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Abstract 
 

This report describes the design and implementation of a digital near miss learner. Divided into 
three stages our system is comprised of an input stage, processing stage, and output stage. The 
user inputs a shape with a laser pointer. This image is captured with an NTSC camera and saved 
to RAM. The coordinates of the shapes endpoints are extracted and used in order to determine 
the input shape’s resemblance to 4 “learned” shapes. A score is calculated and used to pick 
which definition shape the input shape has been determined to be. This definition shape is then 
displayed on a VGA monitor along with the user input shape.  

 
 
 
 
 

Orhan Dagli 
Jo-Al Lopez 

Sedrick Tydus 
May 13, 2004 

TA: Cemal Akcaba 



Table of Contents 
 
 
 

 

LIST OF FIGURES...................................................................................................................................... 2 
SYSTEM OVERVIEW ................................................................................................................................ 3

INPUT STAGE ............................................................................................................................................. 3 
DECODING NTSC CAMERA DATA............................................................................................................ 4 
WRITING TO RAM ................................................................................................................................... 5 
FINDING LASER POINTER DRAWING COORDINATES ............................................................................... 7 
TESTING..................................................................................................................................................... 7 

PROCESSING STAGE (AI MODULE)..................................................................................................... 8 
FLOATING POINT ARITHMETIC LOGIC UNIT (ALU) ............................................................................... 8 
ALGORITHM .............................................................................................................................................. 9 

Training ................................................................................................................................................ 9 
Recognition......................................................................................................................................... 10 

IMPLEMENTATION................................................................................................................................... 11 
TESTING................................................................................................................................................... 12 

DISPLAY STAGE ...................................................................................................................................... 12 
SYNC_GEN................................................................................................................................................ 13 
DISP_VGA ................................................................................................................................................. 13 
SHAPE_DISP ............................................................................................................................................. 14 
TESTING................................................................................................................................................... 14 

CONCLUSION ........................................................................................................................................... 15 
APPENDIX ................................................................................................................................................. 16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 1 -



List of Figures & Tables 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Block Diagram of Near Miss Learner-----------------------------------------3 
 
Figure I1: State Transition Diagram for DECODER_WRITE_TO_RAM Module----------------5 

 
Figure I2: State Transition Diagram for VIDEO_DECODER Module--------------6 

Figure AI1: Floating Point Arithmetic Unit Block Diagram--------------------------9 

Figure AI2: The “four values”-----------------------------------------------------------10 

Figure AI3: AI Module Block Diagram-------------------------------------------------11 

FigureD1: Block Diagram of Display Module-----------------------------------------13 

Figure D2: State Transition Diagram of shape_disp FSM---------------------------14  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 2 -



System Overview 
 

Near miss learning is an Artificial Intelligence concept first introduced by Professor 
Patrick H. Winston in his PhD Thesis at MIT (See FigureNM1). Whereas most other machine 
learning methods need a batch of training data, a near miss learner can learn from every new 
example. It can take both positive and negative examples and improve the definition by 
extending or restricting it, respectively. 
 

Sketch training/recognition is a field where the near miss learning idea is implemented 
in real life. Several examples of a shape are used to train a system so that it can recognize the 
shape later on. Character recognition on PDAs is a common example of sketch recognition. 
Sketch training/recognition is different from a complete near miss learner in that it makes use 
of positive examples, but not negative examples. Since the aim of sketch training is to extract 
the average characteristics of a shape, negative examples are unnecessary. 
 

The aim of our final project is to build a digital system capable of sketch training and 
recognition. We have done this by using a modular design approach and dividing up the 
system into three stages. The user inputs a drawing with a laser pointer against a dark 
background. As the user is drawing the shape a camera captures the image. The image from 
the camera is analyzed and processed in a way that results in the complete shape being stored 
in RAM. With an image stored, the processing stage is able to use an AI algorithm to compare 
the shape to shapes it has already learned. Concurrently, the third stage, displays the drawn 
image on a VGA screen for the user to see. When the AI module has completed and identified 
the input shape the display will output the correct shape that it had previously learned. 

 

 
Input Stage – Jo-Al Lopez 
 
 The overall input to the digital system is an analog video signal that is produced by a 
user using a bright red laser on a black background.  This analog signal is captured by an 
NTSC (National Television System Committee) camera and is then passed on to our actual 
digital system as the input signal.  The input stage must digitize this analog video signal, 
recognize when the laser pointer is on, and store the image that the user draws with the laser 
pointer.  This data is stored in a RAM (random access memory) for the output stage to read and 
display using a VGA monitor.  In addition to capturing the user-made drawing, the input 
system must also figure out each of the coordinates of the endpoints of each stroke that the 
user makes with the laser pointer.  These coordinates are then passed on to the processing/AI 
stage of the digital system.  
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-Decoding NTSC Camera Data- 
 
 An input to the input stage of our system is an image created by a user using a laser 
pointer.  Since the data from the NTSC camera is analog data, it must be digitized in order for 
it to be useful.  This is done by the ADV7185 video decoder chip.  The ADV7185 decodes the 
analog signal that makes up an image and represents it with digital data of luminance and 
chrominance values.  A digital image is essentially composed of pixels, lines, fields, and frames.  
All this data is embedded and can be decoded from the digital video signal that is produced by 
the ADV7185 chip.  The first task when designing the input stage was to decode the digital 
data from the ADV7185 chip and determine when the beginning of a line, field, active data, and 
blanking data occurred.  This was done using the VIDEO_DECODER module.   
 
 In order to determine when a line, field, active data, and blanking occur, the 
VIDEO_DECODER module takes as input the digital data from the ADV7185 chip.  There are 
four “regions” of a stream of digital data that are very important.  These regions include: the 
odd field, the even field, active data, and blanking data.  The only useful part of digital video is 
the active parts of the odd and even fields, all the rest is blanking data and does not contain 
any useful information regarding the image.  In order to detect when active data occurs, the 
VIDEO_DECODER module looks for certain flags, within the stream of digital video coming 
from the ADV7185.  These “flags” are strategically placed within the stream of digital data and 
are called TRS (timing recognition symbols).  They are strategically placed because they occur 
at times that active digital video is not being decoded.    
    
 The TRS for digital data from the ADV7185 is the specific sequence of 8’hFF, 8’h00, 
8’h00, 8’hXY.  The VIDEO_DECODER module’s job is to examine the stream of digital data and 
extract when active video occurs.  Each data byte from the ADV7185 represents a luminance 
and chrominance value for a pixel, therefore two bytes represents a full pixel of data.  When 
examining the stream of digital data (the stream of bytes), the VIDEO_DECODER module looks 
for the specific sequence of 8’hFF, 8’h00, 8’h00.  Once it has found this sequence, it knows 
that the either the end of active video or the start of active video has been discovered.  A 
normal stream of digital data includes active data and a period of blanking (non-active) data.  
Since the TRS sequence within the digital data represents either the start or end of active data, 
the VIDEO_DECODER module must also discern between the two.  For all intensive purposes, 
the beginning of a line of video may be denoted by the TRS sequence that corresponds to an 
end of active video, and the start of actual active video may be denoted by the TRS sequence 
that corresponds to the start of active video. 
 
 The VIDEO_DECODER module checks first for the TRS sequence 8’hFF, 8’h00, 8’h00.  
If the XY word (2 byte word following the valid TRS sequence) corresponds to a valid word that 
should follow an end of active video, it asserts the signal EAV.  Once the VIDEO_DECODER 
module finds the end of active video, it begins to look for the same TRS 8’hFF, 8’h00, 8’h00.  If 
it has found this sequence it asserts the signal SAV since once that specific sequence has been 
found once, we can infer that a line of video has begun, and once it has found it a second time, 
we can infer that the active part of that same line has begun. 
 

In addition to checking for the end and beginning of active video, the VIDEO_DECODER 
module also outputs the signals SOF and SEF.  These signals denote only when the active part 
of the odd and even fields begin.  As stated before, an image is represented by two fields, which 
compose a frame of video.  These two fields are called the odd and even fields and are 
interlaced when displayed on a monitor.  The VIDEO_DECODER module knows when the 
beginning of the two different fields begins based on if the signal in the active region of data, as 
well as based upon the XY word after a TRS sequence 
A final task that VIDEO_DECODER performs is conversion of the digital data from the 
ADV7185 into binary digital data.  Since each pixel is represented by two bytes, only the 
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second byte is useful since it represents the luminance value of the signal.  We only care about 
luminance because our system is based on black and white.  If the data byte that corresponds 
to luminance is above a certain threshold, the data_output of the module will be one (white), 
otherwise it will be zero (black).  The module knows when the byte is luminance or 
chrominance based on a counter that counts up to 3 (4 total values including zero).  When the 
count is one or three, then a luminance value is being represented and we can convert it to 
either a one or zero.   
 

 
Figure I1: State Transition Diagram for DECODER_WRITE_TO_RAM Module 

 
 

-Writing to RAM- 
 

 A second task of the input stage is to store the image that the user draws with the laser 
pointer into a RAM.  This is done by the module DECODER_WRITE_TO_RAM.  This module 
implants two counters, one for x and one for y.  These counters are incremented and 
dependent upon the outputs from the VIDEO_DECODER module.  Since it takes the inputs 
SOF, SEF, SAV, EAV, and data_out, it checks where exactly in the stream of video the signal is 
at.  When it is in the active portion of an odd field, which means the laser pointer signal is 
being represented by the active portion of the digitized stream of video, the x counter is 
incremented every two clock cycles, (two clock cycles of 27MHz since a word occurs ever clock 
cycle, there for a full pixel occurs every two clock cycles) representing where on a line the pixel 
is at.  When this module detects the input EAV, then the y_counter is incremented and the 
x_counter is set to zero.  This represents the beginning of a new line of active video, and 
therefore denotes what line new data is on.  In both situations, and on every new pixel, only if 
the data is digital 1 (white), are the signals to write, as well as the data_out and address are 
set.  The address is set to be whatever the x and y counts were, therefore from the address; the 
output module can know where the white pixel should be on the screen.  These three 
parameters are sent on to a Xilinx COREGEN module that is a RAM.  When the RAM gets the 
write_enable signal, it writes the data into the memory at the specified address, which is a 
concatenation of the y_counter and x_counter for a total of 18 bits of address.   
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Figure I2: State Transition Diagram for VIDEO_DECODER Module 
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-Finding Laser Pointer Drawing Coordinates- 
 

 Very similar to the module which wrote to RAM, the module EXTRACT_COORDINATES 
extracts the coordinates of the endpoints of each stroke the user makes with the laser pointer.  
In order to do this, an input signal that is asserted by the user by pushing a button is taken.  
When this button is asserted, the NTSC video camera’s data is captured for only a single frame.  
The purpose of this is to only take a snapshot of where the laser pointer is currently.  Since it 
is basically a snapshot of where the laser pointer is at the beginning of a user’s stroke, the 
coordinates of the brightest pixel in the captured frame is computed.  The coordinates of the 
brightest pixel in the frame is computed by concatenating the x and y counters, which have 
been incremented in the same way as in the DECODER_WRITE_TO_RAM module and only 
using the specific concatenation corresponding to the brightest pixel.  The endpoint of a stroke 
is computed in the exact same way as the starting point since all this module does is take a 
“picture” of where the laser pointer currently is located and takes the location of the brightest 
pixel.  This module is very broad and could be used for any number of strokes, only computing 
the end points of a stroke when the user pushes a button.   
 

Unfortunately, this module works only in principle and its problems could not fully be 
worked out for full implementation of the system.  The counting scheme of the x and y 
counters was faulty, and hence, the correct coordinates of the laser pointer could not be 
reliably computed and sent to the AI/processing stage of the system (similarly, since the 
DECODER_WRITE_TO_RAM module’s counting scheme was similar to the 
EXTRACT_COORDINATES module, the DECODER_WRITE_TO_RAM did not write to the correct 
address and could not be read by the output stage for displaying).  

 
-Testing- 

 
As stated previously, the input stage did not fully work.  The major foundation of the 

input stage was fully implemented.  This foundation was the VIDEO_DECODER module, which 
outputted all the major signals that denoted exactly the beginning of each field as well as the 
start of a line of video, and the active part of that line.  Past this foundation, the modules used 
to keep track of the address of an active pixel, did not work.  Though it appeared that these 
modules simulated fine in the Xilinx tool, when actually tested on the kit, they did not behave 
as desired.  When testing the VIDEO_DECODER module, it was very easy to see that the 
output signals occurred at the proper locations when compared to the TRS occurrences.  Once 
I knew the outputs of the module were functional, I added the section where the data_in from 
the ADV7185 was converted to either a one or a zero.  To test this section, I compared the 
output of the ADV7185 chip against what the output of my module was.  To ensure 
functionality, the output of my module had to be ‘1’ if the data from the ADV7185 was above 
8’d80, corresponding to an IRE level of above 80 (IRE of white is 100 and IRE of black is 
around 40, much lower than the 80 threshold I chose).  If the data from the ADV7185 was 
lower than this threshold, then the data out of my module has to be logic ‘0.’  At the end of the 
above tests, this module proved to be functional. 
 The second two modules in the input stage were not functional at the time of this 
report.  When tested using the logic analyzer, it was apparent that the counter that 
corresponded to the x-coordinate was not counting correctly and hence was not portraying the 
true location of the laser-pointer.  This x-value kept jumping and did not stay stable enough to 
get a true reading.  Some problems were also noted concerning the TRS of the incoming 
digitized data.  At instances that the TRS sequence should have been valid, and in fact was 
valid, the logic analyzer would display a value that was a bit or two (out of the eight bits) that 
was incorrect.  This could have thrown off the FSM’s in the modules since they were looking for 
a specific sequence in order to work.  One explanation of this “bit flipping” could have been 
some noise within the kit that was corrupting the digital output of the ADV7185, and hence 
feeding the incorrect input to the input stage’s modules.  At the time of submission, this bit 
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flipping problem could not be explained nor corrected.  With an incorrect input to the input 
modules, it can easily be seen that the count of the x and y would be thrown off and be 
incorrect, making it non-functional.  Future considerations of this problem could be 
investigating what could cause significant enough noise to disrupt the output of the ADV7185 
and correct this problem.  With this problem corrected, the counters could work, as they did in 
simulation, and the input stage could be functional, as well as the entire system.  

 
 
Processing Stage (AI Module) – Orhan Dagli  
 

The AI module is responsible for the processing of input shapes, and accomplishing 
training and recognition of these shapes. The user communicates directly with the AI module 
(i.e. through switches) to initiate the system. The AI module then asks for shape coordinates 
from the input stage, and starts its computations. When it is done, it conveys its findings to the 
output stage for display. 
 

-Floating Point Arithmetic Logic Unit (ALU)- 
 

The training and recognition tasks require a lot of arithmetic computations that need to 
be done at high precision. These computations include division and square rooting. Therefore a 
Floating Point Arithmetic Logic Unit needs to be implemented as the core of the AI module. 
 

The FPALU built for the project is capable of performing five operations on operands 
represented in the IEEE single precision floating point standard: addition, subtraction, 
multiplication and square rooting. In this standard, numbers are represented in 32 bits - the 
first bit is reserved for the sign, the next eight bits represent the exponent and the last twenty 
three bits are the mantissa: 
 
S     EEEEEEEE     MMMMMMMMMMMMMMMMMMMMMMM 
31  30             23   22                                                             0 
 
 The value (V) of the number represented is determined as follows: 
    * If E=255 and M is nonzero, then V=NaN ("Not a number") 
    * If E=255 and M is zero and S is 1, then V=-Infinity 
    * If E=255 and M is zero and S is 0, then V=Infinity 
    * If 0<E<255 then V=(-1)**S * 2 ** (E-127) * (1.M) where "1.M" is 
      intended to represent the binary number created by prefixing M with an 
      implicit leading 1 and a binary point. 
    * If E=0 and M is nonzero, then V=(-1)**S * 2 ** (-126) * (0.M) These are "unnormalized" 
values. 
    * If E=0 and M is zero and S is 1, then V=-0 
    * If E=0 and M is zero and S is 0, then V=0 
 
Therefore, the number 10 is represented in this format as follows:    0  10000010  
01000000000000000000000  =  4120 0000 (in hex)  
 

Verilog supports integer add (+), subtract (-) and multiply (*) functions. For floating 
point addition, subtraction and division, these integer operations are used to calculate the new 
exponent and mantissa. For example, addition is carried out in the following steps: 
 
1- Take the difference between the exponents of the operands. 
2- Shift the mantissa of the smaller number to the right as many bits as this difference, and 
change its exponent with the larger number's exponent. 
3- Add (+) the mantissas and normalize the result. 
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Verilog also has the integer division (/) function, but neither the Altera FPGA nor the 

Xilinx FPGA supports this function. Therefore long division is used for floating point division. 
The divisor's mantissa is shifted right by one bit at every clock period and compared to the 
dividend's mantissa. It takes a fixed twenty three clock cycles (the mantissa's length) to 
perform floating point division. 
 

Floating point square rooting, on the contrary, cannot be implemented by itself; it needs 
to use the other four operations. Newton's method can be used to estimate that the equation 
(x^2 - A = 0) has the root: 
 
x_1 = (x_0^2 + A) / (2 * x_0) 
 

If A is used as the initial estimate and the computed x_1 is recursively substituted for 
x_0 in the equation, the result converges to the square root of A. 32 recursions are used to get 
a highly precise solution. 
 

The five floating point operations are each implemented using one Finite State Machine. 
These FSMs are instantiated in a top level FSM which takes in the operands together with a 
selector signal 'alufn'. This signal selects the operation to be performed on the operands. See 
FigureAI1. 

 

 
 
 

-Algorithm- 
 
Training 
 

Concisely, training involves using several examples of a shape to create a definition of 
the shape. The challenge is to find an algorithm that extracts from the examples the properties 
that are particular to only that shape. The stroke coordinates coming from the input stage 
cannot simply be averaged and stored as a definition. The system should be able to define all 
versions of a shape (i.e. scaled, rotated, translated, etc) in a single definition. Therefore, the 
algorithm should make use of ratio relations between the strokes. 
 

The algorithm used in the project is extremely reliable. The definitions it creates are not 
mathematical proofs of the shapes, but the algorithm can produce definitions that will: 
- include all examples of the shape defined. 
- exclude all kinds of other shapes. 
 

As suggested before, the algorithm compares every stroke with each other and 
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computes ratio relations. The high-level steps taken are as follows: 
- Take the stroke coordinates of a single example. 
- Compute the length of each stroke and the angle it makes with the horizontal. 
- Compute the "four values" (discussed later) between each stroke pair. 
- Carry out the first three steps for all the examples in the training set. 
- Compute the average and standard deviation of the four values between each stroke pair of 
each training example. 
- Store these average and standard deviation values as the definition of the shape. 
 

The "four values" are the heart of the algorithm. They perfectly define the relative 
position of two lines in the x-y axis. Therefore, all the "four values" between each pair of stroke 
in the shape will perfectly define the relative positions of all the lines in the shape, thereby 
defining the shape. These "four values" are the following: 
 
1- The length ratio between the two lines. 
2- The angle between the two lines. 
The other two values depend on a third imaginary line that is drawn between the starting 
points of the two lines. 
3- The length ratio between the first line and the third imaginary line. 
4- The angle between the first line and the third imaginary line. 
 

The following figure (Figure AI2) shows how these four values define the relative position 
of the two lines in a cross. If you start off with one of the lines and no information, you don't 
know where the other line lies. If you are given the values # 2, 3, 4 and 1 respectively, you can 
gradually limit the possible locations of the second line down to its exact place. 

 

 
 
Recognition 
 

Recognition is done by comparing a new drawing with each of the existing definitions, 
and calculating an error value for each comparison. The smallest error gives the definition that 
the new drawing is most similar to. 
 

Similar to training, the "four values" of the new drawing are computed during 
recognition. The difference of each of these values with their corresponding averages in a 
definition are taken. If this difference is less than the corresponding standard deviation in the 
definition, the error is not incremented. If bigger, the difference is squared and added to the 
error value, so that the error grows exponentially. This score calculation is done for every 
definition stored. 
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-Implementation- 

 
The algorithm described is implemented in hardware using nine Finite State Machines, 

four SRAMs, one ROM and the Floating Point Arithmetic Logic Unit (See FigureAI3). There are 
three levels of hierarchy throughout the module. The Major FSM is at the top level. The "Line", 
"LinePair", "Definition" and "ScoreCalculator" FSMs are at the intermediary level. The SRAM 
interfaces, each of which interface with one of the SRAMs, are at the bottom of the hierarchy. 
 

The system works like a factory. It starts with the raw data (stroke coordinates) and 
works on it to produce the final product: the definition (in training) or the score (in recognition). 
 

The four SRAMs are the processing line. They store information at different levels. The 
first stores the coordinates of the stroke end-points of one drawing. It basically accumulates 
the data coming from the input stage. The second SRAM stores the lengths and angles of the 
strokes in one drawing. The third stores the "four values" of all stroke pairs in all the drawings 
in the training set. There are multiple copies of the fourth SRAM; each stores one definition (i.e. 
the average and standard deviation of each of the "four values" between each stroke pair).  
 

The intermediary FSMs are the workers. They each read from an SRAM and produce the 
next level of data. For example, the "Line" FSM uses the stroke coordinates (SRAM1) to 
calculate the stroke lengths and angles (SRAM2). The "LinePair" FSM takes that and produces 
the length/angle ratios between line pairs (SRAM3). Finally, the "Definition" FSM averages 
these values and produces the definitions (SRAM4). "ScoreCalculator" FSM, on the other hand, 
compares data stored in the SRAMs 3 and 4 to calculate score. Each of these worker FSMs 
have direct access to the ALU in order to do the computations they need. 
 

The SRAM interfaces are able to write and read from the SRAMs at different sequences. 
For example, the third SRAM interface writes in the line pair properties of one training example 
at a time. However, when the "Definition" FSM asks for data, the interface has to be able to 
pick the same property of the same line pair from every training example. 
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The Major FSM controls the order of operation. The user can initiate the Major FSM 
with the 'train' or the 'recognize' switches. When the user tells the system to train, the Major 
FSM starts the "Line" FSM, waits until it is done, and starts the "LinePair" FSM. It does this for 
all the examples in the training set, until all the line properties accumulate in the third SRAM. 
Then, the Major FSM starts the "Definition" FSM which reads the data in the third SRAM, and 
creates a new definition. 
 

Similarly, when the 'recognize' switch is turned on, the "Line" and "LinePair" FSMs run 
in order, but only once. Then the ScoreCalculator compares data in the third SRAM, with the 
contents of all the copies of the fourth SRAM. It sends the score from each comparison to the 
Major FSM. The Major FSM keeps track of the lowest score (i.e. lowest error), and when all 
comparisons are made, it communicates to the output stage what type of shape the system 
recognizes the new drawing to be (i.e. which definition produced the lowest error). 
 

-Testing- 
 

For individual testing purposes of the AI module, an internal module was built to 
supply the system with pre-calculated inputs at expected times. The inputs first trained the 
system with a training set of right-angled isosceles triangles and then asked to recognize a new 
triangle that was not right-angled. ModelSim was used primarily to simulate how each part of 
the system behaved with these inputs. The code was debugged until the system could compute 
the expected error value (Java code was used to compute what error value to expect). When it 
worked in simulation, it worked on the labkit as well. 
 
 
Display Stage – Sedrick Tydus 
 
 Our system displays its outputs on a VGA monitor. VGA differs from a video in a few 
important ways. Most importantly, instead of using luminance and chrominance values, each 
pixel is represented as a combination of the combination of the colors red, blue and green. 
Although pixels are represented differently than in video, VGA is still a stream of frames each 
made up of lines of pixels. VGA uses no interlacing and pixels are transmitted from left to right 
on the screen with the lines going from top to bottom. The end of each line is defined by a 
horizontal synchronization signal and likewise the end of each frame is defined by a vertical 
synchronization signal. 
 
 We have used the ADV7125 triple 8-bit video DAC to create the analog signals to drive 
the VGA display. On each cycle of the pixel clock the ADV7125 reads an 8-bit digital value for 
each color and outputs the analog values with a two-cycle pipeline delay. The ADV7125 also 
takes a composite blank and synch signal which override the RGB inputs. Both signals are 
active low and a blank signal forces all three DAC outputs to 0 (black) while a sync signal 
forces the green output of the DAC to its sync level which is below black. Additionally, the VGA 
must be directly supplied with a vertical and horizontal synch. These sync signals correspond 
to the composite sync, except they must be delayed two cycles to account for the pipeline delay 
of the ADV7125. 
 

 - 12 -



 
Figure D1: Block Diagram of Display Module 

 
 There are two main sub-modules in our system which control the data sent to the 
ADV7125 and the hsync and vsync signals which are sent directly to the display. The disp_vga 
sub-module creates the VGA control signals and addresses the ROMs and RAM on which 
images are stored. Internally it has its own sub-module which is dedicated to generating all 
sync and blanking signals.  The shape_disp connects the address from the disp_vga module to 
all memories and selects which output to use. All code for these modules is included in the 
appendix. Figure # is a top level block diagram of the display system. 
 

-sync_gen- 
 
 The sync_gen module and the disp_vga module work hand in hand to create the 
necessary outputs on each cycle of the pixel clock. The pixel clock is created using a DCM. We 
take the 27 MHz clock supplied by the lab kit and create a 25 MHz pixel clock. Our pixel clock 
is 25 MHz because we have chosen our resolution to be 640 x 480. This means that each line 
of video must have 640 active pixels, 16 front porch pixels, 96 sync signals and 48 back porch 
pixels. Therefore each horizontal line has a total of 800 pixels. Each frame thus will have 480 
active lines, 11 front porch lines, 2 vertical sync lines and 31 back porch lines. Each frame has 
a total of 524 lines. 
 The sync_gen module has two counters; one keeps track of the pixel count the other 
keeps track of the line count. When either of these reaches their maximum value they are 
reset. Based on the values of these counters the appropriate sync signals are generated. The 
vsync and hsync signals are asserted two cycles earlier than all other VGA control signals to 
account for the pipeline delay of the DAC. 
 

-disp_vga- 
 
 The disp_vga module is responsible for drawing shapes to the screen. It does this by 
addressing memories which have been loaded with the display images for our system. The 
display of our system uses the upper left hand corner of the screen to show the definition 
shape and the rest of the screen is used for the user input shape. This module uses the pixel 
count and line count generated by the sync_gen module to determine the region of the screen 
and create the appropriate address for the various memory units which contain all images to 
be displayed. If the location is within the upper left region then the address runs from 0 to 
16383 to display a 128 x 128 image from ROMs. Otherwise (when in the remaining region of 
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the screen) the address will increment to display the 320 x 240 user input image that is stored 
in RAM. The address from this module is output and sent to all memories in our system.  
 

-shape_disp- 
 
 The shape_disp module is an fsm which selects which shape in memory to display. The 
user input is always displayed, but the definition shape is only shown after processing takes 
place and a definition shape is selected. This fsm takes two inputs from the processing stage, 
an enable signal and a selector which chooses the shape to display.  
The fsm will stay in the IDLE state until it receives the enable state. In the ENABLE state the 
fsm looks at the selector inputs and switches state accordingly. Our system stores four 
definition states, thus two bits are required for the def_sel input. The inputs can therefore be 0 
through 3 and result in the display of an isosceles triangle, square, equilateral triangle, and a 
square respectively. The display of each shape has a corresponding state in which the RGB 
VGA outputs (vga_out_red, vga_out_green, vga_out_blue) are connected to the data pins of the 
appropriate ROM. Figure # is a state transition diagram of the shape_disp module. 
 

 
Figure D2: State Transition Diagram for shape_disp FSM 

 
-Testing- 

 
 The display system was easily isolated and therefore easy to test. The display module 
was simulated in pieces first ensuring that all sync signals were generated correctly. From 
here, we began to test the writing of various images to ROM. The ability to display a single 
image in a single location enabled us to move forward and test the display of multiple images. 
The switches and buttons on the labkit were used to simulate the inputs from the AI module. 
Given the long compile and build times it was very important to ensure proper simulation 
before attempting to test and debut on the labkit. 
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Conclusion 
 

There were a number of choices to make while designing the AI module in particular: 
maximum number of lines in a single drawing, number of examples in a training set and 
maximum number of definitions. The choices made would only affect the size of the memory 
units to be used. Since the labkit's resources were limited, we chose to work with a maximum 
of 8-line shapes, have four examples in a training set and a maximum of four definitions. For 
future/real-life use the capacity can be easily increased by introducing more memory space. 
 

Another design choice made was to have the user draw a shape always in the same 
way. Otherwise we would need to design a line-matcher that would perform an intensive search 
to match the lines of two shapes. However, this would be beyond the aims of 6.111 and 
computationally too expensive. Considering each shape has eight lines with two end-points, 
line-matching would increase the amount of computations by (16*14*12*10*8*6*4*2). Instead a 
heuristic search could be used in the future to bring down the number of computations, but 
the complexity would too high for the purposes of a 6.111 project and might need a processor 
to implement. Similarly, curves are not allowed in the drawings. The algorithm could be 
improved to allow curves, but it would be difficult to reliably input curvatures into the system. 
 

To conclude, the SmartKit successfully shows how an Artificial Intelligence concept can 
be implemented in a digital design. Given pre-calculated input (of shape coordinates), it can be 
trained to learn shapes, and it reliably recognizes new examples by computing extremely 
precise error values, no matter how complicated the shapes are and no matter whether they 
are scaled, translated or rotated. 
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Appendix 
 
This appendix includes a sample of the relevant Verilog code for the modules described in this report: 

-Input Stage- 
module video_decoder(clk,reset,decode_en,data_in, data_out,data_valid, SOF, SEF, SAV, EAV,state, 
   count); 
 
//Control Inputs 
//input locked; 
input clk;     //global 27 Mhz clock 
input reset;    //global reset 
input decode_en;    //enables the decoder  
 
//Video Input - output video data from ADV7185 video decoder chip: YCrCb values 
input [7:0] data_in; //[9:0] data_in;//8 or 10 bits. for 10 bits:bottom 2 bits rep. 
fraction(2'b01=.25)   
 
//Debugging Outputs 
output [3:0] state; 
output [1:0] count; 
 
//Control Outputs 
    
//Decoded Video Outputs 
output [7:0] data_out; 
output data_valid;   //indicates decoded data is valid 
output SOF;     //start of odd field 
output SEF;     //start of even field 
output SAV;     //start of active video 
output EAV;     //end of active video 
//output registers 
reg EAV; 
reg SAV; 
reg [7:0] data_out; 
reg data_valid; 
//internal registers 
reg active; 
reg F_current; 
reg V_current;  
reg [1:0] count; 
reg count_reset; 
reg [3:0] state;     //current state of FSM 
reg [3:0] nextstate;    //next state of FSM 
//wires 
wire One, F, V, H, P3, P2, P1, P0; 
wire valid_check; 
wire EAV_valid; 
wire SAV_valid; 
//Assigns 
assign One = data_in[7]; 
assign F   = data_in[6]; 
assign V   = data_in[5]; 
assign H   = data_in[4]; 
assign P3  = data_in[3]; 
assign P2  = data_in[2]; 
assign P1  = data_in[1]; 
assign P0  = data_in[0]; 
assign valid_check = ((P3 == (V ^ H)) && 
      (P2 == (F ^ H)) &&  
      (P1 == (F ^ V)) &&  
      (P0 == (F ^ V ^ H))); 
 
//check to see if end of active video(EAV) is valid: H=1, One=1, valid_check=1; 
assign EAV_valid = (H && One && valid_check); 
//check to see if start of active video(SAV) is valid: H=0, One=1, valid_check=1; 
assign SAV_valid = (~H && One && valid_check); 
 
always @ (posedge clk) 

 - 16 -



begin 
  if (reset == 1)    active <= 1'b0; 
  else if (decode_en & SOF) active <= 1'b1; 
end 
 
always @ (posedge clk) 
begin 
  if (reset == 1) 
    begin 
      F_current <= 1'b1;//resets the current F and V to line 1 values: F=1, V=1 
      V_current <= 1'b1; 
    end 
  else if (SAV == 1) 
    begin 
      F_current <= F; //F_current is reg'd version of F, so it's the most recent F, while F is 
the previous F 
      V_current <= V; //since conditioned on SAV==1, F&V current denote field&vertical of only 
active video 
    end 
end                                                               
 
//basic counter which counts on every clock edge of 27MHz clk 
always @ (posedge clk) 
begin 
  if (reset == 1) 
    begin    //counts from 0 to 3 and repeats 
      count <= 2'b00;   //count = 0:on first  half of first  sample(Cb0) 
    end    //count = 1:on second half of first  sample(Y0) 
  else    //count = 2:on first  half of second sample(Cr0) 
    begin    //count = 3:on second half of second sample(Y1) 
      if (count_reset == 1) count <= 2'b00; 
  else count <= (count + 2'b01); 
    end 
end 
 
 
//reference white = 100IRE = 8'h64 
//black level = 7.5IRE = 8'h07 
//blank level = 0IRE = 8'h00 
//sync level = 40IRE = 8'h28 
always @ (posedge clk) 
begin 
  if (count == 1 || count == 3)//when count==1 or count==3, the given data_in should be a Y value 
    begin 
      if (data_in > 8'h50) data_out <= 8'hff;//threshold for a white pixel (data_in > 
8'h50=80IRE) 
      else data_out <= 8'h00; //else data_out will be black(0) 
    end 
  else data_out <= 8'h80; 
end 
 
//explanation of (SOF) and (SEF): 
//if we look at all 525 lines of video, we realize: 
//an odd field begins (SOF) when the current field is odd (F_curr=0) and previous field was even 
(F=1) 
//similar results hold for (SEF): the current field is even (F_current=1) and the previous  
//field was odd (F=0).  We AND this with SAV to ensure that (SOF) and (SEF) are really the start  
//of only the active portions of the odd and even fields. 
assign SOF = (SAV & ~F_current & F); 
assign SEF = (SAV & F_current & ~F); 
 
 
//parameters to denote the TRS. TRS denotes either a SAV or EAV 
parameter TRS0 = 8'hff; 
parameter TRS1 = 8'h00; 
parameter TRS2 = 8'h00; 
 
//parameters (states) for FSM 
parameter EAV0 = 0; 
parameter EAV1 = 1; 
parameter EAV2 = 2; 
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parameter EAV3 = 3; 
parameter SAV0 = 4; 
parameter SAV1 = 5; 
parameter SAV2 = 6; 
parameter SAV3 = 7; 
parameter SKIP = 8; 
 
always @ (posedge clk) 
begin 
  if (reset == 1) state <= EAV0; 
  else state <= nextstate; 
end 
 
always @ (state or active or V_current or count or data_in or EAV_valid or SAV_valid) 
begin 
  count_reset = 1'b0; 
  EAV = 1'b0; 
  SAV = 1'b0; 
  data_valid = 1'b0; 
   
  case(state) 
     EAV0: begin 
         data_valid = (active && ~V_current && (count == 2'b00)); //EAV is start 
of line, so count==0 
     if (data_in == TRS0) nextstate = EAV1; //data_in = 8'hff(found TRS0) 
     else nextstate = EAV0; 
   end  
 EAV1: begin 
      if (data_in == TRS1) nextstate = EAV2; 
      else nextstate = EAV0; 
   end 
 EAV2: begin 
     if (data_in == TRS2) nextstate = EAV3; 
       else nextstate = EAV0; 
   end 
 EAV3: begin 
     if (EAV_valid) 
       begin 
         EAV = 1'b1; 
     nextstate = SAV0; 
       end 
     else nextstate = EAV0; 
   end 
 SAV0: begin 
     if (data_in == TRS0) nextstate = SAV1; 
     else nextstate = SAV0; 
   end 
 SAV1: begin 
     if (data_in == TRS1) nextstate = SAV2; 
     else nextstate = SAV0; 
   end 
 SAV2: begin 
     if (data_in == TRS2) nextstate = SAV3; 
     else nextstate = SAV0; 
   end 
 SAV3: begin 
     if (SAV_valid) 
       begin 
         count_reset = 1'b1; 
    SAV = 1'b1; 
    nextstate = SKIP; 
       end 
     else nextstate = SAV0; 
   end 
 SKIP: begin        // SKIP state is needed to "skip" the next 8-bit 
word after TRS0, 
     nextstate = EAV0; // TRS1, and TRS2 (i.e. skips the XY word after hFF 
h00 h00) 
   end 
 
 default: nextstate = EAV0; 
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  endcase 
end//always (state or active or V_current or count or data_in or EAV_valid or SAV_valid) begin 
endmodule // video_decoder 

 

-Processing Stage- 

 
module floatDivide(clk, reset, go, a, b, o, done); 
    
   input clk, reset; 
   input go; 
   input[31:0] a, b; 
   output[31:0] o; 
   output done; 
   reg done; 
   reg [31:0] o;    
   reg [4:0] state, nextstate; 
   reg [7:0] exponentOutput, exponentOutput2; 
   reg [22:0] mantissaOutput; 
   reg [47:0] dividend; 
   reg [23:0] divisor; 
   reg [24:0] mantissaQuotient; 
   reg [47:0] x, y, z; 
   reg [24:0] w; 
   reg [4:0] counter; 
   reg sign; 
   reg enableIDLE;    
   reg enableSTART_DIVISION; 
   reg enableDO_DIVISION; 
   reg enableDO_DIVISION1; 
   reg enableDO_DIVISION2; 
   reg enableDO_DIVISION3; 
   reg enableDO_DIVISION4; 
   reg enableDO_DIVISION5; 
   reg enableDO_DIVISION6; 
   reg enableDO_DIVISION7; 
   reg enableDO_DIVISION8; 
   reg enableDO_DIVISION9; 
   reg enableDO_DIVISION10; 
   reg enableDO_DIVISION11; 
   reg enableDO_DIVISION12; 
   reg enableDO_DIVISION13; 
   reg enableDO_DIVISION14; 
   reg enableDO_DIVISION15; 
   reg enableDO_DIVISION16; 
   reg enableDO_DIVISION17; 
   reg enableDO_DIVISION18; 
   reg enableDO_DIVISION19; 
   reg enableDO_DIVISION20; 
   reg enableDO_DIVISION21; 
   reg enableDO_DIVISION22; 
   reg enableDO_DIVISION23; 
   reg enableDO_DIVISION24; 
   reg enableDO_DIVISION25; 
   reg enableDO_DIVISION26; 
   reg enableOUTPUTREADY; 
 
   parameter IDLE = 5'h00; 
   parameter START_DIVISION = 5'h01; 
   parameter DO_DIVISION1 = 5'h02; 
   parameter DO_DIVISION = 5'h03; 
   parameter DO_DIVISION2 = 5'h04; 
   parameter DO_DIVISION3 = 5'h05; 
   parameter DO_DIVISION4 = 5'h06; 
   parameter DO_DIVISION5 = 5'h07; 
   parameter DO_DIVISION6 = 5'h08; 
   parameter DO_DIVISION7 = 5'h09; 
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   parameter DO_DIVISION8 = 5'h0a; 
   parameter DO_DIVISION9 = 5'h0b; 
   parameter DO_DIVISION10 = 5'h0c; 
   parameter DO_DIVISION11 = 5'h0d; 
   parameter DO_DIVISION12 = 5'h0e; 
   parameter DO_DIVISION13 = 5'h0f; 
   parameter DO_DIVISION14 = 5'h10; 
   parameter DO_DIVISION15 = 5'h11; 
   parameter DO_DIVISION16 = 5'h12; 
   parameter DO_DIVISION17 = 5'h13; 
   parameter DO_DIVISION18 = 5'h14; 
   parameter DO_DIVISION19 = 5'h15; 
   parameter DO_DIVISION20 = 5'h16; 
   parameter DO_DIVISION21 = 5'h17; 
   parameter DO_DIVISION22 = 5'h18; 
   parameter DO_DIVISION23 = 5'h19; 
   parameter DO_DIVISION24 = 5'h1a; 
   parameter DO_DIVISION25 = 5'h1b; 
   parameter DO_DIVISION26 = 5'h1c; 
   parameter OUTPUTREADY = 5'h1d; 
    
   always @(posedge clk or negedge reset)  begin 
      if (!reset) begin 
       state <= IDLE; 
       done <= 0; 
       o <= 0; 
  exponentOutput2 <= 0; 
      dividend <= 0; 
      divisor <= 0; 
  sign <= 0; 
      mantissaQuotient <= 0; 
  exponentOutput <= 0; 
      mantissaOutput <= 0; 
  counter <= 0; 
  x <= 0; 
  y <= 0; 
  w <= 0; 
  z <= 0; 
       end 
      else begin 
       state <= nextstate;             
        
  if (enableIDLE) begin 
   done <= 0; 
   end 
 
  if (enableSTART_DIVISION) begin 
   exponentOutput2 <= a[30:23] - b[30:23] + 127; 
       dividend <= {1'b1, a[22:0], 24'h000000}; 
       divisor <= {1'b1, b[22:0]}; 
   sign <= a[31] ^ b[31]; 
       mantissaQuotient <= 0; 
   end 
 
  if (enableDO_DIVISION) begin 
   counter <= counter + 1; 
   if (x > y) begin 
        mantissaQuotient <= mantissaQuotient + w; 
        dividend <= dividend - z; 
        end 
   end 
 
  if (enableDO_DIVISION1) begin 
   x <= {24'h000000, dividend[47:24]}; 
   y <= {24'h000000, divisor}; 
   w <= {1'b1, 24'h000000}; 
   z <= {divisor, 24'h000000}; 
   end 
 
  if (enableDO_DIVISION2) begin 
   x <= {23'h000000, dividend[47:23]}; 
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   y <= {24'h000000, divisor}; 
   w <= {1'h0, 1'b1, 23'h000000}; 
   z <= {1'h0, divisor, 23'h000000}; 
   end 
 
  if (enableDO_DIVISION3) begin 
   x <= {22'h000000, dividend[47:22]}; 
   y <= {24'h000000, divisor}; 
   w <= {2'h0, 1'b1, 22'h000000}; 
   z <= {2'h0, divisor, 22'h000000}; 
   end 
 
  if (enableDO_DIVISION4) begin 
   x <= {21'h000000, dividend[47:21]}; 
   y <= {24'h000000, divisor}; 
   w <= {3'h0, 1'b1, 21'h000000}; 
   z <= {3'h0, divisor, 21'h000000}; 
   end 
 
  if (enableDO_DIVISION5) begin 
   x <= {20'h00000, dividend[47:20]}; 
   y <= {24'h000000, divisor}; 
   w <= {4'h0, 1'b1, 20'h00000}; 
   z <= {4'h0, divisor, 20'h00000}; 
   end 
 
  if (enableDO_DIVISION6) begin 
   x <= {19'h00000, dividend[47:19]}; 
   y <= {24'h000000, divisor}; 
   w <= {5'h00, 1'b1, 19'h00000}; 
   z <= {5'h00, divisor, 19'h00000}; 
   end 
 
  if (enableDO_DIVISION7) begin 
   x <= {18'h00000, dividend[47:18]}; 
   y <= {24'h000000, divisor}; 
   w <= {6'h00, 1'b1, 18'h00000}; 
   z <= {6'h00, divisor, 18'h00000}; 
   end 
 
  if (enableDO_DIVISION8) begin 
   x <= {17'h00000, dividend[47:17]}; 
   y <= {24'h000000, divisor}; 
   w <= {7'h00, 1'b1, 17'h00000}; 
   z <= {7'h00, divisor, 17'h00000}; 
   end 
 
  if (enableDO_DIVISION9) begin 
   x <= {16'h0000, dividend[47:16]}; 
   y <= {24'h000000, divisor}; 
   w <= {8'h00, 1'b1, 16'h0000}; 
   z <= {8'h00, divisor, 16'h0000}; 
   end 
 
  if (enableDO_DIVISION10) begin 
   x <= {15'h0000, dividend[47:15]}; 
   y <= {24'h000000, divisor}; 
   w <= {9'h000, 1'b1, 15'h0000}; 
   z <= {9'h000, divisor, 15'h0000}; 
   end 
 
  if (enableDO_DIVISION11) begin 
   x <= {14'h0000, dividend[47:14]}; 
   y <= {24'h000000, divisor}; 
   w <= {10'h000, 1'b1, 14'h0000}; 
   z <= {10'h000, divisor, 14'h0000}; 
   end 
 
  if (enableDO_DIVISION12) begin 
   x <= {13'h0000, dividend[47:13]}; 
   y <= {24'h000000, divisor}; 
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   w <= {11'h000, 1'b1, 13'h0000}; 
   z <= {11'h000, divisor, 13'h0000}; 
   end 
 
  if (enableDO_DIVISION13) begin 
   x <= {12'h000, dividend[47:12]}; 
   y <= {24'h000000, divisor}; 
   w <= {12'h000, 1'b1, 12'h000}; 
   z <= {12'h000, divisor, 12'h000}; 
   end 
 
  if (enableDO_DIVISION14) begin 
   x <= {11'h000, dividend[47:11]}; 
   y <= {24'h000000, divisor}; 
   w <= {13'h0000, 1'b1, 11'h000}; 
   z <= {13'h0000, divisor, 11'h000}; 
   end 
 
  if (enableDO_DIVISION15) begin 
   x <= {10'h000, dividend[47:10]}; 
   y <= {24'h000000, divisor}; 
   w <= {14'h0000, 1'b1, 10'h000}; 
   z <= {14'h0000, divisor, 10'h000}; 
   end 
 
  if (enableDO_DIVISION16) begin 
   x <= {9'h000, dividend[47:9]}; 
   y <= {24'h000000, divisor}; 
   w <= {15'h0000, 1'b1, 9'h000}; 
   z <= {15'h0000, divisor, 9'h000}; 
   end 
 
  if (enableDO_DIVISION17) begin 
   x <= {8'h00, dividend[47:8]}; 
   y <= {24'h000000, divisor}; 
   w <= {16'h0000, 1'b1, 8'h00}; 
   z <= {16'h0000, divisor, 8'h00}; 
   end 
 
  if (enableDO_DIVISION18) begin 
   x <= {7'h00, dividend[47:7]}; 
   y <= {24'h000000, divisor}; 
   w <= {17'h00000, 1'b1, 7'h00}; 
   z <= {17'h00000, divisor, 7'h00}; 
   end 
 
  if (enableDO_DIVISION19) begin 
   x <= {6'h00, dividend[47:6]}; 
   y <= {24'h000000, divisor}; 
   w <= {18'h00000, 1'b1, 6'h00}; 
   z <= {18'h00000, divisor, 6'h00}; 
   end 
 
  if (enableDO_DIVISION20) begin 
   x <= {5'h00, dividend[47:5]}; 
   y <= {24'h000000, divisor}; 
   w <= {19'h00000, 1'b1, 5'h00}; 
   z <= {19'h00000, divisor, 5'h00}; 
   end 
 
  if (enableDO_DIVISION21) begin 
   x <= {4'h0, dividend[47:4]}; 
   y <= {24'h000000, divisor}; 
   w <= {20'h00000, 1'b1, 4'h0}; 
   z <= {20'h00000, divisor, 4'h0}; 
   end 
 
  if (enableDO_DIVISION22) begin 
   x <= {3'h0, dividend[47:3]}; 
   y <= {24'h000000, divisor}; 
   w <= {21'h000000, 1'b1, 3'h0}; 
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   z <= {21'h000000, divisor, 3'h0}; 
   end 
 
  if (enableDO_DIVISION23) begin 
   x <= {2'h0, dividend[47:2]}; 
   y <= {24'h000000, divisor}; 
   w <= {22'h000000, 1'b1, 2'h0}; 
   z <= {22'h000000, divisor, 2'h0}; 
   end 
 
  if (enableDO_DIVISION24) begin 
   x <= {1'h0, dividend[47:1]}; 
   y <= {24'h000000, divisor}; 
   w <= {23'h000000, 1'b1, 1'h0}; 
   z <= {23'h000000, divisor, 1'h0}; 
   end 
   
  if (enableDO_DIVISION25) begin 
   x <= dividend[47:0]; 
   y <= {24'h000000, divisor}; 
   w <= {24'h000000, 1'b1}; 
   z <= {24'h000000, divisor}; 
   end 
 
  if (enableDO_DIVISION26) begin 
   if (mantissaQuotient[24]) begin 
        exponentOutput <= exponentOutput2; 
        mantissaOutput <= mantissaQuotient[23:1]; 
      end 
      else begin 
        exponentOutput <= exponentOutput2 - 1; 
        mantissaOutput <= mantissaQuotient[22:0]; 
        end 
   end 
 
  if (enableOUTPUTREADY) begin 
   counter <= 0; 
   if (a[30:0] == 0) o <= 32'h00000000; 
       else if (b[30:0] == 0) o <= 32'h7f800000; 
       else o <= {sign, exponentOutput, mantissaOutput}; 
       done <= 1; 
   end 
              
       end                  
   end 
 
   always @(state or go) 
     begin 
 enableIDLE = 0;    
 enableSTART_DIVISION = 0; 
 enableDO_DIVISION = 0; 
 enableDO_DIVISION1 = 0; 
 enableDO_DIVISION2 = 0; 
 enableDO_DIVISION3 = 0; 
 enableDO_DIVISION4 = 0; 
 enableDO_DIVISION5 = 0; 
 enableDO_DIVISION6 = 0; 
 enableDO_DIVISION7 = 0; 
 enableDO_DIVISION8 = 0; 
 enableDO_DIVISION9 = 0; 
 enableDO_DIVISION10 = 0; 
 enableDO_DIVISION11 = 0; 
 enableDO_DIVISION12 = 0; 
 enableDO_DIVISION13 = 0; 
 enableDO_DIVISION14 = 0; 
 enableDO_DIVISION15 = 0; 
 enableDO_DIVISION16 = 0; 
 enableDO_DIVISION17 = 0; 
 enableDO_DIVISION18 = 0; 
 enableDO_DIVISION19 = 0; 
 enableDO_DIVISION20 = 0; 
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 enableDO_DIVISION21 = 0; 
 enableDO_DIVISION22 = 0; 
 enableDO_DIVISION23 = 0; 
 enableDO_DIVISION24 = 0; 
 enableDO_DIVISION25 = 0; 
 enableDO_DIVISION26 = 0; 
 enableOUTPUTREADY = 0; 
 
 case (state) 
    
   IDLE:begin 
    enableIDLE = 1;  
      if (go) nextstate = START_DIVISION; 
      else nextstate = IDLE;          
   end 
             
   START_DIVISION: begin 
      nextstate = DO_DIVISION1;       
      enableSTART_DIVISION = 1; 
   end 
    
   DO_DIVISION: begin 
      enableDO_DIVISION = 1; 
  case (counter) 
   5'd00: nextstate = DO_DIVISION2;   
   5'd01: nextstate = DO_DIVISION3; 
   5'd02: nextstate = DO_DIVISION4; 
   5'd03: nextstate = DO_DIVISION5; 
   5'd04: nextstate = DO_DIVISION6; 
   5'd05:    nextstate = DO_DIVISION7; 
   5'd06: nextstate = DO_DIVISION8; 
   5'd07: nextstate = DO_DIVISION9; 
   5'd08: nextstate = DO_DIVISION10; 
   5'd09: nextstate = DO_DIVISION11; 
   5'd10: nextstate = DO_DIVISION12; 
   5'd11: nextstate = DO_DIVISION13; 
   5'd12: nextstate = DO_DIVISION14; 
   5'd13: nextstate = DO_DIVISION15; 
   5'd14:    nextstate = DO_DIVISION16; 
   5'd15: nextstate = DO_DIVISION17; 
   5'd16: nextstate = DO_DIVISION18; 
   5'd17: nextstate = DO_DIVISION19; 
   5'd18: nextstate = DO_DIVISION20; 
   5'd19: nextstate = DO_DIVISION21; 
   5'd20: nextstate = DO_DIVISION22; 
   5'd21: nextstate = DO_DIVISION23; 
   5'd22: nextstate = DO_DIVISION24; 
   5'd23: nextstate = DO_DIVISION25; 
   5'd24: nextstate = DO_DIVISION26; 
   endcase 
      end 
 
   DO_DIVISION1: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION1 = 1; 
      end 
       
   DO_DIVISION2: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION2 = 1; 
      end 
       
   DO_DIVISION3: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION3 = 1; 
      end 
       
       
   DO_DIVISION4: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION4 = 1; 
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      end 
       
    DO_DIVISION5: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION5 = 1; 
      end 
       
   DO_DIVISION6: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION6 = 1; 
      end 
       
   DO_DIVISION7: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION7 = 1; 
      end 
       
   DO_DIVISION8: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION8 = 1; 
      end 
       
   DO_DIVISION9: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION9 = 1; 
      end 
       
   DO_DIVISION10: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION10 = 1; 
      end 
       
   DO_DIVISION11: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION11 = 1; 
      end 
       
   DO_DIVISION12: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION12 = 1; 
      end 
       
   DO_DIVISION13: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION13 = 1; 
      end 
       
   DO_DIVISION14: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION14 = 1; 
      end 
       
   DO_DIVISION15: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION15 = 1; 
      end 
       
   DO_DIVISION16: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION16 = 1; 
      end 
       
   DO_DIVISION17: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION17 = 1; 
      end 
       
   DO_DIVISION18: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION18 = 1; 
      end 
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   DO_DIVISION19: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION19 = 1; 
      end 
       
   DO_DIVISION20: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION20 = 1; 
      end 
       
   DO_DIVISION21: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION21 = 1; 
      end 
       
   DO_DIVISION22: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION22 = 1; 
      end 
       
   DO_DIVISION23: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION23 = 1; 
      end 
       
   DO_DIVISION24: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION24 = 1; 
      end 
       
   DO_DIVISION25: begin 
      nextstate = DO_DIVISION; 
      enableDO_DIVISION25 = 1; 
      end 
    
   DO_DIVISION26: begin      
      nextstate = OUTPUTREADY;             
      enableDO_DIVISION26 = 1; 
      end 
    
   OUTPUTREADY: begin 
  enableOUTPUTREADY = 1;       
      nextstate = IDLE;       
   end 
    
  
         
 endcase // case(state) 
   
     end 
    
endmodule // floatDivide 

 

-Output Stage- 
module display(fpga_clock,  
               locked, 
               reset, 
               enable, 
               def_sel, 
        vga_out_sync_b, 
         vga_out_blank_b, 
        vga_out_pixel_clock, 
        vga_out_hsync, 
        vga_out_vsync, 
               vga_out_red, 
               vga_out_green, 
               vga_out_blue); 
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  input fpga_clock, reset; 
  input locked; 
  input enable: 
  input [1:0] def_sel; 
  output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync, vga_out_vsync; 
  output [7:0] vga_out_red, vga_out_green, vga_out_blue; 
 
  wire [13:0] address; 
  wire vga_out_pixel_clock; 
  shape_disp(fpga_clock, 
      reset, 
      locked, 
      vga_out_pixel_clock, 
      shape_reset, 
      address,  
             enable,  
             def_sel, 
      vga_out_red, 
      vga_out_green, 
      vga_out_blue); 
  disp_vga disp_vga(fpga_clock,  
                    vga_out_sync_b, 
      vga_out_blank_b,  
      vga_out_pixel_clock,  
      vga_out_hsync,  
      vga_out_vsync,  
      address); 
endmodule 
 
module disp_vga(fpga_clock, 
         vga_out_sync_b, 
  vga_out_blank_b,  
  vga_out_pixel_clock,  
  vga_out_hsync,  
  vga_out_vsync,  
  disp_address); 
    
   input fpga_clock;  
   output vga_out_sync_b, vga_out_blank_b;  
   output vga_out_pixel_clock;  
   output vga_out_hsync, vga_out_vsync;  
   output [16:0] disp_address; 
   reg [16:0] disp_address; 
   reg vga_out_sync_b, vga_out_blank_b;       
   reg vga_out_hsync, vga_out_vsync; 
   wire clock_fpga, clock_fpgab; 
   wire pixel_clock; 
 
   BUFG fpga_clock_buf (.O(clock_fpgab), .I(clock_fpga)); 
   DCM pixel_clock_dcm (.CLKFB(clock_fpgab),  
   .CLKIN(fpga_clock),  
   .RST(1'b0), 
   .CLK0(clock_fpga),  
   .CLKFX(pixel_clock)); 
   // synthesis attribute DLL_FREQUENCY_MODE of pixel_clock_dcm is "LOW" 
   // synthesis attribute DUTY_CYCLE_CORRECTION of pixel_clock_dcm is "TRUE" 
   // synthesis attribute STARTUP_WAIT of pixel_clock_dcm is "TRUE" 
   // synthesis attribute DFS_FREQUENCY_MODE of pixel_clock_dcm is "LOW" 
   // synthesis attribute CLKFX_DIVIDE of pixel_clock_dcm is 27 
   // synthesis attribute CLKFX_MULTIPLY of pixel_clock_dcm is 25 
   // synthesis attribute CLK_FEEDBACK of pixel_clock_dcm  is "1X" 
   // synthesis attribute CLKOUT_PHASE_SHIFT of pixel_clock_dcm is "NONE" 
   // synthesis attribute PHASE_SHIFT of pixel_clock_dcm is 0 
   // synthesis attribute clkin_period of pixel_clock_dcm is "37.04ns" 
 
   assign vga_out_pixel_clock = pixel_clock; 
   wire [10:0] pixel_count; 
   wire hsync, vsync, comp_sync, blank, v_blank; 
   wire [10:0] line_count; 
   sync_gen sync(.pixel_clock(pixel_clock),  
          .reset(1'b0), 
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          .h_synch_delay(hsync), 
          .v_synch_delay(vsync), 
          .comp_synch(comp_sync), 
          .blank(blank), 
          .v_blank(v_blank), 
          .pixel_count(pixel_count), 
                 .line_count(line_count)); 
      
  //generate pixel data 
   always @ (posedge pixel_clock) begin 
      vga_out_hsync = !hsync; 
      vga_out_vsync = !vsync; 
      vga_out_sync_b = ~comp_sync; 
      vga_out_blank_b = ~blank;     
   end 
   always @ (negedge pixel_clock) begin 
 if ((line_count < 128) && (pixel_count < 128))  
   begin 
     disp_address = ((128 * line_count) + pixel_count); 
   end 
     //else if ((line_count > 351) && (pixel_count < 128)) 
 //  begin 
 //    disp_address = ((128 * (line_count - 11'd352)) + pixel_count);  
     //  end  
 else disp_address = 10;  
   end      
    
endmodule 
 
module sync_gen(pixel_clock, reset, h_synch, v_synch, 
  comp_synch, blank, pixel_count, line_count, v_blank); 
    
   input pixel_clock; 
   input reset; 
   output h_synch, v_synch; 
   output comp_synch;  
   output blank, v_blank;  
   output [10:0] pixel_count, line_count; 
   reg [10:0] pixel_count;   
   reg [10:0] line_count;     
   reg h_synch, v_synch;   
   reg h_synch_delay1, v_synch_delay1;  
   reg h_synch_delay2, v_synch_delay2;  
   reg h_c_synch, v_c_synch;  
   reg comp_synch; 
   reg h_blank, v_blank;  
   reg blank;  
 
   always @ (posedge pixel_clock) begin 
      if (reset) 
 begin 
    pixel_count = 11'h000; 
    line_count = 11'h000; 
 end 
      else if (pixel_count == 799)  
  begin 
    pixel_count = 11'h000; 
    if (line_count == 523)  
      line_count = 11'h000; 
    else 
      line_count = line_count + 1; 
 end 
      else 
 pixel_count = pixel_count +1;   
   end 
        
   always @ (posedge pixel_clock) begin 
      if (reset) 
 h_synch_delay1 = 1'b0;  
      else if (pixel_count == 655) 
 h_synch_delay1 = 1'b1;  
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      else if (pixel_count == 751) 
 h_synch_delay1 = 1'b0;  
   end 
    
   always @ (posedge pixel_clock) begin 
      if (reset) 
  v_synch_delay1 = 1'b0;  
      else if (pixel_count == 799) 
 begin 
    if (line_count == 490) 
      v_synch_delay1 = 1'b1;  
    else if (line_count == 492) 
      v_synch_delay1 = 1'b0;  
 end 
   end 
    
   always @ (posedge pixel_clock) begin 
      if (reset) 
 begin      
    h_synch_delay1 <= 1'b0; 
    v_synch_delay1 <= 1'b0; 
    h_synch_delay2  <= 1'b0; 
    v_synch_delay2  <= 1'b0; 
 end 
      else  
 begin 
    h_synch_delay2 <= h_synch_delay1; 
    v_synch_delay2 <= v_synch_delay1; 
    h_synch  <= h_synch_delay2; 
    v_synch  <= v_synch_delay2; 
 end 
   end 
 
   always @ (posedge pixel_clock) begin 
      if (reset) 
  h_blank = 1'b0; 
      else if (pixel_count == 638)  
 h_blank = 1'b1; 
      else if (pixel_count == 798) 
  h_blank = 1'b0; 
   end 
      
   always @ (posedge pixel_clock) begin 
      if (reset) 
  v_blank = 1'b0; 
      else if ((line_count == 479) && (pixel_count == 798)))  
 v_blank = 1'b1; 
      else if ((line_count == 524) && (pixel_count == 798)) 
 v_blank = 1'b0; 
   end 
    
   
   always @ (posedge pixel_clock) begin 
      if (reset) 
 blank = 1'b0;    
      else if (h_blank || v_blank)  
 blank = 1'b1; 
      else 
 blank = 1'b0;    
   end 
    
   always @ (posedge pixel_clock) begin 
      if (reset) 
 h_c_synch = 1'b0; 
      else if (pixel_count == 654)  
 h_c_synch = 1'b1; 
      else if (pixel_count == 750)  
  h_c_synch = 1'b0; 
   end 
    
   always @ (posedge pixel_clock) begin 
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      if (reset) 
  v_c_synch = 1'b0; 
      if (pixel_count == 798) 
 if (line_count == 490) 
   v_c_synch = 1'b1; 
 else if (line_count == 492) 
   v_c_synch = 1'b0; 
   end 
 
   always @ (posedge pixel_clock) begin 
      if (reset) 
 comp_synch = 1'b0;  
      else 
 comp_synch = (v_c_synch ^ h_c_synch); 
   end 
    
endmodule 
 
module shape_disp(fpga_clock, 
    reset, 
    locked, 
    pixel_clock, 
    shape_reset, 
    in_address,  
                  enable,  
                  def_sel, 
    vga_out_red, 
    vga_out_green, 
    vga_out_blue); 
 
  input fpga_clock, reset, locked; 
  input pixel_clock; 
  input shape_reset; 
  input [13:0] in_address; 
  input enable; 
  input [1:0] def_sel; 
  output [7:0] vga_out_red, vga_out_green, vga_out_blue; 
  reg [7:0] vga_out_red, vga_out_green, vga_out_blue; 
  wire [23:0] square_rom_out, triang_rom_out, eq_triang_rom_out, rect_rom_out; 
  square_rom square_rom1(in_address, pixel_clock, square_rom_out); 
  triang_rom triang_rom1(in_address, pixel_clock, triang_rom_out); 
  eq_triang_rom eq_triang_rom1(in_address, pixel_clock, eq_triang_rom_out); 
  rect_rom rect_rom1(in_address, pixel_clock, rect_rom_out); 
 
  reg [2:0] state, next; 
 
  parameter INIT = 0; 
  parameter IDLE = 1; 
  parameter ENABLE = 2; 
  parameter DISP_SQUARE = 3; 
  parameter DISP_TRI = 4; 
  parameter DISP_RECT = 5; 
  parameter DISP_EQ_TRI = 6; 
 
  always @ (posedge fpga_clock) begin 
    if (reset) 
      state <= INIT; 
    else begin 
      state <= next; 
    end 
  end 
 
  always @ (state or enable or def_sel or locked or in_address) begin 
    case (state) 
      INIT: 
        begin 
      if (locked) next = IDLE; 
      else next = INIT;  
    end 
      IDLE: 
        begin 
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      vga_out_red <= 8'h00; 
          vga_out_green <= 8'h00; 
          vga_out_blue <= 8'h00; 
  if (enable) 
    next = ENABLE; 
          else next = IDLE; 
    end 
      ENABLE: 
        begin 
      vga_out_red <= 8'h00; 
          vga_out_green <= 8'h00; 
          vga_out_blue <= 8'h00; 
      if (def_sel == 2'b01) begin 
    vga_out_red <= square_rom_out[23:16]; 
    vga_out_green <= square_rom_out[15:8]; 
    vga_out_blue <= square_rom_out[7:0]; 
    next = DISP_SQUARE; 
          end 
  if (def_sel == 2'b00) begin 
    vga_out_red <= triang_rom_out[23:16]; 
    vga_out_green <= triang_rom_out[15:8]; 
    vga_out_blue <= triang_rom_out[7:0]; 
    //next = DISP_TRI; 
  end 
  if (def_sel == 2'b11) begin 
    vga_out_red <= rect_rom_out[23:16]; 
    vga_out_green <= rect_rom_out[15:8]; 
    vga_out_blue <= rect_rom_out[7:0]; 
    next = DISP_RECT; 
  end 
  if (def_sel == 2'b10) begin 
    vga_out_red <= eq_triang_rom_out[23:16]; 
    vga_out_green <= eq_triang_rom_out[15:8]; 
    vga_out_blue <= eq_triang_rom_out[7:0]; 
    next = DISP_EQ_TRI; 
  end 
  else next = ENABLE;  
    end 
 
      DISP_SQUARE: 
    begin 
      if (shape_reset) next = IDLE; 
  else begin 
      vga_out_red <= square_rom_out[23:16]; 
  vga_out_green <= square_rom_out[15:8]; 
  vga_out_blue <= square_rom_out[7:0]; 
  next = DISP_SQUARE; 
  end 
    end 
      DISP_TRI: 
    begin 
      if (shape_reset) next = IDLE; 
  else begin 
      vga_out_red <= triang_rom_out[23:16]; 
  vga_out_green <= triang_rom_out[15:8]; 
  vga_out_blue <= triang_rom_out[7:0]; 
      next = DISP_TRI; 
  end  
        end 
 DISP_RECT: 
    begin 
      if (shape_reset) next = IDLE; 
  else begin 
      vga_out_red <= rect_rom_out[23:16]; 
  vga_out_green <= rect_rom_out[15:8]; 
  vga_out_blue <= rect_rom_out[7:0]; 
  next = DISP_RECT; 
  end 
    end 
  DISP_EQ_TRI: 
    begin 
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      if (shape_reset) next = IDLE; 
  else begin 
      vga_out_red <= eq_triang_rom_out[23:16]; 
  vga_out_green <= eq_triang_rom_out[15:8]; 
  vga_out_blue <= eq_triang_rom_out[7:0]; 
  next = DISP_EQ_TRI; 
  end 
    end  
       default: 
        next = INIT; 
     
    endcase 
 end 
endmodule 
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