

Dance Dance Revolution

6.111 Final Project

Jacob Kitzman
Chris Wurts
Yong-yi Zhu

May 13, 2004

ABSTRACT

The Dance Dance Revolution videogame is implemented in an FPGA on the 6.111 lab kit. Game control is
mediated by software running on a fully-functional implementation of the Beta, a RISC CPU similar to the one
developed in MIT 6.004 Computation Structures. The system provides two forms of output: a VGA video display
from a software-controlled frame buffer in memory, and audio output of prerecorded sound. A bus arbiter mediates
control of a shared bus over which these components communicate. Additionally, a software tool-chain was
developed allowing C code to be compiled to Beta machine code and placed in system memory.

2

1. Introduction

Dance Dance Revolution (DDR) is a popular video game originally released for the Sony PlayStation console game
system. In DDR, the player dances on an 8-button input pad while music is played back. The objective is to dance
the correct steps in sync with the on-screen cues and recorded music. Arrows are shown in the video display
indicating which button on the pad the user should press at a given time. This project aims to implement the DDR
video game in a Xilinx FPGA on the new 6.111 lab kit. Game logic and control of audio and video modules are
mediated by software running on an implementation of the 6.004 Beta CPU. Video and audio output and game pad
input are provided by separate modules in the FPGA.

2. Design Overview

2.1. Design Goals

We organized our system-level design to provide flexibility and modularity. One of the main ways we attained
these goals was our implementation and use of a CPU to control game logic and display construction. Modularity is
a necessity when organizing any such large system, and our design’s modularity certainly paid off numerous times
during its development.

2.2. System-Level Organization

We split our design was into several functional components. This system-level modularity allowed us to
individually develop our respective parts in parallel and integrate them to yield the finished product. It also allowed
allowed for better collaboration This would allow us to individually create each part in parallel and integrate the
parts together to create a finished product. The parts used the Xilinx FPGA on the new lab kit and integrated various
chips included in the kit. The system is diagrammed in Figure 1.

Figure 1: Overall block diagram. Shared bus is shown in bold.

DDR Pad Interface

The DDR Pad is the single form of user input to the system. The pad has various buttons that trigger input signals.
The pad interface periodically samples these signals and stores them in shared memory for subsequent processing by
the game control logic.

Beta Processor

3

The Beta Processor is the central brain of the video game. It executes machine code stored in main memory in order
to perform a variety of operations including game logic, video display, interrupt handling, and bus control. The
processor interfaces with other components by reading and writing values to memory over a shared bus.

Shared Bus / Bus Arbiter

The bus arbiter mediates access to the memory’s shared bus interface. It is controlled by the Beta, so that bus access
can be granted to specific devices by software instructions. The arbiter issues a signal to each device indicating at
any given time whether that device is allowed to use the bus. The bus protocol is cooperative in the sense that once
given bus access, a device has exclusive permission to the bus until it yields control. Only once the arbiter has
received this signal does it revoke that device’s bus access permission and give back bus access to the Beta CPU.

Video

The video in the system uses the VGA display. It reads from a frame buffer in shared memory and sends that data
out to the AD7125, which then sends data out to a monitor. The video is used to display game screens.

Audio

The audio in the system is first recorded from an external source, which can later be played back. We used the
National LM4550 codec to first take an analog signal from a CD player and converted that into digital data. The
sound is then recorded on the Flash ROM at a rate of 4 kHz. After storage, the audio is played back during game
play at the same data rate. The data is sent to the LM4550, which sends out an analog signal that the user can hear.

RAM

For the system’s shared memory we used BlockRAM onboard the Xilinx FPGA. It is faster and easier to write to
than the Flash ROM, but it can store much less data. Different information is stored in the RAM, including game
and kernel code, the frame buffer, video sprites, and sampled DDR Pad input. We implemented a memory
controller to issue control signals to the memory hardware to provide other modules with a consistent, simple
interface to memory.

ROM

The Flash ROM is a large, non-volatile memory storage device. It has high capacity but is much slower for writes
than the RAM. The ROM was used in this project to store audio data because even a small loop of music recorded at
low sampling rate exceeded the RAM capacity.

3. Modular Detail & Implementation

3.1. Beta

3.1.1. Overview

We implemented a general-purpose RISC processor to control game logic and video display. Our
processor is fully opcode-compatible with the Beta instruction set architecture (ISA)1 and is generally an
extension of the design from MIT 6.004 Computation Structures. Our overall design goal was to make
the Beta as generalized as possible, so we avoided including any specialized hooks to game logic or other
modules. As an example of such a mechanism, we considered a special opcode VRNDR which would
issue a signal to the video system instructing it to render the frame buffer. We did not adopt such a
mechanism, instead controlling video refreshes in the timer interrupt handler. In this way we kept DDR-

1Available at http://6004.lcs.mit.edu/6.004/currentsemester/handouts/beta.pdf

4

specific features in software which is more flexible than hardware. This would allow our Beta
implementation to be used with a wide variety of peripheral hardware and used in a range of different
applications.

Our Beta design is organized into several modules connected as shown in Figure 2. Note the use of
registers (INSTR_REG, MEMREADREG) to latch in values read from memory. This amounts to a certain
level of internal pipelining, although it should be noted that the Beta is not pipelined in the sense of being
able to have multiple instructions concurrently in-flight.

Figure 2. Modular design of the Beta.

3.1.2. Control Logic

The Control Logic module generates control signals, loading each instruction and bringing it through a
series of execution stages by successively enabling the processor’s various other modules (e.g., ALU,
register file) at the appropriate times. The FSM implements four major stages of instruction, as shown in
Figure 3. In the first of these stages, IFETCH, each instruction is fetched, or loaded from memory, by
issuing an “IFETCH request” signal to the Beta’s bus access client. The control logic then waits until
receiving an “IFETCH ready” signal back from the bus access client along with the instruction contents.
This wait can be arbitrarily long, as another device may be using the bus, causing the Beta’s bus client to
block until that device yields the bus. The control logic issues a signal to latch the instruction into the

5

instruction register, and then decodes the instruction. During this decode, the control logic issues signals
based on the opcode, the 6 most significant bits of the instruction, which identify the operation to be
performed. One such signal directs the ALU to perform a certain function (e.g., addition, logical AND).
Also, signals are issued to numerous multiplexers setting up the datapath for this operation so that the
appropriate values are routed between to the necessary submodules such as the ALU, register file, and
memory subsystem.

Figure 3. Beta instruction execution control stages. Execution times assume the CPU has bus access.

In the next stage, REGACCESS, values are read from the register and are used by the ALU to compute a
result value (e.g., a logical AND, or a branch target address). For memory operations (LOAD and ST), a
MEMOP stage follows by a mech. The final stage of execution is WRITEBACK, where values computed
by ALU or loaded from memory are written into the register file. At the end of WRITEBACK, the
address of the following instruction is latched into the PC (program counter) register and the cycle begins
again with the IFETCH stage.

3.1.3. Memory Hierarchy

The Beta uses little-endian, byte-addressed memory model, meaning that a given 32-bit address X
references the 32-bit word where X is the 0-based index of the word’s least significant byte. Our Beta
supports 32-bit addresses but since our implementation needs only 18 bits are needed to its 225KB of
RAM, the upper 14 bits are discarded by the memory subsystem. The memory capacity is transparent to
the CPU and be changed at the memory controller without modifying the CPU.

Our Beta CPU features a 512-entry, 53-bit wide, direct-mapped unified cache. All memory operation
requests go from the control logic go through the cache. On reads, the cache checks the tag value (21 bits
wide) to determine whether the read hits or misses. A read hit completes 2 cycles following the read
request. On a read miss, the cache issues a read request to the bus access client, which then takes 4 cycles
to return the data (assuming the CPU has bus access). We implemented a write-through cache, meaning
that writes are blocking – on a write, the cached value is marked as invalid and a write transaction is
started on the bus. The cache indicates MEMOP completion only after the value has been written over
the bus to the memory controller.

We observed dramatic performance increases when operating the Beta with the cache enabled. This was
particularly true because the cache is quite large relative to the ZBT SRAM size under consideration.
Also, the programs we tested the Beta exhibited good spatial locality. However, when we transitioned to

6

using FPGA BlockRAM as our main system memory, there was no longer any speed advantage to using a
cache synthesized from BlockRAM, so we disabled it.

3.1.4. CPU Bus Access Client

The CPU bus access client acts as the CPU’s interface to
the shared memory bus, servicing memory read and write
requests from the CPU control logic by performing
transactions across the shared bus to the memory controller.
It is implemented by a straightforward FSM that waits until
the CPU has bus access, performs the requested operation,
and signals upon completion.

3.1.5. Bus Control Mechanism

The bus access client interfaces with the bus arbiter to
provide software control of bus access. Bus access is
controlled in software not by a dedicated opcode but rather
by issuing a store (ST) instruction to a special address, called the bus access vector (abbreviated BAXv).
The data to be written indicates the identifier of the device to be granted bus access (thus storing 3 to
BAXv would grant bus access to device #3). Write requests to BAXv are intercepted by the bus access
client and the number of the access recipient is forwarded to the bus arbiter along with a pulse of the
BAXv_newowner signal, indicating that bus ownership should be changed.

3.1.6. Interrupt Functionality

The Beta control logic additionally has an 8-bit interrupt request (IRQ) vector input, each bit of which
may be pulsed by a different device to indicate that an interrupt is being requested by that specific device.
Interrupt requests are a mechanism widely used by modern computers to notify the CPU of asynchronous
input (such as a keystroke or even just a clock tick). We used a clock divider to issue an interrupt request
every 1/100 sec.

Upon receiving an interrupt request, the control logic latches in the identity of the requestor and notes that
an interrupt request is pending. No other requests may be handled until the pending one is serviced. The
control logic does so by completing the instruction currently inflight2 and then writing PC+4 (the address
of the instruction following the one just executed) to the exception pointer (XP) register. The CPU is then
placed in supervisor mode and execution is redirected an interrupt handler specific to the device
requesting an interrupt (at address 0x80000000+4*IRQdevice ID). In supervisor mode, the PC MSB is 1,
and the CPU executes kernel code and does not service interrupt requests (the kernel is not reentrant).
When the interrupt has been serviced by its handler, supervisor mode is exited JMP instruction to XP,
allowing execution to continue where it was interrupted. The CPU masks out the MSB of jump and
branch targets, making it impossible for user code to invoke kernel execution.

2Our interrupt semantics differ from those of the 6.004 Beta in that in their design, the instruction is halted for
interrupt processing. We chose for the sake of simplicity to handle interrupt requests only when memory and
register writes had completed. Additionally, interrupt requests are noted during but not serviced following branch
and jump instructions (i.e., those that change the program counter to an arbitrary target) to simplify testing.

Figure 4. CPU bus access client

7

The extent3 of our Beta CPU’s adherence to specification is exhibited by the fact that our Beta ran the
assembled kernel code used by 6.004. We created a timer interrupt handler to execute code every time
the clock divider issued an interrupt request pulse (every 1/100 sec). This interrupt handler increments a
counter in memory. When the counter reaches a certain value, the handler issues a store instruction to
BAXv in order to yield the bus to the pad control board to allow it to store sampled user input in memory.
The same mechanism would have been used to instruct the video module to periodically (~40Hz) read the
frame buffer across the shared bus. This counter is also used to indicate the current time to user software,
for example, so the game code “knows” to display a visual cue for a dance move at a certain time.

3.1.7. Differences from 6.004 Beta

The 6.004 description of the Beta contains a number of major abstractions which required us to extend its
design. First, the 6.004 design assumes separate instruction/data memories. We used a unified main
memory in order to allow for flexibility in the size and arrangement of code and data. The 6.004 design
also assumes instantaneous access to internal memory (the register file) as well as to external main
memory. This is not a reasonable assumption, particularly for main memory which can have latencies of
tens or hundreds of cycles in modern systems. The 6.004 design also assumes exclusive CPU access to
system memory, which our shared bus design does not provide. We handed both these problems by
designing for variable, nonzero memory access latency – seven cycles when the CPU has bus access, and
indeterminately longer when the CPU is waiting for the bus.

3.2. Software

3.2.1. Development Toolchain

We used existing tools and created a number of new ones to develop software for the Beta. The final
output of our toolchain is the full-length (225 KB) initial contents of system memory. Into this assembly
we need to combine the kernel and program code as well as initial data structures used by the program
(e.g., display sprites, dance moves with time coefficients).

We used the Beta ISA port of gcc created by the 6.004 staff to compile C code to Beta assembly
instructions. We used regular expressions of our own derivation to perform post-processing steps on
gcc’s assembled output in order to make it compatible with uasm. We then used uasm to assemble this
along with the kernel assembly code to a binary stream of Beta machine code. We created a small
program (bmp2hex) that converts display sprites (actually in PNG format) to raw binary stream in our
display format (2 bytes per pixel). We created a program called makecoe that takes these binary streams
(machine code and graphics), merges them at user-specified offsets, and outputs the merged binary stream
in the COE format used to initialize the Xilinx BlockRAM. We used a make file to automate this process.

3.2.2. Video Game Software

Our video game software design was separated into two levels – game control and display construction.
The game control routines were to read the periodically-sampled step data and the current time (as
counted by the timer interrupt handler). A data structure was devised to store the times of each “correct”
step in the dance routine. A user’s step at a given time was identified by comparing the current pad
sample to the previous sample; if the previous sample indicated that no buttons were stepped on, or if the
two samples differed, the program interpreted that the user had stepped on a button in the last 1/100 sec.

3 The lone exception being that we did not support software traps, which would be necessary were we to develop an
operating system for our platform. We disabled the parts of the kernel that serviced these traps as well as those with
bsim-specific hooks.

8

In this case, the algorithm compared the step read in against the “correct” step closest (either after or
before) to and within ½ sec of the current time. The step found would be marked as “scored”, and a score
proportional to the difference between the step’s “correct” time and the actual time would be awarded if
the step was correct (e.g., the user hit the correct button on the pad).

The other major responsibility of the software was to construct the visuals to be displayed by the video
module. To do so, the software constructs a frame buffer which stores the 16-bit RGB representation of
each of the 76,800 pixels (320x240) to be displayed on-screen. Subroutines were developed to fill in
portions of the frame buffer with a desired color, copy (or “bitblt”) pre-stored pictures (or “sprites”) into
the framebuffer, and draw lines. We demonstrated these routines superimposing text and animating the
color of an onscreen region.

3.2.3. Debugging practices

During the development process, we used complementary tools to debug our design. One major asset in
this process was bsim, a Beta simulator created by Prof. Chris Terman and the 6.004 staff. We used bsim
to simulate execution of our code assemblies in order to work out software bugs. This sped the design
process considerably because one run of CoreGen to integrate software changes into the FPGA memory
often took up to half and hour. We used a number of techniques to enhance bsim’s functionality. For
example, bsim provides no way to run until a certain breakpoint in the code; we simulated this ability by
adding an inline assembly statement in our code that would store to an out-of-range address, causing bsim
to pause. To simulate inter-module integration, we used ModelSim in behavioral and post-place-and-
route modes. We used this method to confirm that after handling a certain number of timer interrupts, the
Beta correctly granted the bus to the pad interface, which wrote the sampled input to memory and yielded
the bus back to the Beta.

3.2. RAM

Although we were unable to create an interface to the ZBT SRAM, we created a RAM controller that
conformed to the same shared bus interface and controlled a 56320x32 BlockRAM internal to the FPGA.
That we were able to switch RAM technologies with relative ease illustrates the power of our design’s
modularity – because the numerous devices using the bus conformed to an agreed protocol, the only
device requiring modification was the RAM’s dedicated controller.

The RAM controller interfaces with a bidirectional, shared 56-bit bus, of which 2 bits are read/write
control, 22 are address bits4, and 32 are data bits. The controller implements a simple protocol: when the
read control line is pulsed, it samples the address lines and three cycles later, supplies the word read from
that address. Writes are performed similarly.

A major source of complexity in the RAM controller was that it was required to support non-word-
aligned memory operations (i.e., those that begin at bytes that are not multiples of four). Because the
underlying memory components are 32 bytes long, this required two read operations along with result
masking and shifting to be performed. Because the Xilinx memory did not have byte write select control,
performing unaligned writes would have been very difficult – the two addresses to be written to would
first have to be read and the write contents masked into them before they were both written back. This
was not implemented; the software was instead extensively analyzed and optimized to prevent unaligned
writes.

3.3. Bus Arbiter

4 There are 22 address bits rather than 18 because we originally planned to address 4MB of memory.

9

The bus arbiter module mediates access to the shared bus. It implements a simple cooperative algorithm – a device
is granted access and may use the bus until it yields access. In order to prevent bus contention, access is by design
mutually exclusive – while one device is using the bus, no other device may. The arbiter takes a signal (BAXv)
from the CPU indicating when it should give another device bus access, and for which device it should do so. The
CPU is otherwise a generic device on the bus – while another device (e.g., the pad controller) uses the bus, the
CPU’s incoming bus access signal is low and its execution stalls upon the next instruction requiring memory access
(i.e, the next write or the next read causing a cache miss).

3.4. Audio

3.4.1 Overview

The audio module manages all audio played and generated by the DDR system. The original design called for the
game music to be stored digitally in the system and played back by the audio subsystem. The design evolved to one
where the game music is digitally looped through the FPGA, and a short sound effect is stored digitally and played
on demand. The audio system is built around the National LM4550 AC97 audio codec on the lab kit. A control unit
manages two minor FSMs that send and receive AC97 frames to and from the codec. A block diagram of the audio
module is included in Figure 5.

LM4550
CODEC

Frame Receiver

Frame
Transmitter

Controller

Audio
Register

Speakers

Line out

sdata_in

sdata_out

data_req

bit_clk

sync

PCM_data

P
C

M
_d

at
a

FPGA

16

16

16

PCM_data
16

P
C

M
_d

at
a_

ou
t

play

PCM_data_in

16 Flash
ROM

(From Beta)

Figure 5: The Audio module based on the LM4550 codec.

3.4.2. Controller

The audio controller operates in three modes: pass-through mode, play mode, and record mode. The controller
module controls which mode the audio system is in based on single-bit-inputs play and record. Additionally, the
controller receives the AC97 bit clock from the codec, and generates a sync signal for the codec. An 8-bit bit_count
vector is generated and supplied to the frame receiver and transmitter FSMs. The AC97 data is frame based, and
data is sent serially along the single-bit sdata line. The sync signal indicates the beginning of a new frame, and the
bit_count represents the bit-offset in the frame.

In all modes, frames are sent and received from the CODEC. Incoming analog audio is digitized by the ADC in the
codec and stored in the audio receive register. Outgoing PCM digital audio stored in the audio transmit register is
interpolated by the DAC in the codec and outputted through the line out port as analog audio.

10

In pass-through mode, the audio receive and audio transmit registers are connected together, so the incoming audio
stream is passed through to the outgoing audio stream, going through the ADC and the DAC in the process. No
modifications are made to the digital audio data.

In record mode, digitized incoming data from the audio receive register is sent out of the audio module to the flash
ROM module and stored in the ROM for later playback. In addition, control signals are sent to the ROM controller
indicating that it should store each incoming audio sample as it is received. Nothing is presented to the line output
when in record mode. Due to timing limitations of the flash ROM controller, only two or three samples of audio
could be recorded per second. Playing back these stored samples at full 48kHz sample rate results in a scratchy
sound effect that works well for the game. Record mode is designed to be used only once when the system is
initially setup, and the unit must be manually configured to record mode by using a switch on the kit.

In play mode, digital audio is read from the flash ROM and stuffed into the audio transmit register for conversion by
the DAC. The audio controller sends control signals to the flash ROM when it would like to start playing and
whenever it needs an audio sample read from the ROM. Playback is started over each time the sound effect is
played. Play mode is triggered by a dedicated output signal from the Beta when it wants the sound effect to be
played. Originally the audio controller was to read from a dedicated location in memory to receive play signals
from the Beta. The audio-memory interface was scrapped, however in favor of the dedicated play signal to reduce
complexity and development time.

3.4.3 Frame Receiver

The frame receiver receives AC97 frames from the codec and extracts data and control signals.
Control signals indicating whether the frame contains valid PCM audio data (data_valid), and whether the controller
and transmitter FSM should send outgoing PCM data to the codec in the next frame (data_request). The receiver is
implemented as an FSM based on the bit_count input from the controller. The bit_count value resets at each rising
edge of the sync signal. Based on the bit_count value, the receiver routes the bits incoming from the codec on
sdata_in to the appropriate place. The bit_count values and corresponding slot descriptions are included in Table 1.
If the data_valid bit it set, PCM data from the frame is sent to a temporary register. On the rising edge of the sync
signal, the temporary register is copied to the output
register. If the data_request bit is set, a signal is sent to
the transmitter indicating that it should send data in the
next frame. The receiver is negative-edge-triggered to
sample data that changes at the positive clock edge by
the codec.

3.4.4 Frame Transmitter

 The frame transmitter constructs AC97 frames and sends them to the codec. Two types of data are included in the
outgoing frames: control register data and audio data.
The transmitter generates frames to send one bit at a
time. The control data is used to configure registers in
the codec for the desired configuration. The control
commands sent to the codec are summarized in Table
2. A frame count is maintained (starting with zero on
reset), and one command is sent in each frame until all
commands are issued. The frame count is allowed to
wrap around, so the command sequence is sent
repeatedly. Command values are hard-coded into the
Verilog module. Commands are setup in a command
register, and the command register data is sent serially
during the appropriate part of the frame based on
bit_count. A possible extension would have been to
include a digital volume control (up/down buttons) that
sends commands to the codec.

Table 1: Incoming AC97 Frame.

Bit_count / Bit Range Description
4-5 Data valid left/right

25-26 Data_request left/right
57-76 Slot 3: PCM left
77-96 Slot 4: PCM right

Table 2: AC97 Configuration Commands.
Address Data Description
0x02 0x0000 Un-mute line out
0x04 0x0000 Un-mute headphones
0x0C 0xFFFF Mute line in to Mix 2
0x0E 0xFFFF Mute mic in

0x10 0xFFFF Mute line-in to mix 1 (no
analog loopback)

0x1A 0x0404 Record select = line in
0x1C 0x0000 Record gain = 0dB

0x18 0x0808 Unmute DAC output – slightly
attenuate

0x20 0x8000 Bypass 3D Surround

11

Audio data is stuffed into the frame based on the data_request input to the transmitter. If the data_request signal is
received from the receiver, PCM data is loaded from the audio transmit register at the start of the frame, and the
data_valid register is set to 1. The bit_count values and associated slots and data are summarized in Table 3. The
transmitter is positive-edge-triggered to set up data for codec to sample on falling clock edge. The logic in the
receiver and transmitter that sends and receives the frames is clocked based on the 12.5MHz bit clock from the
audio codec. The logic in the transmitter that loads the PCM data from the audio transmit register is clocked on the
27Mhz system clock.

Table 3: Outgoing AC97 frame summary.
Bit_count / Bit Range Description
0 Frame valid
1 Command address valid
2 Command data valid
3-4 PCM data valid left/right
16-35 Command address
36-55 Command data
56-75 PCM left
76-95 PCM right

3.4.5 Testing

The audio units were tested both in simulation and in hardware. The receiver and transmitter units were tested
separately and in concert. The transmitter was tested by setting its control and data inputs, and viewing the
simulation of sdata_out and verifying that the appropriate slots in the frame were filled appropriately. To test the
receiver, a test bench was written that generated an AC97 frame and sent it serially to the receiver. Bit_count values
shown in the table above were derived from the LM4550 data sheet so frames could be verified. The entire audio
module containing both the sender and the receiver was tested using a test bench that generated AC97 frames as
well. All simulations were behavioral.

Testing in hardware was more difficult. Due to limits on logic analyzer pins, the 8-bit bit_count could not be
observed to verify that frame slots were being sent at the correct time. A spreadsheet was created listing the offset
in nanoseconds of each relevant bit of the frame, and the offsets were used to locate the corresponding parts of the
frame on the logic analyzer.

Once the synthesized audio unit passed-through audio, a test was necessary to verify that the ADC and DAC were
actually being used (that the loopback was indeed digital). To accomplish this, the sample rate was lowered to
4KHz. The frequency response content of the output audio was sufficiently reduced, indicating digital loopback.
Additionally, the audio transmit register was disconnected, and it was observed that the audio stopped playing.

3.5. User Input – Pad

3.5.1. Pad Controller

The user interface for the game consists of the dance pad or mat and the pad controller module (a synchronizer and
an FSM). A block diagram is included in Figure 6. The pad used is a standard “DDR Pad” for the Sony
PlayStation. The pad has a clocked serial interface to be used with the PlayStation. The original design called for
use of the serial interface to the pad. Lack of a trustworthy schematic of the serial protocol, however, made it
impractical to reverse-engineer the protocol. Instead, the pad was opened up to access a parallel bus with one bit for
each of the ten buttons on the pad. The parallel bus was fed directly into the FPGA.

12

Sy
nc

hr
on

iz
er

Figure 6: The pad controller module.

The control unit contains a synchronizer and a control FSM. The synchronizer is a three-register-chain unit that
ensures that asynchronous inputs from the pad do not put any FPGA logic in a metastable state. The FSM samples
the input from the pad and stores input in a dedicated RAM location. The FSM sits in the WAIT_SAMPLE state
until it receives a bus enable signal from the bus controller, indicating that the FSM has permission to access the
RAM. The FSM then stores data from the output of the synchronizer to the RAM by pulsing the read line on the bus
and providing address and data. Data is presented to the bus for a conservative two clock-cycles (only one clock
cycle is required) just to make sure all setup and hold times are met. The FSM then cycles through seven sates to
wait for the latency in the RAM controller. This delay is present to ensure that the RAM controller is ready to
accept input as soon as the pad controller yields the bus. After the delay, the FSM asserts the bus_yield signal for
two cycles, stalls for two cycles, and returns to the WAIT_SAMPLE state. The two cycle stall is present to give the
bus_en signal a chance to go low before returning the WAIT_SAMPLE state. If bus_en were still high upon return
to the WAIT_SAMPLE state, the FSM would launch into another RAM write despite the fact that the bus has
already been yielded.

3.5.2 Testing

The bus controller was tested in simulation to verify that the input data gets presented on the data bus line
of the RAM. Most importantly, simulation verified that the pad controller properly yields the bus and does not write
to the bus after the bus is yielded.

3.6. Video

3.6.1 Purpose

The general purpose of the video is to be able to display each screen of the video game or any function run by the
Beta Processor. Because of the focus on generality in this project, the video component was designed to read from a
frame buffer location in RAM and convert the data in memory to pixel values, assuming that the processor has
previously written relevant values to those memory locations. In addition to being an important part of the output
feedback to the user, the video can also be a critical debugging tool to visualize other components of the digital
design. For example, not only can the Beta processor output sprites onto the screen, but it can also write its own
internal signals to the frame buffer.

3.6.2 Implementation

VGA video was used in this design instead of composite video because of the simpler interface to the VGA video
DAC. The VGA monitors receive their data from the ADV7125 VGA DAC chip. Several important signals had to
be generated by the video control unit. The horizontal and vertical sync signals guide the video as to where to output
signals on the screen. The horizontal and vertical blank signals blank out the data while the sync signals are being
sent to the data chip. The blanks must envelop their respective sync signals.

13

The pixels in the AD7125 chip receive three inputs: red, blue and green. Each color in a pixel is assigned an 8-bit
value, allowing the display of 256 shades per primary color. In this project, because of memory constraints, each
pixel received 15 bits of data; five each for red, green and blue, which allowed us to have 215 colors, or around
32,000 colors. The lower order three bits for each of the pixel colors were tied to ground so that black can be
achieved if all the data was set to low.

Each piece of data read from memory would produce two pixel values, from bits 31 to 17 and from bits 15 to 1. Bits
16 and 0 were not used. The screen size we displayed on the monitor was 640 by 480. However, since there is only
room for a 320 by 240 image to be stored on the FPGA, data had to be extrapolated. Each pixel is written twice
horizontally and is also repeated on the following line.

The video control was implemented in a major-minor FSM scheme. A block diagram of this overall scheme is
further outlined in Figure 7. The major FSM controls the vertical sync pulse and keeps track of which vertical line it
is currently on. The horizontal sync FSM is the minor FSM, which is controlled by the vertical sync component. The
vertical sync module sends a signal to the horizontal sync module to begin writing a line. It will also indicate which
line the current screen drawing is on, allowing the horizontal sync component to keep track of where it is on the
screen and what address to access in order to retrieve the correct piece of data.

Figure 7: Block Diagram of Video Module

On reset, both FSM’s go to the initial states. The vertical sync FSM then goes first to the front porch, where
blanking is enabled while syncing is not. It then enables the syncing signal along with the blanking signal. From
there, the FSM will transition to the back porch, where once again the sync is high and the blank is low. After that,
the data is retrieved and displayed for 480 lines. When the data finishes, the state machine will transition back to the
front porch portion and the process repeats.

The horizontal sync is very similar. It begins by outputting each individual piece of data twice. It cycles through,
displaying the first 15 bits of the data twice on the screen, and then the second 15 bits twice. After outputting 640
pieces of data to the screen, the FSM will go to the front porch mode, then to outputting the sync pulse and finally to
the back porch.

14

3.6.3 Timing Issues

The major timing issue involved with the functionality of the video display is the blanking and the syncing of the
video as well as being able to send out a new piece of data every cycle to the video screen. Figure 8 shows the
needed blanking and syncing timings for a 640 by 480 pixel display using a 27 MHz clock. The front porch, sync
pulse and back porch period constraints must be met. If the constraints are not met, then the data can either be
misaligned on the screen, or simply not be displayed altogether. Also, if a piece of data is unable to be retrieved
every clock period, pipelining must be done in order to increase throughput of the output pixels.
In this project, a worst-case 2 cycle delay between the pulse of read to the output of valid data can be handled. The
FSM uses one piece of data every 4 clock cycles because it can get 2 pixels per 32-bits and two clock cycles per
each pixel information.

Also, in addition to the data to the VGA chip, the horizontal and vertical syncs are fed in directly into the VGA
connector. Therefore, not only must they be registered, but they must have a two-clock-cycle delay that the rest of
the signals will suffer when going through the VGA chip.

Figure 8: Timing of Data, Sync, and Blank Signals For 640 by 480 VGA Video

Courtesy: Nathan Ickes.

3.6.4 Debugging

There were several debugging steps employed in trying to perfect the signals coming out of the video unit. First,
there was an attempt to simply draw any image on the screen. This tests the correctness of the blanking and syncing
signals in order to output any data at all. The image drawn out on the screen was a solid color.
Next, one piece of data was tied as the input and contains pixel values for two different colors. The video unit will
then draw two alternating colors on the screen with each color filling up vertical lines. This showed whether the
blanking and syncing signals lined up from one line to the next. If there were discrepancies, we saw a series of
jagged lines rather than a series of smooth vertical lines cutting down the screen.

Finally, the testing phase included reading from a set of preset RAM locations which contained an image in order to
see whether the addressing was correct and whether it was displaying the correct data in the correct locations.

If the functionality of the module could not be guaranteed, ModelSim and Max+II were used to simulate the module.
It was easy to see whether syncs were being enveloped by blanking signals and whether there were 640 pieces of
data being displayed per line.

3.7. Flash ROM

3.7.1. Purpose

The Flash ROM is non-volatile memory that can store data, like a RAM, but does not lose that data if the power to
the device is taken away. Regular SRAM would lose all of its data on power-off; therefore, it is difficult to store data
on SRAM over long periods of time because of the potential loss of power. The Flash ROM on the kits provided a
method to safely store data that could be used over and over at a later date. The 28F128J3A chip produced by Intel
was the chip used in this project. Not only does it provide the non-volatile memory, it also has the capability to store

15

a lot of data, because it has 16 Megabytes of storage space. The music therefore can be stored on the Flash ROM
once, and played back whenever music is required.

3.7.2. Implementation

In order to store data onto the ROM, one had to first figure out the timing constraints involved with the chip as well
as all the signals that the chip required. One also had to learn about the different modes that the flash ROM can be
in. One of the most important modes is the erase mode, where the chip erases an entire block of data. It takes the top
7 most significant bits of the address and indicates that section is ready for erase. The user must send in the data
0x20, followed by the data 0xD0, while the address is any address within that section which the user wants to erase.
Then, the status signal will indicate when the chip has started and completed its erase operation. The status signal
will often indicate what mode the flash ROM is in. If the status is low, the chip is in programming mode and when
the signal is high, the chip is available for other operations.

Another mode that the chip allows is the mode to perform a write. After erasing the data from a certain block, one
can write to that block exactly once. When erased, the address will have its data set to FFFF, and writing to that
address will change the necessary ones to zeroes. In performing such a write, one must first issue the command to
write to the chip. To do that, the write enable is set low while the chip is on. Then, the command 0x40 is issued
through the address bus. Then, the data is sent. The status of the chip will go low to indicate that it is making a write.
Then, the status will go back high to represent that the write is done.

Finally, one must also be able to read from the Flash ROM. In order to read from the ROM, the user must be in read
array mode. In order to get into read array mode, the signal 0xFF is sent to the data bus of the chip while the write is
enabled. Then, as long as there are only read operations being made, the chip remains in the read array mode.
However, as soon as one changes the operation, it would have to be set to read array mode before continuing.

In order to control this ROM, a major-minor FSM structure was used. The block diagram can be seen in Figure 9.
The minor state machine controls the chip directly; setting the output enable and write enable high or low. If given
the signal to erase, the two-step procedure above is used. The same two-step procedure is used for any read or write
operation as well. In addition, the minor FSM can be told to prepare itself for a read, where it will set itself into the
read array state. While nothing is going on, the FSM stays in an idle state where it will wait for any one of the
signals to be sent to it. If it completes that operation, except for the preparation to read, a done signal will be sent
back to the major FSM controlling the minor state machine.

The inputs from the users go into the major FSM, which
then go down to the minor FSM. For example, the user
tells the system when to erase. After given a signal to
erase, the FSM will loop through all the blocks that it can
erase and erase them. If given the command to write, the
ROM controller will go either to the first address, or to
another address to write to that location, and same with
read. There is a signal that must be given to the system
before it can make any reads, that is to set the system into
read array mode. On either an erase or write operation, the
FSM will wait for the done signal to be raised in the minor
FSM before going on to the next erase or write.
Problems and Debugging

There was one major timing issue with the ROM. It was
how slow it took the ROM to perform writes and erases.
The write appears to take on the order of hundreds of
milliseconds despite the datasheet presenting information
otherwise. The block erase can take up to 5 seconds,
although it typically took around a second to perform. A
timing diagram involving generic writes is outlined in Figure 10.

Figure 9: Block Diagram of ROM Control Module

16

Figure 10: Timing Diagram of Writing to Flash ROM

4. Conclusions

4.1 System Integration

4.1.1 FlashROM

The main problem was in integrating this Flash ROM with collecting audio samples. The audio samples happened at
the slowest possible sample rate supported by the audio hardware—4 KHz. However, the ROM would sample only
twice per second. Thus, there were not enough data points to create an audible piece of music. However, it was not
always clear that this was the problems, because we were not sure whether we were writing correctly or reading
correctly from the ROM. The method we employed to attempt to debug the ROM was simply by sending every
signal out onto the logic analyzer. It was clear that the ROM was getting dataat first, but quickly stopped getting
data as we sent more and more requests for reads. In addition, we tested moving addresses manually, but assigning
addresses and data inputs to switches and seeing if those values that were input are actually the values obtained in
the output.

There was no way of getting around the problem of sampling the audio a lot faster than it is being recorded. The
only salvageable solution was to turn the audio, which we had stored on the ROM and incorporate that somehow in
the rest of the digital system design. We chose to include the audio on top of the previous audio because it shows the
benefit at which the digital signals store on the Flash ROM can be integrated into the external, analog data. Not only
are they easily mixable through the audio codec once they are digitized, but the codec can also take sounds from
various sources. Thus, that was the main functionality of the ROM and the rational behind its functionality.

4.1.2. The Whole Thing

In the demonstrated version of the project, the system was not fully integrated. All modules functioned, but not all
modules were connected together. The Beta and the video worked to display images, sprites, and an animated
gradient, illustrating program execution and significant proof-of-concept. The pad was connected to the FPGA and
as mentioned, simulation illustrated proper triggering by timer interrupt-invoked kernel code, and proper use of the
bus by the pad controller. The audio played and passed-through, but the dedicated “play” output signal from the
beta did not work properly.

It is easy to see how with a bit more work the system could be integrated. Once the pad can write to RAM, the beta
can display arrows on the screen when a button is pressed. The Beta can output a “start” signal to the audio and is
able to keep its own time, meaning that we have the capability to run synchronized music. Now a sound effect could
be played and an arrow could be displayed each time a button on the pad is pressed. This integration was attempted
at the last minute, but a strange error in the synthesis stage prevented confirmation of the promising results we
observed in simulation.

17

4.2 Reflection

The implementation of the audio and pad controllers went fairly smoothly. As usual, neither of them worked the
first time they were synthesized. However, with careful debugging on the logic analyzer, the two modules worked
with a reasonable amount of effort.

The road was not so well-paved for the ZBT SRAM controller, which was not finally included in out project. The
ZBT controller never worked, despite consuming an entire week of work for one member of the group. When the
ZBT controller still did not function and the project was due in four days, the ZBT on-kit RAM was scrapped in
favor of a CoreGen RAM in the FPGA. Several factors caused the ZBT controller to be a compete failure: First, the
high-performance nature of the ZBT chip made it difficult to use conservative timing. Additionally, timing
complications with the ZBT mechanisms were difficult. Finally, the need for byte-addressed memory for the Beta
processor added complexity to the RAM controller. Once the ZBT interface was figured out and the controller
appeared to read and write from memory, the values read and written appeared to be inconsistent. However, by this
point the rest of the project was blocking on the RAM controller, so Jacob created a controller for the FPGA RAM
to allow software development and testing to continue.

While the generality of our approach may have earned us flexibility at the expense of complexity, we feel that it was
nevertheless well-justified. We ended up with a fully-functional CPU and a quickly developing software set. Every
half-hour, we compiled new software and had a neat new video demo to look at, underlining the flexibility granted
by encoding display and game logic in software.

Appendix: Verilog Code

/*** betaputer.v *******************************
 Jacob Kitzman | 6.111 Final Project S04
 beta computer top-level file
 instantiates: the beta cpu, shared bus arbiter,
system ram (no longer using zbt sram) and shared bus
controller interface, clock interrupt generator
**/

module betaputer(clk, reset, bus, IRQvec, devYield,
devEnable, _dbg_instr, _dbg_pc, _dbg_other,
_dbg_mem_rdata, vid_addr, vid_data, direct_io);
 input clk;
 input reset;
 input[7:0] IRQvec;

 input[15:0] devYield;
 output[15:0] devEnable;

 inout[55:0] bus;

 output[31:0] _dbg_instr;
 output[31:0] _dbg_pc;
 output[31:0] _dbg_other;
 output[31:0] _dbg_mem_rdata;

 input[15:0] vid_addr;
 output[31:0] vid_data;

 output[3:0] direct_io;

 wire[3:0] BAXv;
 wire BAXvchg;

 wire clock_irq;

 beta cpu
 (.clk(clk),
 .reset(reset),
 .IRQvec({clock_irq, IRQvec[6:1],

 clock_irq}),
 .CPUBus_en(devEnable[0]),
 .bus(bus),
 .BAXv(BAXv),
 .BAXvchg(BAXvchg),
 .direct_io(direct_io),
 ._dbg_instr(_dbg_instr),
 ._dbg_pc(_dbg_pc),

 ._dbg_other(_dbg_other),
 ._dbg_mem_rdata(_dbg_mem_rdata));

bus_arbiter arb(
 .clk(clk),
 .reset(reset),
 .BAXv(BAXv),
 .BAXvchg(BAXvchg),
 .devEnable(devEnable),
 .devYield(devYield)
);

 sysram_busintf fakeram(
 .clk(clk),
 .reset(reset),
 .bus(bus),
 .vid_addr(vid_addr),
 .vid_data(vid_data));

 b_clock_interrupt clkirq(
 .clk(clk),
 .reset(reset),
 .clock_irq(clock_irq)
);
endmodule

/*** beta.v ************************************
 Jacob Kitzman | 6.111 Final Project S04
 beta risc cpu
***/
module beta(clk, reset, IRQvec, BAXvchg, BAXv,
CPUBus_en, bus, direct_io, _dbg_instr, _dbg_pc,
_dbg_other, _dbg_mem_rdata);

 input clk, reset;
 input[7:0] IRQvec;
 output BAXvchg;
 output[3:0] BAXv;
 output[3:0] direct_io;
 reg[3:0] direct_io;
 input CPUBus_en;

 inout[55:0] bus;

 wire[2:0] PCsel;
 wire PCle;
 wire MEMRle;
 wire IFETCHready, IFETCHreq;
 wire MEMOPready, MEMOPreq;

18

 wire INSTRle;
 wire[1:0] WDsel;
 wire WAsel;
 wire RA2sel;
 wire Asel;
 wire Bsel;
 wire[3:0] ALUFN;
 wire WERF;
 wire BUSwrite;
 wire BUSread;
 wire MEMOPsel;
 wire[31:0] instr;
 wire[6:0] IRQid_handling;
 wire[4:0] _dbg_ctrlsig_state;

 wire[31:0] PCmuxed;
 wire[31:0] alu_out;
 wire[31:0] mem_rdata;
 wire[31:0] wd_muxed;
 wire[31:0] asel_muxed;
 wire[31:0] bsel_muxed;
 wire[4:0] Rb_muxed;
 wire[31:0] mem_addr_muxed;
 wire[4:0] wasel_muxed;
 wire[31:0] Rda, Rdb;
 wire[31:0] mem_rdata_buffered;
 reg Z;

 wire[31:0] PC;
 reg[31:0] PCplus4;
 reg[31:0] PCp4pLiteral;
 always @(PC) PCplus4 = PC + 32'd4;

 reg[31:0] sxt_lit;
 always @(PC or instr) begin
 sxt_lit = { {16{instr[15]}}, instr[15:0]
};
 PCp4pLiteral = PC + 32'd4 + {
{14{instr[15]}}, instr[15:0] , 2'd0 };
 end

 busmux8 pcmux(
 .sel(PCsel),
 .out(PCmuxed),
 .bus0(PCplus4), //
pc+4, next instruction.
 .bus1(PCp4pLiteral), //
branch target
 .bus2(Rda & 32'h7FFFFFFC), //
jump target - may not set the supe bit.
 .bus3(32'hDEADBEEF),
 .bus4({20'h80000, 3'b000,
IRQid_handling[6:0], 2'b00}), // interrupt vector.
 .bus5(32'h80000000), //
startup address.
 .bus6(32'hDEADBEEF),
 .bus7(32'hDEADBEEF));

 reg32 pcreg(
 .clk(clk),
 .reset(reset),
 .d(PCmuxed),
 .q(PC),
 .le(PCle)
);

 reg32 memreadreg(
 .clk(clk),
 .reset(reset),
 .d(mem_rdata),
 .q(mem_rdata_buffered),
 .le(MEMRle)
);

 busmux2 mem_addr_mux(
 .sel(MEMOPsel),
 .out(mem_addr_muxed),
 .bus0(PC),
 .bus1(alu_out)
);

 busmux4 wdsel_mux(
 .sel(WDsel),
 .out(wd_muxed),
 .bus0(PCplus4),
 .bus1(alu_out),

 .bus2(mem_rdata_buffered),
 .bus3(32'd0)
);

 busmux2 aselmux(
 .sel(Asel),
 .out(asel_muxed),
 .bus0(Rda),
 .bus1(PCp4pLiteral)
);

 busmux2 bselmux(
 .sel(Bsel),
 .out(bsel_muxed),
 .bus0(Rdb),
 .bus1(sxt_lit)
);

 b_alu alu(
 .alufn(ALUFN),
 .a(asel_muxed),
 .b(bsel_muxed),
 .out(alu_out)
);

 reg32 instr_reg(
 .clk(clk),
 .reset(reset),
 .d(mem_rdata),
 .q(instr),
 .le(INSTRle)
);

 wire[3:0] direct_io_del0;
 always @(posedge clk) begin
 direct_io <= direct_io_del0;
 end

 b_cpuTestBusClient bus_client(
 .clk(clk),
 .reset(reset),
 .IFETCHready(IFETCHready),
 .MEMOPready(MEMOPready),
 .IFETCHreq(IFETCHreq),
 .MEMOPreq(MEMOPreq),
 .CPUbus_en(CPUBus_en),
 .wr(BUSwrite),
 .re(BUSread),
 .wdata(Rdb),
 .address(mem_addr_muxed),
 .rdata(mem_rdata),
 .bus(bus),
 .direct_io(direct_io_del0),
 .BAXVchange(BAXvchg),
 .BAXVchgowner(BAXv)
);

b_ctrlsig control_sigs(
 .clk(clk),
 .reset(reset),
 .IRQvec(IRQvec),
 .IFETCHready(IFETCHready),
 .MEMOPready(MEMOPready),
 .IFETCHreq(IFETCHreq),
 .MEMOPreq(MEMOPreq),
 .INSTRle(INSTRle),
 .Z(Z),
 .PCle(PCle),
 .PCsel(PCsel),
 .WDsel(WDsel),
 .WAsel(WAsel),
 .RA2sel(RA2sel),
 .Asel(Asel),
 .Bsel(Bsel),
 .ALUFN(ALUFN),
 .WERF(WERF),
 .BUSwrite(BUSwrite),
 .BUSread(BUSread),
 .MEMOPsel(MEMOPsel),
 .instr(instr),
 .PCsupv(PC[31]),
 .IRQid(IRQid_handling),
 .MEMRle(MEMRle),
 ._dbg_state(_dbg_ctrlsig_state)
);

19

 lilbusmux2 ra2mux(
 .sel(RA2sel),
 .out(Rb_muxed),
 .bus0(instr[15:11]),
 .bus1(instr[25:21])
);

 lilbusmux2 waselmux(
 .sel(WAsel),
 .out(wasel_muxed),
 .bus0(instr[25:21]),
 .bus1(5'd30) // XP
);

 always @(Rda)
 Z = (Rda==32'h0);

 b_regfile register_file(
 .clk(clk),
 .reset(reset),
 .Ra(instr[20:16]),
 .Rb(Rb_muxed),
 .Rda(Rda),
 .Rdb(Rdb),
 .Wa(wasel_muxed),
 .Wdata(wd_muxed),
 .Wen(WERF)
); // if desired can wire up
_dbg_WenToChip, _dbg_AddrBToChip.

 output[31:0] _dbg_instr;
 output[31:0] _dbg_pc;
 assign _dbg_instr = instr;
 assign _dbg_pc = PC;

 output[31:0] _dbg_other;

 assign _dbg_other[31] = IFETCHready;
 assign _dbg_other[30] = IFETCHreq;
 assign _dbg_other[29] = MEMOPready;
 assign _dbg_other[28] = MEMOPreq;
 assign _dbg_other[27] = INSTRle;
 assign _dbg_other[26] = Z;
 assign _dbg_other[25] = PCle;
 assign _dbg_other[24:23] = WDsel[1:0];
 assign _dbg_other[22] = WAsel;
 assign _dbg_other[21] = RA2sel;
 assign _dbg_other[20] = Asel;
 assign _dbg_other[19] = Bsel;
 assign _dbg_other[18] = WERF;
 assign _dbg_other[17:14] =
_dbg_ctrlsig_state[3:0];
 assign _dbg_other[13:11] = PCsel;
 assign _dbg_other[10:8] = 2'd0;
// assign _dbg_other[3:0] = _dbg_dmcache_state;

 output[31:0] _dbg_mem_rdata;
 assign _dbg_mem_rdata = mem_rdata;

endmodule

/*** b_alu.v ***
 Jacob Kitzman | 6.111 Final Project S04
 beta cpu arithmatic logic unit (ALU)
***/

module b_alu(alufn, a, b, out);
 input[3:0] alufn;
 input[31:0] a, b;
 output[31:0] out;
 reg[31:0] out;

 // ALU function codes.
 parameter ALUFN_ADD = 4'b0000;
 parameter ALUFN_SUB = 4'b0001;
 parameter ALUFN_MUL = 4'b0010;
 parameter ALUFN_DIV = 4'b0011;
 parameter ALUFN_AND = 4'b1000;
 parameter ALUFN_OR = 4'b1001;
 parameter ALUFN_XOR = 4'b1010;
 parameter ALUFN_AEQB = 4'b0100;
 parameter ALUFN_ALTB = 4'b0101;
 parameter ALUFN_ALEB = 4'b0110;
 parameter ALUFN_SHL = 4'b1100;

 parameter ALUFN_SHR = 4'b1101;
 parameter ALUFN_SRA = 4'b1110;
 parameter ALUFN_A = 4'b1111;

 always @(alufn or a or b) begin
 case (alufn)
 ALUFN_ADD:
 out = a + b;
 ALUFN_SUB:
 out = a - b;
 ALUFN_MUL:
 out = a * b;

 ALUFN_AND:
 out = a & b;
 ALUFN_OR:
 out = a | b;
 ALUFN_XOR:
 out = a ~^ b;
 ALUFN_AEQB:
 out = (a==b);
 ALUFN_ALTB: begin
 if (a[31]&&(!b[31]))
 // a NEG and b POS ==> a LT b.
 out = 32'h1;

 else if
((!a[31])&&b[31]) // a POS and b NEG => a NOT LT b.
 out = 32'h0;
 else if
((!a[31])&&(!b[31])) // a POS and b POS => compare.
 out = (a<b);
 else // a NEG and b NEG
=> compare in 2'sC
 out = (b>a);
 end
 ALUFN_ALEB: begin
 if (a==b)
 out = 32'h1;
 else begin
 if
(a[31]&&(!b[31])) // a NEG and b POS ==> a LT b.
 out =
32'h1;
 else if
((!a[31])&&b[31]) // a POS and b NEG => a NOT LT b.
 out =
32'h0;
 else if
((!a[31])&&(!b[31])) // a POS and b POS => compare.
 out =
(a<b);
 else // a NEG
and b NEG => compare in 2'sC
 out =
(b>a);
 end
 end
 ALUFN_SHL:
 out = a << b[4:0];
 ALUFN_SHR:
 out = a >> b[4:0];
 ALUFN_SRA:
 out = (a >> b[4:0]) |
({32{a[31]}} & ~(32'hffffffff>>(b[4:0])));
 ALUFN_A:
 out = a;
 default:
 out = 0;
 endcase
 end
endmodule

/*** b_ctrlsig.v **
 Jacob Kitzman | 6.111 Final Project S04
 beta cpu control signal module
***/
module b_ctrlsig(clk, reset, IRQvec, IFETCHready,
MEMOPready, IFETCHreq, MEMOPreq, INSTRle, Z, PCle, PCsel,
WDsel, WAsel, RA2sel, Asel, Bsel, ALUFN, WERF, BUSwrite,
BUSread, MEMOPsel, instr, MEMRle, PCsupv, IRQid,
_dbg_state);
 input clk;
 input reset;

20

 input[7:0] IRQvec;
 input IFETCHready;
 input MEMOPready;
 output IFETCHreq;
 reg IFETCHreq, IFETCHreq_int;
 output MEMOPreq;
 reg MEMOPreq, MEMOPreq_int;
 output INSTRle;
 reg INSTRle;
 input Z;
 output PCle;
 reg PCle;
 output[2:0] PCsel;
 reg[2:0] PCsel;
 output[1:0] WDsel;
 reg[1:0] WDsel;
 output WAsel;
 reg WAsel;
 output RA2sel;
 reg RA2sel;
 output Asel;
 reg Asel;
 output Bsel;
 reg Bsel;
 output BUSwrite;
 reg BUSwrite;
 output BUSread;
 reg BUSread;
 output MEMOPsel;
 reg MEMOPsel;
 input[31:0] instr;
 output WERF;
 reg WERF, WERF_int;
 output[3:0] ALUFN;
 reg[3:0] ALUFN, ALUFN_last;
 input PCsupv;
 output[6:0] IRQid;
 reg[6:0] IRQid;
 output MEMRle;
 reg MEMRle;

 // internals
 reg[4:0] state, next;

 // states
 parameter STARTUP0 = 4'h0;
 parameter STARTUP1 = 4'h1;
 parameter IFETCH = 4'h2;
 parameter IFETCH_WAIT = 4'h3;
 parameter REGACCESS = 4'h4;
 parameter REGACCESS_BR = 4'hA;
 parameter MEMOP = 4'h5;
 parameter MEMOP_WAIT = 4'h6;
 parameter WRITEBACK0 = 4'h8;
 parameter WRITEBACK1 = 4'h8;
 parameter IRQ_SENSED = 4'h9;

 // debug
 output[4:0] _dbg_state;
 assign _dbg_state = state;

 reg setPCsel, setPCsel_int; // should writeback
set pcsel?

 reg[2:0] PCsel_last;
 reg Asel_last, Bsel_last;
 reg[1:0] WDsel_last;
 reg WAsel_last;
 reg RA2sel_last;
 reg MEMOPsel_last;
 reg WERF_int_last;
 reg BUSread_last, BUSwrite_last;

 reg irq_pending_last, irq_pending;
 reg[6:0] IRQid_last;

 always @(posedge clk or negedge reset) begin
 if (!reset) begin
 PCsel_last <= 3'd5;
 Asel_last <= 0;
 Bsel_last <= 0;
 WDsel_last <= 0;
 WAsel_last <= 0;
 RA2sel_last <= 0;
 MEMOPsel_last <= 0;
 WERF_int_last <= 0;

 BUSread_last <= 0;
 BUSwrite_last <= 0;

 setPCsel <= 0;

 ALUFN_last <= 0;

 irq_pending_last <= 0;
 IRQid_last <= 7'd0;

 state <= STARTUP0;
 IFETCHreq <= 0;
 MEMOPreq <= 0;
 end
 else begin
 PCsel_last <= PCsel;
 Asel_last <= Asel;
 Bsel_last <= Bsel;
 WDsel_last <= WDsel;
 WAsel_last <= WAsel;
 RA2sel_last <= RA2sel;
 MEMOPsel_last <= MEMOPsel;
 WERF_int_last <= WERF_int;
 BUSread_last <= BUSread;
 BUSwrite_last <= BUSwrite;
 IRQid_last <= IRQid;

 setPCsel <= setPCsel_int;

 ALUFN_last <= ALUFN;

 irq_pending_last <=
irq_pending;

 IFETCHreq <= IFETCHreq_int;
 MEMOPreq <= MEMOPreq_int;

 if (next==WRITEBACK0 ||
next==WRITEBACK1 || next==IRQ_SENSED)
 WERF <= WERF_int;
 else
 WERF <= 0;

 state <= next;
 end
 end

 always @(state or IRQvec or IFETCHready or
MEMOPready or Z or instr or IRQvec or PCsupv or
PCsel_last or WDsel_last or WAsel_last or RA2sel_last or
Asel_last or Bsel_last or BUSwrite_last or
BUSread_last or MEMOPsel_last or WERF_int_last or
irq_pending_last or IRQid_last or
setPCsel or ALUFN_last) begin
 // defaults:
 PCle = 0;
 IFETCHreq_int = 0;
 MEMOPreq_int = 0;
 INSTRle = 0;
 MEMRle = 0;
 //PCsel = PCsel;
 PCsel = PCsel_last;
 WDsel = WDsel_last;
 WAsel = WAsel_last;
 RA2sel = RA2sel_last;
 Asel = Asel_last;
 Bsel = Bsel_last;
 BUSwrite = BUSwrite_last;
 BUSread = BUSread_last;
 MEMOPsel = MEMOPsel_last;
 WERF_int = WERF_int_last;
 ALUFN = ALUFN_last;

 setPCsel_int = 0;

 irq_pending = irq_pending_last |
(IRQvec[7] & ~PCsupv);

 // which interrupt id is requesting our
attention?
 // don't take it if we're already
handling one.
 if (!irq_pending_last && IRQvec[7])
 IRQid = IRQvec[6:0];
 else
 IRQid = IRQid_last;

21

 case (state)
 STARTUP0: begin
 PCsel = 3'd5;
 WDsel = 2'd0;
 WAsel = 0;
 RA2sel = 0;
 Asel = 0;
 Bsel = 0;
 MEMOPsel = 0;
 WERF_int = 0;
 BUSread = 0;
 BUSwrite = 0;

 next = STARTUP1;
 end

 STARTUP1: begin
 PCle = 1;
 IFETCHreq_int = 1;
 next = IFETCH;
 end

 IFETCH: begin
 MEMOPsel = 0;
 PCsel = 3'd0;
 next = IFETCH_WAIT;
 end

 IFETCH_WAIT: begin
 if (IFETCHready) begin
 INSTRle = 1;
 next = REGACCESS;
 end

 else
 next = IFETCH_WAIT;
 end

 REGACCESS: begin
 if (instr[31:30] == 2'b10)

begin
 // OP(Ra, Rb, Rc)

 WERF_int = 1;

 Bsel = 0;
 WDsel = 2'd1;
 RA2sel = 0;
 Asel = 0;
 WAsel = 0;
 PCsel = 3'd0;
 ALUFN = instr[29:26];

 next = WRITEBACK0;
 end
 else if (instr[31:30] == 2'b11)

begin
 // OPC(Ra, Rb, Rc)

 WERF_int = 1;
 Bsel = 1;
 WDsel = 2'd1;
 RA2sel = 0;
 Asel = 0;
 WAsel = 0;
 PCsel = 3'd0;
 ALUFN = instr[29:26];
 next = WRITEBACK0;
 end

else if (instr[31:30] == 6'b01)
begin

if (instr[29:26] ==
4'b1000) begin

 // LD(Ra,literal,Rc)
 ALUFN = 4'b0000;

 WERF_int = 1;
 Bsel = 1;
 WDsel = 2;
 PCsel = 3'd0;
 Asel = 0;
 WAsel = 0;
 BUSread = 1;
 MEMOPsel = 1;
 MEMOPreq_int = 1;

 next = MEMOP;
 end

 else if (instr[29:26]
== 4'b1111) begin

 // LDR(label, Rc)
 ALUFN = 4'b1111;
 WERF_int = 1;

 WDsel = 2;
 PCsel = 3'd0;

 Asel = 1;
 WAsel = 0;

 BUSread = 1;
 MEMOPsel = 1;
 MEMOPreq_int = 1;
 next = MEMOP;
 end

 else if (instr[29:26] ==
 4'b1001) begin
 // ST(Rc,literal,Ra)
 ALUFN = 4'b0000;

 WERF_int = 0;
 Bsel = 1;
 RA2sel = 1;
 PCsel = 0;
 Asel = 0;
 BUSwrite = 1;
 MEMOPsel = 1;
 MEMOPreq_int = 1;
 next = MEMOP;
 end
 else if (instr[29:26] ==

 4'b1011) begin
 // JMP(Ra, Rc)
 WERF_int = 1;
 WDsel = 0;
 PCsel = 2;
 WAsel = 0;
 next = WRITEBACK0;

 end
 else if (instr[29:26] ==

4'b1101) begin
 // BEQ/BF(Ra, label, Rc)
 WERF_int = 1;

 WDsel = 0;
 WAsel = 0;
 // Z not ready until next

cycle => cannot set PCsel now.
 setPCsel_int = 1;

 next = WRITEBACK0;
 end
 else if (instr[29:26] ==

4'b1110) begin
 // BNE/BT(Ra, label, Rc)
 WERF_int = 1;
 WDsel = 0;
 WAsel = 0;

 setPCsel_int = 1;
 next = WRITEBACK0;
 end
 end
 end

 WRITEBACK1: begin
 if (setPCsel) begin
 if (instr[27:26]==2'b01)
 PCsel = Z ? 1 : 0;
 else
 PCsel = Z ? 0 : 1;
 end

 WERF_int = 0;

 BUSread = 0;
 BUSwrite = 0;

 // ignore irq until we're not
 // going to a non-pc+4 target.
 if (irq_pending && !setPCsel

 && (PCsel_last==0)) begin
 IFETCHreq_int = 0;

 PCle = 0;
 irq_pending = 0;
 PCsel = 4;

 WAsel = 1;
 WDsel = 0;

 WERF_int = 1;
 next = IRQ_SENSED;
 end
 else begin

22

 PCsel = 1;
 IFETCHreq_int = 1;
 PCle = 1;
 next = IFETCH;
 end
 end

 MEMOP: begin
 MEMOPsel = 1;
 if (MEMOPready) begin

 MEMRle = 1;
 next = WRITEBACK0;
 end
 else
 next = MEMOP;
 end

 IRQ_SENSED: begin
 irq_pending = 0;
 WERF_int = 0;

 IFETCHreq_int = 1;
 PCle = 1;

 next = IFETCH;
 end

 endcase
 end
endmodule

Omitted: Beta register file (b_regfile.v)

/*** b_cpuTestBusClient.v ******************************
 Jacob Kitzman | 6.111 Final Project S04
 beta CPU shared bus client
 handles memory/ifetch requests from the cpu upon
cache misses, issuing memory operations to shared bus
when cpu has bus access.
***/

module b_cpuTestBusClient(clk,reset,IFETCHready,
MEMOPready, IFETCHreq, MEMOPreq, CPUbus_en, wr, re,
wdata, address, rdata, bus, BAXVchange, BAXVchgowner,
direct_io);
 input clk, reset;
 input wr;
 input re;
 input[31:0] wdata;
 input[31:0] address;
 output[31:0] rdata;
 reg[31:0] rdata;

 output[3:0] direct_io;
 reg[3:0] direct_io, direct_io_int;

 inout[55:0] bus; // 55: read 54: wr, 53-32:
address, 31-0: data
 reg[31:0] bus_address, bus_address_int,
bus_address_int_last;
 reg[31:0] bus_data, bus_data_int,
bus_data_int_last;
 reg BUSwrite, BUSwrite_int;
 reg BUSread, BUSread_int;

 input CPUbus_en;

 assign bus[55] = CPUbus_en?BUSread:1'bz;
 assign bus[54] = CPUbus_en?BUSwrite:1'bz;
 assign bus[53:32] = CPUbus_en?bus_address:32'bz;
 assign bus[31:0] =
(CPUbus_en&BUSwrite)?bus_data:32'bz;

 input IFETCHreq, MEMOPreq;
 output IFETCHready, MEMOPready;
 reg IFETCHready, MEMOPready;
 reg IFETCHready_int, MEMOPready_int;

 output BAXVchange;
 output[3:0] BAXVchgowner;

 reg[3:0] state, next;

 reg data_back_int, data_back;

 parameter IDLE = 4'h0;
 parameter BUSREADY = 4'h2;
 parameter BUSWAIT_IFT = 4'h3;
 parameter BUSWAIT_MOP = 4'h4;
 parameter BEGINIFETCH = 4'h5;
 parameter BEGINMEMOP = 4'h6;
 parameter IFETCHPENDING = 4'h7;
 parameter MEMOPPENDING = 4'h8;
 parameter MEMOPPENDING1 = 4'h9;
 parameter BUSCHG_STALL1 = 4'hA;
 parameter BUSCHG_STALL0 = 4'hB;

 parameter BAXV_ADDR = 32'h7fffffff;
 parameter DIRECTIO_ADDR = 32'h7ffffff0;

 reg[3:0] mem_stall_cnt_int;
 reg[3:0] mem_stall_cnt;

 reg BAXVchange_int, BAXVchange;
 reg[3:0] BAXVchgowner_int, BAXVchgowner;

 always @(posedge clk or negedge reset) begin
 if (!reset) begin
 state <= IDLE;

 IFETCHready <= 0;
 MEMOPready <= 0;

 data_back <= 0;

 BAXVchange <= 0;
 BAXVchgowner <= 0;

 bus_address <= 32'd0;
 bus_data <= 32'b0;
 BUSwrite <= 0;
 BUSread <= 0;
 bus_address_int_last <= 32'd0;
 bus_data_int_last <= 32'd0;

 mem_stall_cnt <= 3'd0;

 direct_io <= 0;
 end
 else begin
 state <= next;

 data_back <= data_back_int;

 BUSread <= BUSread_int;
 BUSwrite <= BUSwrite_int;

 bus_address <= bus_address_int;

 if (BUSwrite_int)
 bus_data <= bus_data_int;

 bus_address_int_last <=

bus_address_int;
 bus_data_int_last <=

bus_data_int;
 direct_io <= direct_io_int;
 BAXVchange <= BAXVchange_int;
 BAXVchgowner <=

BAXVchgowner_int;
 IFETCHready <= IFETCHready_int;
 MEMOPready <= MEMOPready_int;
 mem_stall_cnt <=

mem_stall_cnt_int;
 if (state == IDLE)
 i <= i_int;
 end
 end

 always @(state or CPUbus_en or IFETCHreq or
MEMOPreq or address or mem_stall_cnt or data_back or bus
or wr or wdata or re or bus_address_int_last or
bus_data_int_last) begin
 next = state;
 IFETCHready_int = 0;
 MEMOPready_int = 0;
 rdata = 32'bX;
 rdata = bus[31:0];
 BAXVchange_int = 0;

23

 BAXVchgowner_int = 4'd0;

 mem_stall_cnt_int = 0;
 bus_data_int = bus_data_int_last;
 bus_address_int = bus_address_int_last;
 data_back_int = 0;

 BUSread_int = 0;
 BUSwrite_int = 0;
 i_int = i;

 direct_io_int = 0;

 case (state)
 (IDLE): begin
 if (!data_back)
 rdata = 32'dX;
 else begin

 rdata = bus[31:0];
 data_back_int = 0;
 end

 if (CPUbus_en && IFETCHreq) begin
 BUSread_int = 1;
 bus_address_int = address;
 mem_stall_cnt_int = 3'd0;
 next = BEGINIFETCH;
 end
 else if (CPUbus_en && MEMOPreq)
 if (wr) begin
 if (address==BAXV_ADDR) begin
 BAXVchange_int = 1;
 BAXVchgowner_int =

wdata[3:0];
 next = BUSCHG_STALL1;
 end
 else if

 (address==DIRECTIO_ADDR) begin
 direct_io_int = wdata[3:0];
 MEMOPready_int = 1;
 next = IDLE;
 end
 else begin
 mem_stall_cnt_int = 3'd0;
 BUSwrite_int = 1;
 bus_address_int = address;
 bus_data_int = wdata;
 next = BEGINMEMOP;
 end
 end
 else if (re) begin
 mem_stall_cnt_int = 3'd0;
 BUSread_int = 1;
 bus_address_int = address;
 next = BEGINMEMOP;
 end

 else if (CPUbus_en)
 next = BUSREADY;
 else if (!CPUbus_en && IFETCHreq)
 next = BUSWAIT_IFT;
 else if (!CPUbus_en && MEMOPreq)
 next = BUSWAIT_MOP;
 end

(BUSREADY): begin
 if (~CPUbus_en)
 next = IDLE;
 else if (IFETCHreq) begin
 BUSread_int = 1;
 bus_address_int = address;
 mem_stall_cnt_int = 3'd0;
 next = BEGINIFETCH;
 end
 else if (MEMOPreq) begin
 if (wr) begin
 if (address==BAXV_ADDR) begin
 BAXVchange_int = 1;
 BAXVchgowner_int =
 wdata[3:0];
 next = BUSCHG_STALL1;
 end
 else if

(address==DIRECTIO_ADDR) begin
 direct_io_int = wdata[3:0];

 MEMOPready_int = 1;
 next = IDLE;

end
 else begin
 mem_stall_cnt_int = 3'd0;
 BUSwrite_int = 1;
 bus_address_int = address;
 bus_data_int = wdata;
 next = BEGINMEMOP;
 end
 end
 else if (re) begin
 mem_stall_cnt_int = 3'd0;
 BUSread_int = 1;

 bus_address_int = address;
 next = BEGINMEMOP;
 end
 end
 end

 (BUSWAIT_IFT): begin
 if (CPUbus_en) begin
 BUSread_int = 1;
 bus_address_int = address;
 mem_stall_cnt_int = 3'd0;
 next = BEGINIFETCH;
 end
 end

 (BUSWAIT_MOP): begin

if (CPUbus_en) begin
 if (wr && address==BAXV_ADDR) begin
 BAXVchange_int = 1;

 BAXVchgowner_int = wdata[3:0];
 next = BUSCHG_STALL1;
 end

 else if (wr &&
 address==DIRECTIO_ADDR) begin

 direct_io_int = wdata[3:0];
 MEMOPready_int = 1;
 next = IDLE;
 end
 else begin
 if (wr) begin
 mem_stall_cnt_int = 3'd0;
 BUSwrite_int = 1;
 bus_address_int = address;
 bus_data_int = wdata;
 next = BEGINMEMOP;
 end
 else if (re) begin
 mem_stall_cnt_int = 3'd0;

 BUSread_int = 1;
 bus_address_int = address;
 next = BEGINMEMOP;
 end
 end
 end
 end

 (BEGINMEMOP): begin

 bus_address_int = bus_address_int_last;
 if (bus[54])
 bus_data_int = bus_data_int_last;

 if (mem_stall_cnt == 3'd1)
 next = MEMOPPENDING;
 else begin
 mem_stall_cnt_int =

 mem_stall_cnt + 1;
 next = BEGINMEMOP;
 end
 end

 (MEMOPPENDING): begin
 MEMOPready_int = 1;
 data_back_int = 1;
 next = IDLE;
 end

 (BEGINIFETCH): begin
 bus_address_int = bus_address_int_last;
 if (mem_stall_cnt == 3'd1)

 next = IFETCHPENDING;
 else begin
 mem_stall_cnt_int =

 mem_stall_cnt + 1;
 next = BEGINIFETCH;

24

 end
 end

 (IFETCHPENDING): begin
 IFETCHready_int = 1;
 data_back_int = 1;
 next = IDLE;
 end

 (BUSCHG_STALL1): begin
 if (!CPUbus_en) begin
 MEMOPready_int = 0;
 next = BUSCHG_STALL1;
 end
 else begin
 MEMOPready_int = 0;
 next = BUSCHG_STALL0;
 end
 end
 (BUSCHG_STALL0): begin
 if (!CPUbus_en) begin
 MEMOPready_int = 0;
 next = BUSCHG_STALL0;
 end
 else begin
 MEMOPready_int = 1;
 next = IDLE;
 end
 end
 endcase
 end
endmodule

Omitted: b_dmcache.v (Beta 512x32 Direct-mapped write-
through cache and control logic)

/*** sysram_busintf.v ***********************************
 Jacob Kitzman | 6.111 Final Project S04
 Main Memory and Controller using FPGA BlockRAM
 Uses shared bus interface to allow easy subsititution
 For external memory. Instantiates 56384x32 memory
***/

// reads can be unaligned to word boundaries
// writes must be aligned.

module sysram_busintf(clk, reset, bus, vid_addr,
vid_data);
 input clk;
 input reset;
 inout[55:0] bus;
 input[15:0] vid_addr;
 output[31:0] vid_data;

 wire bus_resig = bus[55];
 wire bus_wrsig = bus[54];
 wire[21:0] bus_addr = bus[53:32];
 wire[31:0] bus_data = bus[31:0];

 reg mem_wr, mem_wr_int;
 reg mem_rdHi, mem_rdHi_int;

 reg[15:0] mem_addr_rdhigh;
 reg[15:0] mem_addr_wr;

 wire[15:0] ram_addr;
 assign ram_addr =
mem_wr?mem_addr_wr:(mem_rdHi?mem_addr_rdhigh:bus_addr[17:
2]);

 wire[31:0] ram_dout;
 reg[31:0] ram_data;

 sysmemdp main_memory(
 .addra(ram_addr),
 .addrb(vid_addr),
 .clka(clk),
 .clkb(clk),
 .dina(ram_data),
 .douta(ram_dout),
 .doutb(vid_data),
 .wea(mem_wr)
);

 reg[31:0] read_masked, read_masked_int;
 reg[31:0] read_low;

 reg bus_oen, bus_oen_int;
 assign bus[31:0] = bus_oen ?

 read_masked : 32'bz;

 reg[63:0] read_mask, read_mask_last;
 reg[5:0] read_shift, read_shift_last;

 reg[2:0] state, next;
 parameter IDLE = 3'd0;
 parameter READ_LO_WORD = 3'd1;
 parameter READ_HI_WORD = 3'd2;
 parameter READ_COMPLETE = 3'd3;
 parameter WRITE = 3'd4;
 parameter WRDELAY0 = 3'd5;
 parameter WRDELAY1 = 3'd6;

 always @(posedge clk or negedge reset) begin
 if (!reset) begin
 read_mask_last <= 0;
 read_shift_last <= 0;
 mem_wr <= 0;
 mem_rdHi <= 0;
 read_masked <= 0;
 read_low <= 0;
 state <= IDLE;
 end
 else begin
 if (state==IDLE) begin
 mem_addr_rdhigh <= (bus_addr[17:2])+1;
 mem_addr_wr <= bus_addr[17:2];
 ram_data <= bus_data;
 end

 read_mask_last <= read_mask;
 read_shift_last <= read_shift;

 mem_wr <= mem_wr_int;
 mem_rdHi <= mem_rdHi_int;
 read_masked <= read_masked_int;
 bus_oen <= bus_oen_int;
 if (next == READ_HI_WORD) begin
 read_low <= ram_dout;
 end

 state <= next;
 end
 end

 always @(state or bus_resig or bus_wrsig or
bus_addr or bus_data or read_mask_last,
read_shift_last, read_low, ram_dout) begin

 read_mask = read_mask_last;
 read_shift = read_shift_last;
 mem_wr_int = 0;
 mem_rdHi_int = 0;
 read_masked_int = 0;
 bus_oen_int = 0;

 case (state)
 IDLE: begin
 if (bus_resig) begin
 mem_rdHi_int = 1;

 if (bus_addr[1:0] == 2'd0) begin
 read_mask =

 64'hffffffff00000000;
 read_shift = 32;
 end
 else if (bus_addr[1:0] == 2'd1)

 begin
 read_mask =

 64'h00ffffffff000000;
 read_shift = 24;
 end
 else if (bus_addr[1:0] == 2'd2)

 begin
 read_mask =

 64'h0000ffffffff0000;
 read_shift = 16;
 end

25

 else if (bus_addr[1:0] == 2'd3)
 begin
 read_mask =

 64'h000000ffffffff00;
 read_shift = 8;
 end

 next = READ_LO_WORD;
 end
 else if (bus_wrsig) begin
 next = WRITE;
 end
 else
 next = IDLE;
 end

 READ_LO_WORD: begin
 next = READ_HI_WORD;
 end

 READ_HI_WORD: begin
 read_masked_int=(({read_low[31:0],
ram_dout[31:0]} & read_mask_last) >> read_shift_last);

 bus_oen_int = 1;
 next = IDLE;
 end

 WRITE: begin
 next = WRDELAY0;
 mem_wr_int = 1;
 end

 WRDELAY0: begin
 next = WRDELAY1;
 end

 WRDELAY1: begin
 next = IDLE;
 end
 endcase
 end
endmodule

Omitted: various bus multiplexors, 32-bit register
with load enable, and clock interrupt generator

Audio AC97 Frame Transmitter:

module frameTransmitFSM(clk, reset, syncPulse, bit_clk,
sdata_out, pcm_left, pcm_right, data_request_left,
data_request_right,bit_count, frame_count);

input syncPulse, bit_clk, clk, reset, data_request_left,
data_request_right;
input [7:0] bit_count;
output sdata_out;
reg sdata_out;

reg [23:0] command;
wire [19:0] command_data;
wire [19:0] command_address;

output [14:0] frame_count;
reg [14:0] frame_count;

input [19:0] pcm_left, pcm_right;
reg [19:0] pcm_left_temp, pcm_right_temp;

reg [1:0] state, next;

reg left_valid, right_valid, frame_valid, command_valid;

//reg [7:0] bit_count;
reg syncDone;

parameter IDLE = 0;
parameter ACTION = 1;

/*
what do we care about in the outgoing frame?

PCM data left
PCM data right
left_data_valid
right_data_valid
frame_valid
command
command_address
command_data
*/

always @ (posedge clk) begin
 if (reset) begin
 state <= IDLE;
 //frame_count <= 0; // this is assigned
in 2 always blocks. Is this OK? NO
 end
 else state <= next;

if (state == ACTION) begin
 //bit_count <= 0; // reset bit count
 if (bit_count == 0) begin
 //load pcm data from inputs (moved from
@posedge sync)
 if (data_request_left) begin
 pcm_left_temp <= pcm_left;
 left_valid <= 1;
 end
 else begin
 pcm_left_temp <=
20'b0;//shouldn't we leave what was there?
 left_valid <= 0;
 end

 if (data_request_right) begin
 pcm_right_temp <= pcm_right;
 right_valid <= 1;
 end
 else begin
 pcm_right_temp <= 20'b0;
//shouldn't we leave what was there?
 right_valid <= 0;
 end

 end

 //bit_count <= bit_count + 1;
end //state == ACTION
else begin //state == IDLE
 //bit_count <= 0;
end //else

end

always @ (state or reset or syncPulse) begin
 case (state)
 IDLE: if (syncPulse) begin
 next = ACTION;
 //bit_count = 0; //maybe not a
good idea
 end
 else next = IDLE;

 ACTION: if (syncPulse) next = ACTION;
 endcase
end

always @ (posedge bit_clk) begin

 if (reset) begin
 //syncDone <= 0;
 //syncPulse <= 0;
 frame_count <= 0;
 end
 /*
 else if (sync) begin
 if (!syncDone) begin
 syncPulse <= 1;
 syncDone <= 1;
 end
 else syncPulse <= 0;
 end
 else if (syncPulse) begin
 //bit_count <= 0;

26

 syncPulse <= 0;
 end
 else if (!sync && syncDone) syncDone <= 0;
 */
 else if (bit_count == 255) frame_count <=
frame_count + 1;

 if ((bit_count >= 0) && (bit_count <= 15))
 // Slot 0: Tags
 case (bit_count[3:0])
 5'h0: sdata_out <= 1; // Frame valid
 5'h1: sdata_out <= 1; // Command address valid
 5'h2: sdata_out <= 1; // Command data valid
 5'h3: if (left_valid) sdata_out <= 1; //left
audio valid
 5'h4: if (right_valid) sdata_out <= 1; //right
audio valid
 default: sdata_out <= 1'b0;
 endcase

 else if ((bit_count >= 16) && (bit_count <= 35))
 // Slot 1: Command address
 sdata_out <= command_address[35-bit_count];

 else if ((bit_count >= 36) && (bit_count <= 55))
 // Slot 2: Command data
 sdata_out <= command_data[55-bit_count]; //maybe
should be 54

 else if (left_valid && (bit_count >= 56 &&
bit_count <= 75)) begin //was 55,74
 //Slot 3: PCM left
 sdata_out <= pcm_left_temp[75-
bit_count]; //this should maybe be 75 //was 74
 end
 else if (right_valid && (bit_count >= 76 &&
bit_count <= 95)) begin
 //Slot 4: get PCM right data
 case(frame_count)
 20000: sdata_out <= 1;
 20001: sdata_out <= 0;
 default: sdata_out <= pcm_right_temp[95-
bit_count];
 endcase
 end
 else sdata_out <= 0;

end

always @(frame_count)
 case (frame_count)
 /* commands from rev1
 4'h0: command = 24'h02_0000; // Unmute line
outputs (master volume)
 4'h1: command = 24'h04_0000; // Unmute headphones
 4'h2: command = 24'h10_0808; // Unmute line inputs
 4'h3: command = 24'h2C_AC44; //set sample rate
left = 44100 kHz
 4'h4: command = 24'h32_AC44; //set sample rate
right = 44100 kHz
 4'h5: command = 24'h0A_8000; //mute PC_beep
 4'h6: command = 24'h18_0808; //unmute DAC output,
slightly attenuate.
 4'h7: command = 24'h1C_0000; //unmute record gain
 4'h8: command = 24'h1A_0404; // record select =
line in
 */
 4'h0: command = 24'h02_0000; // Unmute line
outputs (master volume)
 4'h1: command = 24'h04_0000; // Unmute headphones
 4'h2: command = 24'h10_FFFF; // MUTE line inputs
(no analog loopback)
 4'h3: command = 24'h1A_0404;// record select =
line in
 4'h4: command = 24'h1C_0000; //unmute record gain
0dB
 4'h5: command = 24'h18_0808; //unmute DAC output,
slightly attenuate
 4'h6: command = 24'h20_8000; //set bypass 3D
 4'h7: command = 24'h0C_FFFF; // mute line in to
mix 2
 4'h8: command = 24'h0E_FFFF; //MUTE mic (no
analog)
 //4'h9: command = 24'h2A_0001; //enable
variable sample rate

 4'hA: command = 24'h2C_0FA0; //set sample rate
left = 8 kHz
 4'hB: command = 24'h32_0FA0; //set sample rate
right = 8 kHz
 default: command = 24'hFC_0000; // Read vendor ID
 endcase

 // Separate the address and data portions of the
command
 // and pad them to 20 bits
 assign command_address = {command[23:16], 12'h000};
 assign command_data = {command[15:0], 4'h0};

endmodule

Hsync module (from video)

module hsync(clk, reset, LineStart, done, R, G, B,
h_sync, h_blank,
 currentLine, address, data, offset,
stop, state, h_sync2, h_blank2,
 currentHLine);
input stop;
input [9:0] currentLine;
input clk, reset, LineStart;
input [15:0] offset;
output [7:0] R, G, B;
output done, h_sync, h_blank, h_sync2, h_blank2;
reg h_sync2, h_blank2;
output[10:0] currentHLine;
reg [10:0] currentHLine;
reg [7:0] R, G, B;
reg done, h_sync, h_blank;
input [31:0] data;
reg [31:0] data_int;
output [15:0] address;
reg [15:0] address, address_int;
reg countv, countven, resetcountv;
// states
parameter INIT = 0;
parameter idle = 1;
parameter out11 = 2;
parameter out12 = 3;
parameter out21 = 4;
parameter out22 = 5;
parameter FPHs = 8;
parameter FPHe = 9;
parameter HSPs = 10;
parameter HSPe = 11;
parameter BPHs = 12;
parameter BPHe = 13;
parameter waitstate = 14;
output [3:0] state;
reg [3:0] state, next;

//internal variables
reg [10:0] count;
reg h_sync_int, h_blank_int, done_int, resetcount,
counten, currentHLineCount;
reg [7:0] R_int, G_int, B_int;

always @ (posedge clk)
begin
 if(!reset)
 begin
 state <= INIT;
 end
 else
 begin
 state <= next;
 end

 if(stop)
 state <= idle;

 if(resetcount)
 begin
 count <= 0;
 currentHLine <=0;
 end
 else if(counten)
 count <= count + 1;

 done = done_int;

27

 h_sync <= h_sync_int;
 h_sync2 <= h_sync_int;
 h_blank <= h_blank_int;
 h_blank2 <= h_blank_int;

 R <= R_int;
 G <= G_int;
 B <= B_int;
 //R <= 8'b11111000;
 //G <= 8'b00000000;
 //B <= 8'b00000000;
 address <= address_int;
 if(state == out22)
 data_int <= data;
 if(currentHLineCount)
 currentHLine <= currentHLine + 1;
 else if(resetcount)
 currentHLine <= 0;
 if(resetcountv)
 countv <= 0;
 else if(countven)
 countv <= countv + 1;
end

always @ (state or LineStart or count)
begin
 done_int = 0;
 resetcount = 0;
 resetcountv = 0;
 h_sync_int = 1;
 h_blank_int = 1;
 counten = 0;
 currentHLineCount = 0;
 countven = 0;

 // jk: avoid inferring latches --->
 R_int = R;
 G_int = G;
 B_int = B;
 address_int = address;
 next = state;
 /// <----

 case(state)
 INIT:
 begin
 resetcountv = 1;
 R_int = 8'b0;
 G_int = 8'b0;
 B_int = 8'b0;
 address_int = 0;
 next = idle;
 end
 idle:
 begin
 if(LineStart)
 begin
 next = FPHs;
 resetcount = 1;
 address_int =
currentLine * 160 + offset;
 end
 else
 next = idle;
 end
 out11:
 begin
 counten = 1;
 R_int[7:3] = data_int[31:27];
 G_int[7:3] = data_int[26:22];
 B_int[7:3] = data_int[21:17];
 next = out12;
 end
 out12:
 begin
 counten = 1;
 R_int[7:3] = data_int[31:27];
 G_int[7:3] = data_int[26:22];
 B_int[7:3] = data_int[21:17];
 next = out21;
 end
 out21:
 begin
 counten = 1;
 R_int[7:3] = data_int[15:11];

 G_int[7:3] = data_int[10:6];
 B_int[7:3] = data_int[5:1];
 next = out22;
 currentHLineCount = 1;
 end
 out22:
 begin
 R_int[7:3] = data_int[15:11];
 G_int[7:3] = data_int[10:6];
 B_int[7:3] = data_int[5:1];
 if((count >= 639) && (countv ==
1))
 begin
 resetcountv = 1;
 next = idle;
 done_int = 1;
 resetcount = 1;
 end
 else if(count >= 639)
 begin
 countven = 1;
 done_int = 1;
 next = FPHs;
 resetcount = 1;
 end
 else
 begin
 next = out11;
 counten = 1;
 //address_int =
currentLine * 160 + (currentHLine + 1) / 4 + offset;
 address_int =
(currentLine>>2) * 160 + (currentHLine + 1) + offset;
 end

 end
 waitstate:
 begin
 next = out11;
 end
 FPHs:
 begin
 next = FPHe;
 h_blank_int = 0;
 R_int = 0;
 G_int = 0;
 B_int = 0;
 counten = 1;
 end
 FPHe:
 begin
 h_blank_int = 0;
 counten = 1;
 if(count == 16)
 begin
 next = HSPs;
 resetcount = 1;
 end
 else
 next = FPHe;
 end
 HSPs:
 begin
 h_sync_int = 0;
 h_blank_int = 0;

 next = HSPe;
 counten = 1;
 end
 HSPe:
 begin
 h_sync_int = 0;
 h_blank_int = 0;
 counten = 1;
 if(count == 96)
 begin
 next = BPHs;
 resetcount = 1;
 end
 else
 next = HSPe;

 end
 BPHs:
 begin
 next = BPHe;

28

 h_blank_int = 0;
 counten = 1;
 end
 BPHe:
 begin
 h_blank_int = 0;
 counten = 1;
 if((count == 48) && (countv ==
1))
 begin
 next = waitstate;
 resetcount = 1;
 end
 else if(count == 48)
 begin

 next = out11;
 resetcount = 1;
 end
 else
 next = BPHe;

 end
 endcase

end
endmodule

FlashRomController

module flashromcontroller (clk, reset, write, readin,
datain, addr, readnow, erase,

 address, outdata, ce_b, oe_b, we_b,
resetflash, sts, dataout,

 addressb, ce_b2, oe_b2, we_b2, resetflash2,
state, testdata, donesignal, next, done2);
input clk, reset, write, readin, readnow, erase;
input [24:0] addr;
input [15:0] datain;
output [15:0] dataout;
output donesignal;
reg [15:0] dataout;
input sts;
inout [15:0] outdata;
output [24:0] address;
output ce_b, oe_b, we_b, resetflash;
output [24:0] addressb;
output ce_b2, oe_b2, we_b2, resetflash2;
wire [15:0] outdata;
output [15:0] testdata;
reg [15:0] testdata;
reg [15:0] storedata;
reg [24:0] address;
reg ce_b, oe_b, we_b, resetflash;
reg [24:0] addressb;
reg ce_b2, oe_b2, we_b2, resetflash2;
reg ce_b_int, oe_b_int, we_b_int;
output done2;
reg done2;
//internal stuff
reg w, w_int, r_int, r, donesignal, donesignal_int,
countreset, counten;
reg [5:0] count;

//States
parameter INIT = 0;
parameter idle = 1;
parameter write1 = 2;
parameter write2 = 3;
parameter write3 = 4;
parameter write4 = 5;
parameter write5 = 6;
parameter write6 = 7;
parameter write7 = 8;
parameter write11 = 9;
parameter write12 = 10;
parameter write13 = 11;
parameter write14 = 12;
parameter write15 = 13;
parameter write16 = 14;
parameter write17 = 15;
parameter waitlow = 16;
parameter waithigh = 17;
parameter writedone = 18;
parameter read = 19;
parameter readdone = 20;
parameter blockerase= 21;
parameter erase1 = 22;
parameter erase2 = 23;
parameter erase3 = 24;
parameter erase4 = 25;
parameter erase5 = 26;
parameter erase6 = 27;
parameter erase11 = 28;
parameter erase12 = 29;
parameter erase13 = 30;
parameter erase14 = 31;
parameter erase15 = 32;

parameter erase16 = 33;
parameter erase17 = 34;
parameter setupread = 35;
parameter reada1 = 36;
parameter reada2 = 37;
parameter reada3 = 38;
parameter reada4 = 39;
parameter reada5 = 40;
parameter reada6 = 41;
parameter waitlow1 = 42;
parameter waithigh1 = 43;
parameter eraseE = 44;
parameter erase1E = 45;
parameter writeE = 46;
parameter write1E = 47;
parameter readaE = 48;
parameter wordwriteXXX = 49;
parameter XXX1 = 50;
parameter XXX2 = 51;
parameter XXX3 = 52;
parameter writ1 = 53;
parameter writ2 = 54;
parameter writ3 = 55;
parameter writ4 = 56;
parameter writ5 = 57;
parameter writ6 = 58;
parameter writ7 = 59;
parameter writE = 62;
parameter waitlow2 = 61;
parameter waithigh2 = 63;

output [5:0] state, next;
reg [5:0] state, next;

assign outdata = w ? storedata : 16'hz;

always @ (posedge clk)
begin
 if(!reset)
 begin
 state <= INIT;
 resetflash <= 0;
 end
 else
 begin
 state <= next;
 resetflash <= 1;
 end
 done2 <= donesignal;
 donesignal <= donesignal_int;
 testdata <= outdata;
 resetflash <= 1;
 address <= addr;
 ce_b <= ce_b_int;
 oe_b <= oe_b_int;
 we_b <= we_b_int;
 resetflash2 <= 1;
 addressb <= addr;
 ce_b2 <= ce_b_int;
 oe_b2 <= oe_b_int;
 we_b2 <= we_b_int;
 w <= w_int;
 r <= r_int;
 if(state == read)
 dataout <= outdata;
 else dataout <= dataout;
 if((state == write2) || (state == write3) ||
(state == write4) || (state == writeE))
 storedata <= 64;
 else if((state == erase1) || (state ==
erase2) || (state == erase3) || (state == eraseE))

29

 storedata <= 32;
 else if((state == erase12) || (state ==
erase13) || (state == erase14) || (state == erase1E))
 storedata <= 208;
 else if((state == reada1) || (state ==
reada2) || (state == reada3) || (state == readaE))
 storedata <= 255;
 else if(r_int)
 begin
 storedata <= outdata;
 end
 else if((state == write12) || (state ==
write13) || (state == write14) || (state == write1E))
 begin
 storedata <= datain;//232;
 end
 else if((state == writ2) || (state == writ3)
|| (state == writ4) || (state == writE))
 begin
 storedata <= 208;
 end
 else if((state == XXX1) || (state == XXX2)
|| (state == XXX3) || (state == wordwriteXXX))
 storedata <= datain;
 else
 storedata <= storedata;

 if(countreset)
 count <= 0;
 else if(counten)
 count <= count + 1;
 else
 count <= count;
end

always @ (state or write or readin or sts or count or
readnow or erase)
begin
 ce_b_int = 1;
 oe_b_int = 1;
 we_b_int = 1;
 counten = 0;
 w_int = 0;
 r_int = 0;
 countreset = 0;
 donesignal_int = 0;
 case(state)
 INIT:
 begin
 countreset = 0;
 next = idle;
 end
 idle:
 begin
 if(~write)
 next = write1;
 //next = write11;
 else if(~readin)
 next = setupread;
 else if(~readnow)
 begin
 next = read;
 countreset = 1;
 end
 else if(~erase) begin
 next = blockerase;
 end
 else next = idle;
 end
 blockerase:
 begin
 ce_b_int = 0;
 next = erase1;
 end
 erase1:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 next = erase2;
 end
 erase2:

 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase3;
 end
 erase3:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = eraseE;
 end
 eraseE:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase4;
 end
 erase4:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase5;
 end
 erase5:
 begin
 next = erase6;
 end
 erase6:
 begin
 next = erase11;
 end
 erase11:
 begin
 ce_b_int = 0;
 next = erase12;
 end
 erase12:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 next = erase13;
 end
 erase13:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase1E;
 end
 erase1E:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase14;
 end
 erase14:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase15;
 end
 erase15:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = erase16;
 end
 erase16:
 begin
 next = erase17;
 end
 erase17:
 begin
 next = waitlow1;

30

 end
 waitlow1:
 begin
 if(sts) next = waitlow1;
 else next = waithigh1;
 end
 waithigh1:
 begin
 if(sts) next = writedone;
 else next = waithigh1;
 end
 write1:
 begin
 ce_b_int = 0;
 next = write2;
 end
 write2:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 next = write3;
 end
 write3:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = writeE;
 end
 writeE:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write4;
 end
 write4:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write5;
 end
 write5:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write6;
 end
 write6:
 begin
 next = write7;
 end
 write7:
 begin
 next = write11;
 end
 write11:
 begin
 ce_b_int = 0;
 next = write12;
 end
 write12:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 next = write13;
 end
 write13:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write1E;
 end
 write1E:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;

 next = write14;
 end
 write14:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write15;
 end
 write15:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = write16;
 end
 write16:
 begin
 next = write17;
 end
 write17:
 begin
 next = waitlow;
 end
 waitlow:
 begin
 if(sts)
 next = waitlow;//write11;
 else
 next = waithigh;
 end
 waithigh:
 begin
 if(sts)
 next =
writedone;//wordwriteXXX;
 else
 next = waithigh;
 end
 writedone:
 begin
 next = idle;
 donesignal_int = 1;
 end

 wordwriteXXX:
 begin
 countreset = 1;
 next = XXX1;
 w_int = 1;
 end
 XXX1:
 begin
 counten = 1;
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = XXX2;
 end
 XXX2:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = XXX3;
 end
 XXX3:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 if(count == 32)
 next = writ1;
 else if(~write)
 next = XXX1;
 else
 next = XXX3;
 end
 writ1:
 begin

31

 w_int = 1;
 ce_b_int = 0;
 next = writ2;
 end
 writ2:
 begin
 w_int = 1;
 ce_b_int = 0;
 we_b_int = 0;
 next = writ3;
 end
 writ3:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = writE;
 end
 writE:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = writ4;
 end
 writ4:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = writ5;
 end
 writ5:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = writ6;
 end
 writ6:
 begin
 next = writ7;
 end
 writ7:
 begin
 next = waitlow2;
 end
 waitlow2:
 begin
 if(sts)
 next = waitlow2;
 else
 next = waithigh2;
 end
 waithigh2:
 begin
 if(sts)
 next = writedone;
 else
 next = waithigh2;
 end

 setupread: begin
 ce_b_int = 0;
 next = reada1;
 end
 reada1:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 next = reada2;
 end
 reada2:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = readaE;
 end
 readaE:
 begin

 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = reada3;
 end
 reada3:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = reada4;
 end
 reada4:
 begin
 ce_b_int = 0;
 we_b_int = 0;
 w_int = 1;
 next = reada5;
 end
 reada5:
 begin
 next = reada6;
 end
 reada6:
 begin
 next = idle;

 end

 read:
 begin
 countreset = 0;
 ce_b_int = 0;
 oe_b_int = 0;
 counten = 1;
 if(count == 15)
 next = readdone;
 else
 next = read;
 end
 readdone:
 begin
 next = idle;
 r_int = 1;
 donesignal_int = 1;
 end
 endcase
end

endmodule

Game Software Code:

kernel.uasm (adapted from kernel.uasm ©1994 Steve
Ward)
. = VEC_RESET
 BR(I_Reset) | on Reset (start-up)
. = VEC_CLK
 BR(I_Clk) | On clock interrupt
. = KERN_START

UserMState:
STORAGE(32) | R0-R31... (PC is in XP!)
.macro SS(R) ST(R, UserMState+(4*R)) | (Auxiliary
macro)
.macro SAVESTATE_8() {SS(0) SS(1) SS(2) SS(3)
SS(4) SS(5) SS(6) SS(7) SS(30) }
.macro RESTORESTATE_8() {RS(0) RS(1) RS(2) RS(3)
RS(4) RS(5) RS(6) RS(7) RS(30) }

KStack: LONG(.+4) | Pointer to ...
 STORAGE(256) | ... the kernel stack.

I_Clk:
 SAVESTATE_8()
 CMOVE(CLK_TICKS_CUR_l, r0)
 CMOVE(0x3, r2)
 LD(r0, 0, r1)
 ADDC(r1, 1, r1)
 ST(r1, 0, r0)
 LD(r0, 4, r1)
 ADDC(r1, 1, r1)

32

 CMPEQ(r1, r2, r3)| have we counted up to 2.7e+6
cycles?
 ST(r1, 4, r0) | save count
 BF(r3, I_Clk_ret) | no, return...
 ADD(r31, r31, r1) | clear io count
 ST(r1, 4, r0) | save count
 XOR(r31, r31, r4)
 SHRC(r4, 1, r4) | construct 0x7fff
ffff in R4

 ADDC(r31, 3, r1)

 ST(r1, 0, r4) | write
baxv - yield to IO
I_Clk_ret:
 RESTORESTATE_8()
 JMP(XP)

I_Reset:
 CMOVE(0x0800, XP) | program start place.
 JMP(XP)

/*** ddr.c **
 Jacob Kitzman | 6.111 Final Project S04
 DDR video game and support software, for the Beta
 Platform
***/
 #define FRAMEBUFFER 0x000117f0L
#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 240
#define TICK_COUNT 0x00000700
#define CORRECT_STEPS 0x00006000
#define N_CORR_STEPS 10
#define DIRECT_IO 0x7ffffff0
#define STEPBUF 0x00006000

// takes in chars, left-aligned 8-bit color values
#define MK2PIXEL(R1, G1, B1, R2, G2, B2)
((((int)R1<<24)&0xf8000000)|(((int)G1<<19)&0x07C00000
)|(((int)B1<<14)&0x003f0000)) |
((((int)R2<<8)&0x0000f800)|(((int)G1<<3)&0x000007C0)|
(((int)B1>>2)&0x0000003f))
// (omitted SPRITE start and end location #define’s

// bitblt a sprite into the framebuffer
void copyrgn_entirew(
 int *src, // base of source sprite
 int x,
 int y,
 int src_w, // width of source glyph
 int src_h) // height of source glyph
{
 int iSrc=0;
 int i_x, i_y;

 for (i_y=0;i_y<src_h>>1;i_y++)
 {
 int *FB_BASE =
(int*)(FRAMEBUFFER+((x+((y+i_y)*320))<<1));

 iSrc = i_y*src_w;

 for (i_x=0;i_x<(src_w>>1);i_x++)
 {
 int *pCurDest =
(int*)(FB_BASE+i_x);
 *pCurDest =
((int)src+iSrc);
// *pCurDest =
((int)src+iSrc)|x|(y<<16); //DEBUG ONLY, see what
position were copying…
 iSrc++;
 }
 }
}
/* bitblt a sprite into the framebuffer, using the
color of the sprite’s upper left-hand pixel as the
transparency value */
void copyrgn_entirew_transp(
 int *src, // base of source sprite
 int x,
 int y,
 int src_w, // width of source glyph
 int src_h, // height of source glyph
 int maskColor) // color to mask through to
black
{
 int iSrc=0;
 int i_x, i_y;

 int transp_col = (*src);

 transp_col=(transp_col>>16)&0x0000ffff;

 for (i_y=0;i_y<src_h>>1;i_y++)
 {
 int *FB_BASE =
(int*)(FRAMEBUFFER+((x+((y+i_y)*320))<<1));

 iSrc = i_y*src_w;

 for (i_x=0;i_x<(src_w>>1);i_x++)
 {
 int *pCurDest =
(int*)(FB_BASE+i_x);
 int destCur = *pCurDest;
 int src =
((int)src+iSrc);

 // high order pixel, mask dest through
 if (((src>>16)&0x0000ffff) == transp_col)
 src = destCur&0xffff0000 | src&0x0000ffff;
 else if (((src>>16)&0x0000ffff) ==
0x00000000)
 src = maskColor&0xffff0000 |
src&0x0000ffff;

 // same for low-order pixel
 if (((src)&0x0000ffff) == transp_col)
 src = destCur&0x0000ffff |
src&0xffff0000;
 else if (((src)&0x0000ffff) == 0x00000000)
 src = maskColor&0x0000ffff | src&0xffff0000;
 *pCurDest = src;
 iSrc++;
 }
 }
}

// omitted const int ltr_offets[26] and
// num_offets[10] (simply start addrs)
// omitted const int ltr_widths[26] and
// num_widths[10] (simply sprite widths in pixels)

void itoh(int num, char* pstr)
{
 int i;
 int j=0;
 for (i=28;i>=0;i-=4)
 {
 int val = (num >> i)&0x000000ff;
 if (val < 10)
 pstr[j++]=((char)'0'+val);
 else
 pstr[j++]=((char)'A'+val);
 }

 pstr[j] = (char)0;
}

// Display a character string on the screen by
copying text sprites into the frame buffer
//#define _DBG_DISPLAY_STR 1
void displayStr(int x,
 int y,
 char *pzStrDisp)
{
#ifdef _DBG_DISPLAY_STR
 register int disp_char asm("%R21");
 #endif

 int si=0;
 #ifdef _DBG_DISPLAY_STR
 register int x_acc asm("%R22");
 x_acc = x;
 #else
 int x_acc = x;
 #endif

 char c = pzStrDisp[si];
 while (c!=(char)0)
 {
 if (c>='a'&&c<='z') // convert to
uppercase.
 c=(char)(c-32);
 if (c>='A' && c<='Z') {
 #ifdef _DBG_DISPLAY_STR

 // debugging approach - marker and
copy to a register we can follow.
 /*
 __asm__ __volatile__ (

 "ADD(%1,%%R31,%%R4) | copy
character over

 ADD(%%R4,%%R31,%0)"
 :"=r"(disp_char) //output

33

 :"r"(x_acc) //input
 :"%R4" //clobber list
);

 // this one additionally causes bsim
to pause.

 __asm__ __volatile__ (
 "ADD(%1,%%R31,%%R4) | copy
character over

 SHLC(%%R4, 10, %%R5)
 ST(%%R31, 0, %%R5) | generate
bsim breakpoint
 ADD(%%R4,%%R31,%0)"
 :"=r"(disp_char) //output
 :"r"(c) //input
 :"%R4", "%R5" //clobber list
); */
 #endif

 copyrgn_entirew((int*)ltr_offsets[c-'A'],
x_acc, y, ltr_widths[c-'A'], LTR_SPRITE_HEIGHT);

 x_acc += (ltr_widths[c-'A'] + 2);
 }
 else if (c>='0'&&c<='9') {
 copyrgn_entirew((int*)num_offsets[c-
'0'], x_acc, y, num_widths[c-'0'],LTR_SPRITE_HEIGHT);
 x_acc += (num_widths[c-'0'] + 2);
 }

 c = pzStrDisp[++si];
 }
}

//#define _DBG_HLINE 1

__inline__ void hline(int x_start,int x_end, int y,
char r, char g, char b)
{
 int twopix = MK2PIXEL(r,g,b,r,g,b);

 #ifdef _DBG_HLINE
 register int _dbg_ptr asm("%R20");
 #endif

 int y_ofs = y*320;
 int i_x;
 for (i_x=x_start;i_x<x_end;i_x+=2)
 {
 int* dispPtr =
(int*)(FRAMEBUFFER+((i_x+y_ofs)<<1));

 #ifdef _DBG_HLINE
 _dbg_ptr = (int)dispPtr;
 __asm__ __volatile__ (
 "ADD(%1,%%R31,%%R4)
 ADD(%%R4,%%R31,%0) | copy
over disp ptr"
 :"=r"(_dbg_ptr) //output
 :"r"((int)dispPtr)
//input
 :"%R4" //clobber list
);
 #endif

 *dispPtr = twopix;
 }
}

void fillrgn(int x,
 int y,
 int fill_w,
 int fill_h,
 int col2pix)
{
 int i_x, i_y;

 for (i_y=0;i_y<fill_h>>1;i_y++)
 {
 int *FB_BASE =
(int*)(FRAMEBUFFER+((x+((y+i_y)*320))<<1));

 for (i_x=0;i_x<(fill_w>>1);i_x++)
 {
 int *pCurDest =
(int*)(FB_BASE+i_x);
 *pCurDest = col2pix;
 }

 }
}

void fillscrn(int *dest,
 int twopix)
{
 int ofs = 0;
 while (ofs < 0x9600)
 *(dest+(ofs++)) = twopix;
}

void fillrgn_g(int x, int y,
int fill_w, int fill_h, int r,
int g, int b) {
 int i_x, i_y;

 for (i_y=0;i_y<fill_h>>1;i_y++)
 {
 int *FB_BASE =
(int*)(FRAMEBUFFER+((x+((y+i_y)*320))<<1));

 int color;
 color = MK2PIXEL(r,g,b,r,g,b);

 r++;
 b++;
 g--;

 for (i_x=0;i_x<(fill_w>>1);i_x++)
 {
 int *pCurDest =
(int*)(FB_BASE+i_x);
 *pCurDest = color;
 }

 }
}

// return (roughly) a/b
int div(int a, int b)
{
 if (b>a) return 0;
 else {
 int acc=0;
 int res=0;
 while (acc<a) {
 acc+=b;
 res++;
 }
 return res;
 }
}

// TEST4 - Fill the screen, the display a string.
THIS IS WHAT WE DEMOED
void system_test_4()
{
 char r, g, b;
 r=g=0;
 b=0x40;
 int i=0;

 char *msg = "pain";
 char *msg2 = "6111";

 displayStr(10, 50, msg);
 displayStr(50,200, msg2);

 while (1)
 {
 r++; g--;
 fillrgn_g(250, 150, 60, 70, r, g,
b);
 }
}

int main() {
 ((int)DIRECT_IO) = 0x0000000c;
 // signal for audio to start.
 system_test_4();

 while (1) {
 __asm__ __volatile__ (
 "ADD(%%R4,%%R31,%%R4) | do nothing -
program done – prevent jump back to krnl."
 : // output
 : // input
 :"%R4" // clobber
);
 }
}

