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Abstract 
 
 The MIT Wakeup Call System provides a wakeup call service for 5-digit MIT campus phone numbers.  The 
system takes wakeup call requests from each user over the phone line, and then it calls them back at the times specified 
by the user.   
 An interface to a phone line was implemented with Zarlink�s MH88437 data access arrangement and MT8889 
DTMF transceiver chips. Together these chips are capable of detecting incoming calls, picking up the phone line, 
detecting when the other end of the line has been picked up, and dialing and receiving dialed DTMF tones as binary 
digits. Prerecorded audio messages could also be sent over the phone line. 
 An audio unit plays back voice messages or music to the phone circuit upon the request of the control unit.  Eleven 
messages and one music piece are stored in ROMs.  Once selected, a digitized message is sent to the codec chip 
LM4550.  The codec chip then converts the digitized sample to an audio voltage, which subsequently goes to the phone 
interface. 

A request memory unit performs the storage, timing, and retrieval of wake-up call requests.  It receives the data for 
each request from the phone interface, and this data is stored in a RAM.  At the appropriate times, the requests are 
retrieved, and the phone numbers are sent back to the phone interface for dialing.  The requests are stored in sorted 
priority order, to allow for easy storage and retrieval.   
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1  Introduction 
 

A wake-up call system would be very useful to the MIT community.   Most students at MIT use an alarm clock, but 
all too often it is not enough and students sleep through lectures, meetings, and exams.  This wake-up call system 
addresses the problem.   

When a user calls, he is prompted to enter his phone number and a four digit PIN number through his phone�s 
keypad.  He hears a menu with two options:  to request a new call, or to cancel his next upcoming request.   If the user 
chooses to request a call, he will also be prompted to enter the time desired (AM/PM, hour and minute).   For both cases 
an acknowledgement message is played. 

At the requested times, the system calls the user.  The user picks up the phone, and a wake-up message is played, 
followed by music. 

 

 
Figure 1:  System Block Diagram 
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2  System Overview 
 
 Our system is implemented with the following major components: a phone line interface (external circuitry 
using a data access arrangement chip and DTMF transceiver chip, with an internal controller for DTMF transceiver), an 
audio unit for playing system messages over the phone line, a �smart� request memory unit that stores request 
information and using this information to tell when a wakeup call should be made, and finally a control unit responsible 
for coordinating all these 
components (see Figure 1). In addition to these major components, there are a time unit that can be set on startup and 
keeps track of real world time and a PIN/phone number look-up table.  
 
 

 
Figure 2:  Control Unit Major FSM High-Level Transition Diagram 

 
A high level FSM diagram for the major FSM of the control unit is shown in Figure 2. This traces the events that 

happen for the two scenarios in our system, taking an incoming call and making an outgoing wakeup call. The control 
unit contains three minor FSMs: a greet FSM that asks for and receives the user�s phone number and PIN, and checks if 

INITIALIZE 

IDLE 
PICKUP
PHONE IN

PLAY 
MENU
PLAY

START 
GREET 
FSM 

WAIT 
GREET  
FSM 

GET MENU    
    OPT 

PICKUP 
PHONE 

START  
TAKE REQ

WAIT 
TAKE 
REQ

START 
CANCEL 

WAIT  
CANCEL 

START 
DIAL 

WAIT 
DIAL 

WAIT 
PICKUP 

PLAY 
WAKEUP 

DONE 
REQ 

reset 

time to 
process a 
request incoming call

menu opt 1 
chosen 

PIN 
invalid 

menu opt 2 
chosen 

PIN valid



 3

it is valid; a minor FSM for taking requests, which asks for and gets the time of the request, causes the information to be 
stored and plays an acknowledgement message; and a minor FSM for canceling requests 

3  Design  
 

The most important system components discussed above were partitioned among group members in the following 
way: the control unit and phone line interface, the audio unit and the request  memory unit.  
 

3.1  Phone Line Interface 

The phone line interface was implemented with two chips, the MH88437 data access arrangement and MT8889 
DTMF transceiver chips. The MH88437 connects directly to tip and ring of the phone line. It detects when the line is 
ringing by pulsing RV high. The line can be picked up by asserting LC. After LC is asserted, the line is off hook the 
MH88437 asserts LCD. When the other end of the line is picked up, LR (line_reversal), derived from LOOP and 
VBIAS, goes high. 
 

 
Figure 3:  MT8889 Controller Block Diagram 
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The MH88437 control signals are straightforward and fit with the high-level flow of events that occur in either 
scenario of the system (incoming and outgoing calls). For these reasons, the MH88437 was controlled directly by the 
major FSM of the control unit. 

The MT8889 DTMF transceiver converts binary 4-bit digits to DTMF for dialing and DTMF to binary for 
interpreting digits being dialed at the other end of the line. Because the MT8889 was designed to interface to many 
different specific microprocessors, and had different operating modes, controlling it with a FPGA was more involved 
and was therefore implemented in a separate control unit. (Our system emulated Motorola control in DTMF burst mode 
with interrupt request enabled).  

The MT8889 has five internal 4-bit registers, and two operations, read and write. The transmit data register must be 
written to transmit a DTMF tone. When there is an incoming DTMF signal, the receive register can be read to get the 
dialed digit. The remaining three registers are for control: control registers A and B must be written on power up to 
initialize the chip and select options for operating mode. The status register can be read during operation; basically it 
tells whether a tone has been sent or received.   

The MT8889 control unit has the following important components: a major FSM, a minor FSM, digit_tx and 
digit_rx modules (see figure 3).  

On receiving a read or write command from the major FSM, the minor FSM sets up the control signals (DS, cs_bar, 
r_wbar, and rs0) for an individual read or write operation to the MT8889 (see selected Verilog code in 
wakeupcode.pfd).  

Digit_rx counts the number of digits that has been received, and based on the current digit number causes the 
appropriate digit register to be loaded. Digit_tx counts the number of digits that has been dialed and selects the 
appropriate bits of the phone number based on that count. The major FSM interacts with digit_rx and digit_tx by 
asserting the respective next_digit signals after a digit has been received or dialed. Digit_tx and digit_rx assert their 
respective done signals to the major FSM when their counts have reached the number specified by the top level control 
unit. 

Whenever the MT8889 receives a new dialed digit, new_tone, derived from MT8889 EST output, will pulse 
high. When receiving digits, the major FSM waits for the new_tone pulse, waits for the maximum amount of time it 
takes for a tone to be converted, then tells the minor FSM to read the MT8889 receive register. After performing the 
read, the minor FSM causes the read data to be registered as digit_received while it is guaranteed to be valid. After the 
minor FSM finishes, the major FSM causes received_digit to be loaded into the appropriate digit register by asserting 
enable_load to digit_rx. After the received digit has been loaded, the major FSM asserts next_digit to digit_rx, then 
waits to see if digit_rx returns a done signal. 

A similar sequence of events occurs for dialing. 

3.2 Audio Unit and Audio-Phone Interface  

3.2.1 Overview  
 

  The audio unit plays back voice messages to the phone circuit upon the request of the control unit.  It 
essentially consists of AUDIO_FSM and AC97 CONTROLLER (called �digloop� in the code in the appendix).  The 
AUDIO_FSM controls the addressing of the twelve ROMs, and when to load a new sample of the voice message to the 
AC97 CONTROLER.   AC97 CONTROLLER configures the gain, sample rate, and D/A conversion of the codec chip 
LM4550.  All the components in the audio unit is clocked by the system global clock and reset by the global 
synchronized reset signal. 
 Overall behavior of the audio unit in the playback mode is as follows.  AUDIO_FSM waits for signal 
msg_req, and msg_no from the CONTROL UNIT.  Signal msg_req notifies AUDIO_FSM to start playing a 
message from a ROM.  The ROM is selected by signal msg_no.  AUDIO_FSM plays the message by outputting the 
address of the ROM from the first line to the last line.  The frequency of incrementing the address, i.e. the sampling rate 
is controlled by DIVCOUNTER.  In this design, the addressing is operated at 8kHz.   
 Once supplied the address, the ROM gives out an 8-bit audio signal audio_int, which will be selected my 
the signal msg_no to the multiplexer.  Next, the 8-bit audio signal goes to AC97_REG which registers the signal to 
ensure that the output to AC97 CONTROLLER (called �digloop� in the code) is free of glitches.  The codec chip 
LM4550 expects that the audio input is 20-bit wide in the twos-complement format,  so AC97_REG also appends 
twelve 0�s to the 8-bit audio signal before passing it to AC97 CONTROLLER.  The new input audio signal is loaded to 
be the output when asserted by LE_audioreg. 
 AC97 CONTROLLER configures the codec chip to take in the 20-bit audio signal at 48 kHz rate.  Therefore, 
one sample from AC97 REG is used for 8 times, i.e. AC97 CONTROLLER upsamples the audio signal from AC97 
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REG.  The codec chip LM4550 takes in the audio information bit by bit, converts it to an analog voltage output at 0V 
bias.  Then, this analog audio voltage goes through a bias shifting circuit, which centers the audio signal around 2V 
before passing it to the phone interface. 
 Please refer to the verilog code in the appendix for more detailed implementation of the overall audio unit. 
 

 
 
 
Figure 4: Audio Unit Block Diagram 
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3.2.2 Audio FSM 
 AUDIO FSM starts in the IDLE state upon being reset.  In this state, all the address variables, signals 
msg_done, count_int, and LE_audioreg are initialized to be zero.  One clock cycle later, AUDIO FSM 
moves to state WAIT_REQ, where it waits for the start signal msg_req and the signal msg_no specifying which 
message, i.e. which ROM to be selected.  Once the signal msg_req is asserted high, AUDIO FSM goes to the next 
state, WAIT_SEND_ADDR, and waits for signal send_pulse which is high every 3,375 clock cycles of the 27 MHz 
clock.  In other words, the signal send_pulse is asserted high 8kHz.  
 When the signal  send_pulse becomes high, AUDIO FSM makes signal LE_audioreg high to load the 
most recent audio sample to the output of AC97 REG before moving to the next state, UPDATE_ADDR.  In this state, 
AUDIO FSM makes signal LE_audioreg low again to disable the loading of AC97 REG before changing the 
address of the ROM in the next state, UPDATE_ADDR_DELAY.   
 

 
Figure 5:  Audio FSM Transition Diagram 
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has been played.  Otherwise, AUDIO FSM goes back to to WAIT_SEND_ADDR to read the next sample in the ROM 
until it finishes the last sample. 
 

IDLE 

WAIT_REQ

WAIT_SEND_
ADDR 

UPDATE_ADDR 

UPDATE_ADDR_D
ELAY 

SEND_MSG_
DONE 

DELAY1 

~msg_reg

msg_reg

*/ msg_done=1 
count_int=0 
LE_audioreg=0 

addri_int=0 (for i=0:11) 

~send_pulse

send_pulse/ 
LE_audioreg=1 

*/ LE_audioreg=0
 

counter!=rom_depth/
 

 counter++ 
 

counter=rom_depth/
msg_done=1 

 

*/ msg_done=0
 

* 

reset



 7

 

3.2.3 AC97 Controller and Codec LM4550 Configuration 
 
 The codec chip and AC97 link interface is operated by its own clock, i.e. ac97_bit_clock at 12.288 MHz.  The 
interface between the FPGA and the codec chip is in AC�97 format.  AC97 CONTROLLER on the FPGA 
communicates with the codec chip serially, i.e. data to and from the codec is sent one bit for every cycle of 
ac97_bit_clock.  All the properties of the codec chip: input/output volume, ADC sources, and PCM DAC rate are 
specified by setting the values of the corresponding registers in the chip.  The path of the audio signal in the playback 
mode is shown by the blue dashed arrow the codec diagram. 
 

 
Figure 6:  Codec LM4550 Chip (taken from National Semiconductor datasheet) 

 
 In every cycle of ac97_bit_clock, one-bit sdata_in is sent from the codec chip to AC97 CONTROLLER, 
and one-bit sdata_out is sent from AC97 CONTROLLER to the codec chip. 
 The communication between AC97 CONTROLLER and the codec chip is specified in frames.  Each frame 
consisting of 256 bits is started by a high sync pulse.  In a frame, a register value in the codec chip can be set by 
declaring which slots are valid in the tag field and declaring appropriate values for each bit in the corresponding slots. 
 
  

  
Figure 7:  AC'97 Frames (taken from Nathan Ickes� Audio Tutorial) 

 
 In implementing the project, configuring the codec chip takes a substantial amount of time.  There are some 
subtle issues that are not documented in the datasheet.  For example, the signal sdata_out and sync must be low 
during the reset period of the codec, i.e. when audio_reset_b is low.   
 



 8

3.2.4 ROMs and Message Recording 
  
 We use Coregen in the Xilinx ISE to generate the ROMs.  All ROMs are made input-registered so that there is 
no glitch in the address input. 
 Voice messages are first recorded in .wav format.  Then, each message is digitized in MATLAB at sampling 
rate 8 kHz.  (Please refer to the MATLAB code in the appendix for details).  The result of the digitization is in decimal 
between -1 and 1.  The digitized data is multiplied by 128 and then converted to twos-complement format since the 
codec chip expects the audio input to it in this format.  Then, the ROMs are initialized with the audio data in twos-
complement format in coe files.  

3.2.5 Bias Shifting Circuit 

 
Figure 8:  Op-Amp Adder with -2V DC and Audio Analog Voltage from Codec as the inputs 

 The phone interface requires that the audio signal input be biased at 2V, but the audio output from the codec 
chip is centered at 0V.  Therefore, it is crucial to shift the audio signal bias by the adder shown in the figure.  The adder 
has a gain of 1.   
 The adder takes two inputs at the negative terminal.  The first input is the audio analog voltage from the codec 
chip.  The other input is a DC voltage at -2V.  Since the configuration is negative feedback, the output is the sum of the 
flipped two inputs.  So the audio output to the phone interface is centered at 2V. 

3.3 Phone/PIN Look-Up Table 

To be able to use the system, a user must register her phone number with an operator in person.   The user then is 
manually assigned a unique PIN number, and the PIN and phone number are stored as a pair in a look-up table.   

Every time the user calls the system, she must enter in her PIN number before her requests can be accepted.  This 
feature prevents people from abusing the system. 

The phone/PIN look-up table consists of two parts:  a content-addressable memory (CAM) containing 16-bit PIN 
numbers, and a ROM containing 20-bit phone numbers.  Both were created with Xilinx Core Generator.   

In a lookup operation, the PIN is passed as input to the CAM.  Two clock cycles later, the CAM outputs the address 
of the location containing the matching PIN number.  This address is sent as the input to the ROM, and after one clock 
cycle the corresponding phone number is valid at the ROM output.   

3.4 Request Memory 

3.4.1 Overview 
The request memory unit performs the storage, timing, and retrieval of wake-up call requests.   



 9

Given a store_ctrl signal, a phone number, and the wake-up time, this unit stores the request in memory 
until it is ready to retrieved.   

When the system time matches the time of the next upcoming request, a request_pending signal is sent 
along with the corresponding phone number.  These signals remain valid until they are reset by the control unit. 

Given a cancel_ctrl signal and a phone number, this unit cancels the next upcoming request that matches 
that particular phone number in memory.  The next upcoming wake-up call request is the highest priority request for 
that phone number.   

3.4.2 Design 
The overall structure of the request memory unit is shown in Figure 9.   
The memory controller  is the major FSM of this unit, performing store operations, cancel operations, and the 

timing of wake-up call requests on the RAM.   
The shifting unit is a minor FSM for the memory controller.  It shifts multiple rows up or down in the RAM.  A 

multiplexer determines whether the RAM inputs are set by this unit or the memory controller.  
The time unit keeps track of the current system time.  The event compare unit compares two times to see which 

comes first or if they are equal.  

 
Figure 9: Request Memory Unit Block Diagram 
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3.4.2.1 Store Operation 
After a user requests a wake-up call, the phone interface outputs data in the form of a time and a 5-digit MIT phone 

number.  The request memory unit receives this data along with a store_ctrl signal from the main control 
unit.   

The request memory unit stores this data in a RAM, sorted by time so that the next upcoming wake-up call is in 
the first memory location. 

A simplified FSM for this operation is shown in Figure 10. 
 

 

Figure 10:  Memory Controller, Store FSM 

 
Note that in the �compare� states, the time compare unit is used to compare the two time values.  Separating this 

comparison makes it more extensible, because the month, day, and day of week can be added to the event compare unit 
without requiring major changes to the memory controller code.  

This FSM inserts the new request in the appropriate location, sorted by time, as shown in Figure 11. 
 

 

 
Figure 11:  What Occurs During a Store Operation. 
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3.4.2.2 Request Timer 
At the start of every minute, the request memory unit looks at the request data in the first memory location.   The 

first entry in the RAM is the next upcoming wake-up call request to be processed.  The FSM for this operation is shown 
in Figure 12. 

If the time of that request matches the current system time, a request_pending message is sent to the 
control unit, along with the phone number.  The topmost request data is deleted from the RAM, and the remaining 
requests are shifted up in memory.   

Once the control unit sends a request_reset pulse, the process repeats for every new first entry in RAM 
until there are no more requests.  Then the request timer operation is inactive until the start of the next minute. 

 
 

 
Figure 12:  Request Timer FSM 
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A shiftdown operation shifts rows a to b down by 1 address.  A shiftup operation shifts rows a to b up 
by 1 address.  Both operations output a done signal when they are finished.  Because the shifting unit has no 
knowledge of the memory controller�s intended operation, it does not increment or decrement the memory controller�s 
tail pointer.   
 

 
Figure 13:  Cancel FSM 
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3.4.2.6 Time Compare Unit 
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3.4.2.7 RAM 
The RAM, shown in Figure 14, is a 31 by 256 single-port block memory.  It was created with the Xilinx Core 

Generator and has a latency of one clock cycle.   
 

 
Figure 14:  RAM for storing wake-up call requests information 
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  phonenum[19:0]} 

we 

clk 

data_out{ 
  hour[4:0], 
  minute[5:0], 
  phonenum[19:0]} 
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Each row contains a wake-up call request with the parameters time(hour[4:0], minute[5:0]}, 

and phonenum[19:0].  The requests are sorted by time, starting with the earliest request in address 1.   
Address 0 is unused, so that the memory controller unit can set its tail pointer at 0 when there are no requests stored 

in memory.   

4    Methodology and Testing 
 

Our group spent a lot of time in planning the system and designing on paper. Our design process was as follows: 
define system components, delegate system components, design interfaces between control unit and components, 
individual design of components, implement and test in hardware components separately, 
integrate components one at a time. Control logic was designed, coded and simulated entirely beforehand (which 
showed possible problems with interfaces, missing logic, etc), but in implementation added piece by piece as each 
component was integrated. 

Our testing philosophy is that we test each module, one by one, to ensure that a module works on its own.  Then, 
we group modules into subcomponents and test each subcomponent separately to ensure that each subsystem works. 

4.1 Phone Line Interface Unit 

First the MH88437 circuit was tested by connecting it to a phone line, calling the phone number, asserting control 
signals manually and probing the chip�s outputs. After ensuring that the chip was functional, the MT8889 was tested.  
Since the MT8889 control signals were significantly more complicated, its controller was written and tested for just 
receiving one digit before moving on to multiple digits. 

4.2 Audio Unit 

For the audio unit, each module is verified in the simulation on its own.  Then, three subsystems are created from 
those modules: audio signal retrieving block, AC97 CONTROLLER with the codec, and the bias shift circuit. 

In testing the audio retrieving block, we first verify a set consisting of AUDIO FSM and AC97 REG with one 
ROM.  After verifying that it works on the lab kit, ten more ROMs are added with some corresponding modification in 
other modules. 

In testing AC97 CONTROLLER and the codec chip, the analog loopback testing of the chip is the first step.   Then, 
the digital loopthrough test is performed.  Finally, the codec chip is customized to accommodate the playback from the 
ROMs. 

In testing the bias shift module, the op-amp circuit as shown in the figure is built.  It is tested by an output from a 
function generate to verify that it adds the two inputs correctly. 

After verifying that these three subsystems work correctly in hardware, they are integrated to be the audio unit. 

4.3 Request Memory Unit 

All components of the Request Memory unit were implemented and simulated using �Simulate Behavioral Model� 
in the Xilinx ISE.  This was a mistake because the unit did not behave as expected once it was implemented in 
hardware.   

The RAM was then tested individually with a logic analyzer, using a simple test module that would output the 
contents of the first 16 memory locations.  For testing purposes, the RAM contents were initialized to contain data at 
startup.   Because of various issues with the Core Generator, this part of the process took over 2 weeks to complete.   

Once the RAM was functioning properly in hardware, each remaining part was tested individually with the logic 
analyzer.  At the time of the deadline, the request memory unit was completely functioning in hardware.  The logic for 
the interface to the control unit was also functioning properly in hardware, but time did not permit for full integration of 
the request memory unit into the rest of the wake-up call system.   
 
5   Conclusion 
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The basic wake-up call system described in this paper meets some of the needs of the MIT community.  Using just 
a touch-tone phone, anyone with a 5-digit MIT phone number can call the system to make a wake-up call request.  
Simple audio menus guide the user to enter numbers at the appropriate times, to store new requests or cancel a request.   
The system will then call them back at the times that they have requested.   

The system has been designed so that new features can be added without requiring major modifications to the 
system structure.  By adding a new audio greeting, receiving additional digits, modifying the time compare unit, and 
increasing the size of the request memory, a 365-day wakeup call system can be implemented.  With a few more 
modifications, users could even request a wake-up call that repeats daily or on certain days of the week.   

Another modification would be to allow users to store messages for themselves.  To implement this feature, large 
amounts of external memory must be added to the system, and there is considerable work involved in interfacing and 
managing the additional memory.   
Finally, there are interesting possibilities with allowing users to store messages for one another.  Permission lists can be 
implemented, allowing users to request wake-up calls for other users or for particular groups of people.  A professor 
would be able to send wake-up calls to his students before an exam, or friends could wake up to each other�s voices in 
the m 
 


