive values we were able to remove the 
squaring operations in the above formulas. This is much more efficient because it does 
not require the use of an 18x18 bit multiplier and a 46x46 bit multiplier. Also, instead of 
diving by 32 to calculate <E>, the least significant 5 bits were removed from <E>. The 
constant ‘c’ in step 4 was discovered empirically to be approximately 3. 
 
This method, although sensitive to high energies resulting from higher frequencies, 
worked very well at tracking a various inputs. Basic tests involved songs with only bass 
drum beats at changing tempos, songs with bass drum and high-hats, and songs with a 
bass drum, high-hats and a bass guitar. The system tracked the beat perfectly for these 
inputs. More rigorous tests included techno and rap songs with strong downbeats. 
Although these songs had energy in other frequency bands, the algorithm performed very 
well and tracked the beat most of the time, losing its way from time to time, but usually 
getting back on track. Finally, we tested rock music with symbol crashes and high 
frequency guitar solos. The system did not track very well because this method for beat 
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detection is “colorblind”. In other words, it only detects a threshold difference between 
the energies in the music, but does not know what frequency band the energy lies in. A 
more robust method would involve a frequency analysis of the incoming waveform using 
FFTs, filter banks or correlation functions. 
 

 
Figure 5. Sound Energy FSM Diagram 
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Input / Game Logic 
 
There are two obvious tasks in this section of the iGamePlay project. The input 
component must interface with users, ensuring that each player has a direct say in the 
flow and variation of any single game. The game logic component must preserve and 
update the continually varying game state, driving information about crucial game objects 
to the video output unit. 
 
User Input 
 
For the iGamePlay project, we decided to use two Nintendo Emulation System (NES) 
controllers as input devices. The gamer generation has extended familiarity with this 
device, and its use is straightforward. Beyond that, the system interface for NES 
controllers is rather simple. Unlike analog controllers and joysticks, the NES joy pad only 
has buttons. At any time, each button is either idle (off) or depressed (on). The only task 
that the user input module must perform is to sample all eight NES buttons at some 
frequency. 

 

 
 

Figure 6. Physical Interface to NES Controller 
 

The physical interface to the NES controller is a simple one. Only five wires connect 
each NES pad to the iGamePlay kit. There are four controller inputs (power, ground, 
latch and pulse) and one controller output (data). Since there is only one data line, buttons 
states must be transferred serially. An input finite state machine within the project 
handles all controller communications, according to the input protocol shown in Figure 7. 
A latch signal from the input FSM initiates a transaction sixty times every second. Latch 
is held high for twelve microseconds, after which the first data value (“A”) is guaranteed 
to be valid. After reading the value, the input sends seven six-microsecond pulses out on 
the pulse wire. After each one, it reads a new button value from the data line, which the 
controller will drive there in the order “B,” “Select,” “Start,” “Up,” “Down,” “Left,” and 
“Right.” See Appendix D for Verilog code that implements this communication protocol. 
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Figure 7. Nintendo Emulation System Input Protocol 
 

A major concern with any asynchronous user input to a digital system is registering and 
steadying user data. In this case, the user presses keypad buttons that may bounce after 
the first touch until they finally settle. To prevent asynchronous data from ruining the 
careful timing of the digital system, the inputs are first registered on the system clock. In 
some scenarios, it is helpful to also build a button delay, to ensure that a user meant to 
perform the chosen action. For example, when the user chooses a menu option, the 
system waits for 100 ms of valid user data to ensure that any button press is intentional. 
However, such “debouncing” of user input is not always beneficial: when a user wants to 
shoot a missile, it is important that the action is completed immediately. Because demand 
for button debouncing varies even across different uses of the same keys, debouncing is 
performed locally as needed, and not dealt with in or around the input FSM. 
 
Game Logic 
 
The game logic portion of the iGamePlay project is the section of code that is the least 
native to a hardware implementation. The game logic component is a large finite state 
machine built on several other game object FSMs. The interactions between the modules 
are often complex and tedious in hardware (i.e. collision detection), and as a result take 
up a lot of FPGA realty. Figure 8 shows an overview of the game logic component. 

 

Figure 8. Game Logic Overview 
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The minor FSMs for players, missiles and enemies are all primarily movement oriented. 
They control the positions of game objects in response to user input in the case of the 
players, a beat signal in the case of the enemies, and a target’s position in the case of the 
missiles. However, such movements are predicated on the “liveness” of objects. 
Hardware restrictions do not allow the allocation of many missile or enemy structures, 
and as a result the viable number of missiles and enemies were experimentally capped at 
sixteen. At no one time will all enemies and missiles be active. Instead, the game logic 
cycles through idle (expired or collided) missiles, keeping track of the current missile and 
enemy indices, and reactivating them as new game objects with the spawn signal and a 
set of initial coordinates. When it is time for the game objects to disappear again (whether 
via expiration or collision), missiles and enemies are given an active reset signal. 
 
The operations that require knowledge about more than one game object all take place in 
the main game loop. The most visually prominent and also most difficult multi-object 
actions are collisions, which can lead to any of the following outcomes: player bounce, 
player death, enemy splitting, enemy death, and missile death. The reason why collisions 
are so tricky is that each collision requires several large comparators to check for 
proximity, and the total number of collision checks is in the hundreds. To solve this 
problem, the iGamePlay system uses a single collider module that checks proximity of its 
inputs. The system examines collision candidates in sequence, an inefficiency that is 
made possible by the high system clock speed. At a clock frequency of 27 MHz, and a 
movement rate of one tick per 100 milliseconds, the system has many thousands of clock 
cycles to check collisions between movements. 
 

 
Figure 9. Game Loop Finite State Machine 
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While the focus of the game logic is mainly on game play and game content, the main 
loop also performs several functions that gamers might take for granted in games. See 
Figure 9 for a diagram showing the transitions of the game loop FSM. The system deals 
with game play aspects in the PLAY loop: collisions (as described above), player death 
and victory, and missile firing. Beyond this, the system keeps track of levels, changing 
the level in the transition from PLAY back to SETUP. With each higher level, missiles 
and enemies speed up, presenting a larger challenge to the player, whose own speed 
remains unchanged. SETUP is a good place to provide level information to the video 
system, though project time constraints forced us to bypass this feature. The system also 
implements a Mario-style menu interface, allowing the user to switch a selector between 
editing game mode and starting a match. Finally, the WIN state provides an opportunity 
to present game results to the video system, which could output whether player one, 
player two, or the enemy won the match. Due to project time constraints, this 
implementation did not contain such a summary screen, instead skipping through to the 
RESET state. 
 
 
Video 
 
The video subsystem is responsible for displaying the game content to the screen. The 
subsystem takes input from the game logic subsystem and uses it to generate the images 
displayed to the user. This system displays 24-bit color 640x480 VGA video at 60 frames 
per second. Figure X below shows a general schematic of the video subsystem. 
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Figure 10. Video Subsystem Schematic 

 
The system implements a page-buffering scheme using the two ZBT SRAMs included in 
the lab kit. Page-buffering simply means that while the contents of one RAM are being 
displayed to the screen, the other RAM is being filled with the contents of the next 
screen. This results in smoother video performance, greatly reducing the visibility of any 
glitches that may occur. The video subsystem is comprised of five modules: the SRAMs, 
the ram_select/sel_clock unit, a bank of sprite ROMs, the screen_store unit, and the 
screen_draw unit. These modules are discussed in greater detail in the sections that 
follow. 
 
ZBT SRAMs 
 
The ZBT SRAMs included in the lab kit are 512Kx36 SRAMs. The RAMs serve as the 
page buffers for the video system. Each RAM contains a snapshot of the screen at a given 
instant. In particular, the RAMs are addressed using a linear combination of the screen 
coordinate values (x and y) for a given pixel, and contains a 24-bit value representing the 
color of that particular pixel. For more detail about interfacing with the ZBT RAMs, 
please see Appendix A. 
 

screen_store 

ram_select 

RAM0 

RAM1 
screen_draw 

Sprite ROMs 

Game logic inputs 

sel_clock 

vblank 

vblank 

Video outputs to 
ADV7125 

spr_addr 
spr_data 

fin 

capture sel 

Data and control 
signals 

ram_addr 

ram_data 

ram_data 

ram_addr 

Data and control 
signals 

Control signals 



 14

ram_select and sel_clock 
 
These modules implement the buffer switching for the page-buffering mechanism for the 
iGamePlay system. Ram_select interfaces between the drawing systems (screen_draw 
and screen_store) and the RAMs. When the input sel is high, the ram_select module 
assigns RAM0 to the screen_draw system and RAM1 to the screen_store unit. When sel 
switches values, the RAMs flip. Thus, while screen_store is writing data to one RAM, 
screen_draw can display the data from the other RAM. 
 
Sel is controlled by the sel_clock module. Sel_clock also takes in the vblank signal from 
screen_draw and the fin signal from screen_store. When the screen_store unit finishes 
writing data into a RAM, it asserts the fin signal. If this signal is asserted while vblank is 
low, sel_clock inverts the value of the sel output and asserts the capture signal. This 
causes the ram_select unit to flip the RAMs. When the capture signal is asserted, the 
screen_store unit begins storing another screen image to the RAM. It is important that 
sel_clock only trigger a page flip while vblank is low. This ensures that the transition 
occurs while the screen is being blanked, preventing viewers from seeing the refresh. 
 
Sprite ROMs 
 
In order to display complicated characters more easily, the video subsystem uses an array 
of ROMs containing sprite images. Just like the ZBT RAMs, these ROMs are addressed 
by pixel coordinates and contain the color of the corresponding pixel. If the current 
position on the screen falls within a displayed sprite, the screen_store system indexes the 
appropriate ROM and selects the value stored at the current location to store in the page 
buffer. The iGamePlay system uses sprites for players, enemies, missiles, and for the title 
screens. 
 
Screen_draw 
 
The screen_draw unit generates the control signals necessary to drive the VGA monitor. 
These signals include the vertical and horizontal sync and blank signals. Additionally, the 
screen_draw unit reads the color value of the current pixel from memory and presents it 
to the ADV7125 chip. This chip performs the digital to analog conversion necessary to 
display the data on the VGA monitor. 
 
Since the screen_draw unit functions as a continuous signal generator, the unit is 
implemented as several separate Verilog always blocks. Since these blocks execute in 
parallel, this guarantees that the control signals remain appropriately in sync. 
 
Displaying VGA video starts by generating a pixel clock. Every time the pixel clock 
pulses high, the current data presented to the ADV7125 will be latched in and converted. 
A complete line of pixels is preceded by a horizontal sync pulse. Similarly, a complete 
frame of lines is preceded by a vertical sync pulse. All sync pulses are surrounded by a 
blanking interval. These intervals are know as the front and back porches. The exact 
duration and timing of these pulses great depends on the resolution and refresh rate of the 
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monitor in use. For a table of the timing parameters used in the iGamePlay system and 
the Verilog code for the screen_draw module, please see Appendix B. 
 
Screen_store 
 
The screen_store unit is the most complicated unit in the video subsystem. This unit takes 
input from the game control system. Using this input, the screen_store unit determines 
what color needs to be displayed at each pixel on the screen and stores these values to the 
ZBT page buffer. 
 
The basic structure of the screen_store unit is as follows. The unit waits in an IDLE state 
until the sel_clock unit asserts the capture signal. Starting from the upper left corner of 
the screen, screen_store examines the input to determine if the current pixel is contained 
within a sprite to be displayed on the screen. If so, the unit uses the current pixel’s 
coordinates to address the appropriate sprite ROM and retrieve the pixel’s color value. 
This value is then written into the ZBT page buffer. If no sprite is present at the current 
location, the unit writes the background color into the ZBT page buffer and examines the 
next pixel on the same line. Once the line is completed, the unit moves on to the next line 
until the entire screen has been stored to the ZBT RAM. The unit then asserts the fin 
signal, and waits until the sel_clock unit re-asserts the capture signal. 
 
Possible improvements 
 
In any project, time constraints invariably preclude the development of additional 
features that would improve the system. The iGamePlay project was no exception. There 
were many things that would have been nice to implement. For example, having more 
time to experiment with improved sprites would have greatly enhanced the visual 
experience. Similarly, we had wanted to incorporate brief information screens between 
levels and after victories but ran out of time. Other features that would have improved the 
system but were left out included background images, powerups, and additional audio 
cues. 
 
Conclusion 
 
This project has been an enlightening experience for us. We took away several lessons 
from our long hours spent poring over our code in the 6.111 lab. One important rule is to 
always back up project files whenever anything works. The smallest change in behavior 
can be an important breakthrough in the project, and before you realize it, you may have 
eradicated your progress with a new version. Another classic computer science rule that 
we found to be important is to think about a design before implementing anything. 
Temporary “fixes” usually cause more problems than they solve, because they bring 
along all kinds of new, unplanned inadequacies. When a single project compilation can 
take up to twenty minutes, it is important to realize what you’re changing, and how it will 
affect the system. Last but not least, we found it helpful to design our project timeline so 
that each week’s work is equally weighted for each team member. It is a problem if two 
people finish their designs and have to wait on a third before the project can continue. A 
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good timeline will also encourage team members to start implementing early, which is 
always good for the project. 
 
Although there were many features that we did not get a chance to implement, the final 
system was still a highly playable and enjoyable game. It features all of the intensity and 
addictiveness of classic arcade games, while managing to inject an element of freshness 
by incorporating digital signal processing. In our eyes, the iGamePlay project has been an 
unqualified success. 
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Appendix A: ZBT RAMs 
 
The following table shows the control signal values needed to perform a read or a write 
operation on one of the ZBT SRAMs included in the kit. Note that these signals are not 
the signals defined on the pins of the chip but rather the interface signals defined in the 
labkit.v top level design file.  
 

Signal name Read Operation Write Operation 
adv_ld 0 0 
cen_b 0 0 
ce_b 0 0 
oe_b 0 1 
we_b 1 0 

bwe_b XXXX 0000 
 
Because the ZBT SRAMs are pipelined, they can greatly improve access speeds over 
traditional SRAMs. However, this pipelining feature also makes the chips more 
complicated to use effectively. In general, the rule is that addresses and control signals 
are presented at time t and data is presented at time t + 2. In other words, a read operation 
will return data to the bus two clock cycles after the chip is presented with an address, 
and a write operation will store whatever data is on the bus two clock cycles after the 
write request. The figure below comes from Cypress’ web site, and illustrates these 
timing features. 
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Appendix B: screen_draw 
 
module screen_draw ( clock, reset, ramdata, ramaddr, red_out, green_out, blue_out, sync_b, blank_b, 
hsync, vsync, gamedata, vblank);  
 
    input clock; 
    input reset; 
    input [35:0] ramdata;  //[23:16]= red, [15:8] = green, [7:0] = blue 
    output [18:0] ramaddr; 
    input [19:0] gamedata; 
 
    output [7:0] red_out; 
    output [7:0] green_out; 
    output [7:0] blue_out;   
    output sync_b; 
    output blank_b; 
    output hsync; 
    output vsync; 
    output vblank; 
 
    reg [10:0] row_count, line_count; //counters for pixels 
    reg hsync, vsync, sync_b, h_c_sync, v_c_sync; //syncing signals  
    reg hblank, vblank, blank_b; //blanking 
    reg hsync0, hsync1, vsync0, vsync1; //Delay sync signals 
 
    reg [7:0] red_out, green_out, blue_out; 
    reg [9:0] spr_addr, count; 
 
    //pixel clock: 25.17 MHz 
    parameter H_ACTIVE = 640; // pixels 
    parameter H_FRONT_PORCH =   16; // pixels 
    parameter H_SYNC =         96; // pixels 
    parameter H_BACK_PORCH =    48; // pixels 
    parameter H_TOTAL = 800; // pixels 
 
    parameter V_ACTIVE = 480; // lines 
    parameter V_FRONT_PORCH =  11; // lines 
    parameter V_SYNC =          2; // lines 
    parameter V_BACK_PORCH =  31; // lines 
    parameter V_TOTAL = 524; // lines 
 
    reg [9:0] pixel_row; 
    reg [8:0] pixel_line; 
 
    //Address = x + 800*y 
    assign ramaddr = row_count[9:0] + (800 * line_count[9:0]); 
  
    wire [9:0] x, y; 
    assign x = gamedata[19:10]; 
    assign y = gamedata[9:0]; 
     
//DRAWING LOGIC 
always @ (posedge clock or negedge reset) begin 
 
 if (!reset) 



 19

 begin 
    red_out <= 8'h00; 
    green_out <= 8'h00; 
    blue_out <= 8'h00; 
 end 
 else  
 begin 
    //read data from ram 
    red_out <= ramdata[23:16]; 
    green_out <= ramdata[15:8]; 
    blue_out <= ramdata[7:0]; 
 end 
end   
 
 // CREATE THE HORIZONTAL LINE PIXEL COUNTER 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin   // on reset set pixel counter to 0 
  row_count <= 11'h000; 
 end 
 
 else if (row_count == (H_TOTAL - 1)) 
  begin   // last pixel in the line 
  row_count <= 11'h000; // reset pixel counter 
 end 
 
 else 
 begin 
  row_count <= row_count +1;   
 end 
end 
 
// CREATE THE HORIZONTAL SYNCH PULSE 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin   // on reset 
  hsync0 <= 1'b1;  // remove hsync 
 end 
 
 else if (row_count == (H_ACTIVE + H_FRONT_PORCH - 1))  
 begin     // start of hsync 
  hsync0 <= 1'b0; 
 end 
 
 else if (row_count == (H_TOTAL - H_BACK_PORCH - 1)) 
  begin     // end of hsync 
  hsync0 <= 1'b1; 
 end 
end 
 
 
// CREATE THE VERTICAL FRAME LINE COUNTER 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin    // on reset set line counter to 0 
  line_count <= 10'h000; 
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 end 
 
 else if ((line_count == (V_TOTAL - 1))&& (row_count == (H_TOTAL - 1))) 
 begin   // last pixel in last line of frame  
  line_count <= 10'h000;  // reset line counter 
 end 
 
 else if ((row_count == (H_TOTAL - 1))) 
 begin    // last pixel but not last line 
  line_count <= line_count + 1; // increment line counter 
 end 
end 
 
// CREATE THE VERTICAL SYNCH PULSE 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin      // on reset 
  vsync0 = 1'b1;    // remove v_sync 
 end 
 
 else if ((line_count == (V_ACTIVE + V_FRONT_PORCH - 1) && 
     (row_count == H_TOTAL - 1)))  
 begin      // start of vsync 
  vsync0 = 1'b0; 
 end 
  
 else if ((line_count == (V_TOTAL - V_BACK_PORCH - 1)) && 
     (row_count == (H_TOTAL - 1))) 
 begin      // end of vsync 
  vsync0 = 1'b1; 
 end 
 end 
 
// ADD TWO PIPELINE DELAYS TO THE SYNCHs COMPENSATE FOR THE DAC PIPELINE 
DELAY 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin      
  hsync <= 1'b1; 
  vsync <= 1'b1; 
  hsync1  <= 1'b1; 
  vsync1  <= 1'b1; 
 end 
 else  
 begin 
  hsync1 <= hsync0; 
  vsync1 <= vsync0; 
  hsync <= hsync1; 
  vsync <= vsync1; 
 end 
end 
 
 
 
// CREATE THE HORIZONTAL BLANKING SIGNAL 
// the "-2" is used instead of "-1" because of the extra register delay 
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// for the composite blanking signal  
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin     // on reset 
  hblank <= 1'b1;  // remove the h_blank 
 end 
 
 else if (row_count == (H_ACTIVE - 2))  
 begin     // start of HBI 
  hblank <= 1'b0; 
 end 
  
 else if (row_count == (H_TOTAL - 2)) 
  begin     // end of HBI 
  hblank <= 1'b1; 
 end 
end 
 
 
// CREATE THE VERTICAL BLANKING SIGNAL 
// the "-2" is used instead of "-1"  in the horizontal factor because of the extra 
// register delay for the composite blanking signal  
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin      // on reset 
  vblank <= 1'b1;   // remove v_blank 
 end 
 
 else if ((line_count == (V_ACTIVE - 1) && 
     (row_count == H_TOTAL - 2)))  
 begin      // start of VBI 
  vblank <= 1'b0; 
 end 
  
 else if ((line_count == (V_TOTAL - 1)) && 
     (row_count == (H_TOTAL - 2))) 
 begin      // end of VBI 
  vblank <= 1'b1; 
 end 
end 
 
 
// CREATE THE COMPOSITE BANKING SIGNAL 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
 begin    // on reset 
  blank_b <= 1'b1; // remove blank 
 end 
 
 else if (!hblank || !vblank) // blank during HBI or VBI 
 begin 
  blank_b <= 1'b0; 
 end 
 else begin 
  blank_b <= 1'b1; // active video do not blank 
 end 



 22

end 
   
// CREATE THE HORIZONTAL COMPONENT OF COMP SYNCH 
// the "-2" is used instead of "-1" because of the extra register delay 
// for the composite synch 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin     // on reset 
  h_c_sync <= 1'b1;  // remove h_c_sync 
 end 
 
 else if (row_count == (H_ACTIVE + H_FRONT_PORCH - 2))  
 begin     // start of h_c_sync 
  h_c_sync <= 1'b0; 
 end 
 
 
 else if (row_count == (H_TOTAL - H_BACK_PORCH - 2)) 
  begin     // end of h_c_sync 
  h_c_sync <= 1'b1; 
 end 
end 
 
// CREATE THE VERTICAL COMPONENT OF COMP SYNCH  
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
  begin      // on reset 
  v_c_sync <= 1'b1;   // remove v_c_sync 
 end 
 
 else if ((line_count == (V_ACTIVE + V_FRONT_PORCH - 1))  
   && (row_count == (H_TOTAL - 2)))  
 begin     // start of v_c_sync 
  v_c_sync <= 1'b0; 
 end 
  
 else if ((line_count == (V_TOTAL - V_BACK_PORCH - 1)) && 
     (row_count == (H_TOTAL - 2))) 
 begin     // end of v_c_sync 
  v_c_sync <= 1'b1; 
 end 
end 
 
// CREATE THE COMPOSITE SYNCH SIGNAL 
always @ (posedge clock or negedge reset) begin 
 if (!reset) 
   begin    // on reset 
   sync_b <= 1'b1;  // remove comp_sync 
  end 
 else begin 
  sync_b <= (v_c_sync ^ h_c_sync); 
  end 
end 
endmodule 
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Appendix C: Tips and Tricks 
 
AC97 Codec Tips 

• Cold resets reset all registers and should be used to restore the codec to its initial 
state.  Warm resets are used for power saving modes.  Unless you are running in 
low power modes, you can ignore the use of warm resets. 

• When the codec comes out of reset (reset transition from low to high), the signals 
sdata_out and sync MUST be held low.  Failure to do so will cause unexpected 
codec behavior that may be a vendor test mode.  These test modes are not 
documented well in the LM4550 specification. 

• Look at sdata_out and sdata_in on the logic analyzer often.  Finding early 
problems in reading and writing will help speed up the debugging process. 

• At 12.288 MHz, 1 bit is approx. 81 ns on the logic analyzer. 
 
Xilinx Tips and Hints 

• Copy your project on the local drive of the machine you are on instead of the 
shared drive.  Xilinx will compile much faster.  Don’t forget to place a copy back 
in your shared folder once you finish because there is no guarantee you will get 
the same computer!! 

• A FATAL GuiUtility error usually means the project file is corrupt.  Start a new 
Xilinx project and copy your .v files over to the new project. 

• Don’t forget the .UCF constraints file! 
• Xilinx core 1024 pt Complex FFT module would compile in project, but would 

cause “Invalid SDR Directive” error during ACE file generation.  No fix found. 
• Xilinx does not check typos on variable names.  Will create misnamed wires, 

registers etc. 
• Always make sure you are building the correct file (labkit.v).  Compiling and 

generating the ACE file for the wrong .v file will cause a kit error. 
• The Xilinx ISE environment seems to have many transient errors.  Most can be 

solved simply by restarting Xilinx ISE. 
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Appendix D: NES Input FSM 
 
/* 
 NINTENDO CONTROLLER INPUT FSM 
 The NES controller connects to the system via 5 wires. 
 2 wires are power and ground 
 The others are latch, pulse and data. 
 Latch and pulse are signals from the FSM to the controller. 
 Data is a signal from the controller to the FSM. 
  
 The data read process starts on the gameclock signal. 
 The data protocol (exactly as used by Nintento itself) is as follows: 
 1. FSM sends latch signal high for 12 us to controller (LATCH) 
 2. "A" button data (high or low) is ready on data line (READ_A) 
 3. FSM waits 6 us (WAIT) 
 4. FSM sends pulse signal high for 6 us to controller (PULSE) 
 5. "B" button data (high or low) is ready on data line (READ_B) 
 6. Repeat steps 3-5 for (in order): 
  select button  (READ_SELECT) 
  start button  (READ_START) 
  up button   (READ_UP) 
  down button  (READ_DOWN) 
  left button  (READ_LEFT) 
  right button  (READ_RIGHT) 
 For each WAIT-PULSE sequence, the return read state is stored in 
returnstate. 
 Output data is registered with the 27 MHz clock before passing it on. 
*/ 
 
 
module gameinput(clock, gameclock, reset, latch, pulse, data, plyr_input); 
 
 input clock, gameclock, reset, data; 
 output latch, pulse; 
 reg latch, latch1, pulse, pulse1, data1; 
 output [7:0] plyr_input; 
  
 reg left, right, up, down, A, B, select, start; 
 reg left1, right1, up1, down1, A1, B1, select1, start1; 
 assign plyr_input = {left, right, up, down, A, B, select, start}; 
   
 reg [3:0] state, nextstate, returnstate, nextreturnstate; 
 reg [11:0] count, nextcount; 
 
 parameter INIT = 0; 
 parameter IDLE = 1; 
 parameter LATCH = 2; 
 parameter WAIT = 3; 
 parameter PULSE = 4; 
 parameter READ_A = 5; 
 parameter READ_B = 6; 
 parameter READ_SEL = 7; 
 parameter READ_STRT = 8; 
 parameter READ_UP = 9; 
 parameter READ_DOWN = 10; 
 parameter READ_LEFT = 11; 
 parameter READ_RIGHT = 12; 
 
 parameter TWELVE_US = 12'h144; //count for 12 us on a 27 MHz clock 
 parameter SIX_US = 12'h0A2; //count for 6 us on a 27 MHz clock 
 
 always @ (posedge clock) 
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 begin 
  if (!reset) begin 
   state <= INIT; 
   returnstate <= INIT; 
   count <= 0; 
  end  
  else begin 
   state <= nextstate; 
   returnstate <= nextreturnstate; 
   count <= nextcount; 
  end 
 
  data1 <= data; 
  latch <= latch1; 
  pulse <= pulse1; 
  left <= left1; 
  right <= right1; 
  up <= up1; 
  down <= down1; 
  A <= A1; 
  B <= B1; 
  select <= select1; 
  start <= start1; 
 end 
 
 always @ (state or returnstate or count or gameclock or data1) 
 begin 
  //defaults 
  nextstate = state; 
  nextreturnstate = returnstate; 
  nextcount = count; 
  latch1 = latch; 
  pulse1 = pulse; 
  left1 = left; 
  right1 = right; 
  up1 = up; 
  down1 = down; 
  A1 = A; 
  B1 = B; 
  select1 = select; 
  start1 = start; 
 
  case (state) 
  INIT: 
  begin 
   nextstate = IDLE; 
   nextcount = 0; 
  end 
  IDLE: 
  begin 
   nextcount = 0; 
   //get input at input rate specified by game clock 
   if (gameclock)  nextstate = LATCH; 
  end 
  LATCH: 
  begin 
   //latch 12 us, then go to read A 
   latch1 = 1; 
   if (count == TWELVE_US) begin 
    nextcount = 0; 
    latch1 = 0; 
    nextstate = READ_A; 
   end 
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   else nextcount = count + 1; 
  end 
  WAIT: 
  begin 
   //wait 6 us, then go to pulse 
   if (count == SIX_US) begin 
    nextcount = 0; 
    nextstate = PULSE; 
   end 
   else nextcount = count + 1; 
  end 
  PULSE: 
  begin 
   //pulse 6 us, then go to returnstate and read data 
   pulse1 = 1; 
   if (count == SIX_US) begin 
    nextcount = 0; 
    pulse1 = 0; 
    nextstate = returnstate; 
   end 
   else nextcount = count + 1; 
  end 
  READ_A: 
  begin 
   A1 = ~data1; 
   nextreturnstate = READ_B; 
   nextstate = WAIT; 
  end 
  READ_B: 
  begin 
   B1 = ~data1; 
   nextreturnstate = READ_SEL; 
   nextstate = WAIT; 
  end 
  READ_SEL: 
  begin 
   select1 = ~data1; 
   nextreturnstate = READ_STRT; 
   nextstate = WAIT; 
  end 
  READ_STRT: 
  begin 
   start1 = ~data1; 
   nextreturnstate = READ_UP; 
   nextstate = WAIT; 
  end 
  READ_UP: 
  begin 
   up1 = ~data1; 
   nextreturnstate = READ_DOWN; 
   nextstate = WAIT; 
  end 
  READ_DOWN: 
  begin 
   down1 = ~data1; 
   nextreturnstate = READ_LEFT; 
   nextstate = WAIT; 
  end 
  READ_LEFT: 
  begin 
   left1 = ~data1; 
   nextreturnstate = READ_RIGHT; 
   nextstate = WAIT; 
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  end 
  READ_RIGHT: 
  begin 
   right1 = ~data1; 
   nextstate = IDLE; 
  end 
 
  endcase 
 end 
 
endmodule 
 


