
The Caricatron
6.111 Final Project Report, May 13, 2004
Punya Biswal, Finale Doshi, Javier Velez

1 Introduction

We designed and implemented a system to capture a digital frame and output a caricaturized
version of the image. The user could take multiple snapshots until he or she was pleased with
the image. Next, edges were found using a Laplacian of Gaussian filter and lines extracted
lines from the edges. Designed but not fully implemented was a plan to exaggerate the
curvatures of the lines to give the output a cartoon-like look and to print the image to a
standard post-script printer through a parallel port.

Capture
Image

Display
VGA PostScript

PrintingProcessing
Image

Caricatron Major FSM

Luminence
RAM Edge RAM Object RAM

Mux to RAMs

RAM

requests
access

data,

write-enables

control
signals

addresses,

Figure 1: Overall Block Diagram of System

2 Overview

Figure 1 provides a general overview of how we implemented our design. The Caricatron
FSM sent begin and received end signals from each of the project modules that captured
the image, displayed an image, detected edges, extracted lines, or printed the image. It
also sent control signals to a multiplexer that acted as a bus arbiter for all the modules

1

requesting access to our three RAMS. In cases where only one module needed access to part
of a RAM—for example, the only the video capture needed to write data to the luminence
RAM—those signals were sent directly to the RAMs.

The first RAM stored 8-bit luminence values from the video capture of a 320 by 240
image. The next stored 16-bit edge detect values for the same image. The final RAM
contained space for up to 2048 68-bit objects. Each object consisted of four points, two
endpoints and two control points, to describe a curve. The two image RAMs were addressed
by an {x,y} value and provided the appropriate clock for the requesting module (all 27MHz
except for the VGA which required a 31.5MHz clock). All RAMs were registerd and clocked
on the negative clock edge.

Figure 2 shows the state transition diagram for our the Caricatron FSM. In addition to
the global reset, the Caricatron FSM received synchronized and debounced continue and
reject signals from the user. It also received completion signals from the project modules.
The following sections will describe the operation of each of the project modules in greater
detail.

idle

detect edges

display

detect
edge

print

frame
original
display

detect lines

grab frame

done grab

done edges

done print

done lines

continue

continue continuereject

reject

reset

Figure 2: Caricatron FSM

2

3 Design Methodology

3.1 Video Capture

The first step of the process was to grab a frame from the video camera. An ADV7185
digitized the NTSC video data into a YCrCb format and inserted tags to indicate the start
and end of active video information. Each video frame consisted of two interlaced fields that
were 780 samples across and 243 lines down. Each pair of samples contained one relevant
luminance value, making 390 luminence values in a line. Since we desired a 320 by 240 pixel
image, only every other luminence value (every fourth data value) was stored in a line until
320 samples were collected. Also, only data from first 240 lines from one field were collected.

Like our primary system clock, the video data stream was clocked at 27 MHz. However,
since the two clocks were not synchronized, data from AD7185 was put into an eight-element
fifo buffer. On every rising edge of the video clock, data was written to the next address in
the buffer. The video capture module read from the buffer on the edge of every system clock.
Upon reset, the read address was set four places behind the write address. This ensured that
the data was not changing as we tried to read from the video decoder.

When the Caricatron FSM sent the video capture module a grab frame signal, the mod-
ule first began searching for the end-active-video sequence of a blanking interval. Next it
searched for a begin-active-video of field one sequence. This ensured that we would find the
top of the image. The first data value following the tag was the red chrominence value; we
skipped this and stored every fourth following to the luminence RAM. Once 320 values were
stored, we waited for the next start-active-video sequence. The image capture was complete
when 240 lines were stored. This method ensured that our luminence RAM was a small as
possible; we further reduced the size of our RAM by noting that although 17 address bits
were required to store the data in an {x,y} format, the largest possible x-value was only 320
(instead of 512). Thus our RAM required only 82,000 8-bit locations instead of 131,072.

3.2 VGA Display

The VGA module ran on on a 31.5 MHz clock because at 7/6 of the system clock, it was the
simplest 640 by 480 VGA monitor clock to produce using the digital clock manager. Control
inputs from other modules were synchronized to the 31.5 MHz clock; the RAM modules
that the VGA required were clocked at 31.5 MHz while the VGA module was using them.
Whenever it received a run signal from the Caricatron, it began scrolling through x and
y values. The x values repeated every 832 counts, while the y values repeated every 520
counts.

On every clock edge, data for that address (from either the luminence or edge RAM)
was sent to the red, green, and blue inputs of a ADV7125 8-bit video DAC to produce a
monochromatic output. Address values were determined by shifting the x and y positions
to the right to divide by two (since a 320 by 240 image was being displayed on a 640 by 480
screen). Blanking and sync information were also set based on the x and y positions. The
horizontal and vertical sync signals that went directly to the VGA output were delayed by

3

two clock cycles to account for the delay in the DAC.

3.3 Edge and Line Detection

We divided the image processing section of the system into two major sections: filtering the
image to get edge pixels and extracting curves from the edge pixel data. The first section was
implemented using a simple 2D convolution. Figure 3 shows the processing system design.

The edge detection system takes data from the YRAM (8-bit values) and stores the
resulting filter data into the ERAM (16-bit values) using the ConvolveFSM Slow, MAC Slow,
and ForceZero modules. The filtering adds zeros for values that are out-of-range in the
image (essentially framing the image in layer of zeros seven deep and filtering normally).
Once the filter values are in the edge ram, then the second section starts. We designed and
implemented an algorithm to extract curve objects from edge pixel data. The algorithm
extracts a curve and represents it as four (x,y) points: a start pixel, an end pixel, and two
control points. Postscript constructs a standard cubic Bezier curve from this information.

ConvolveFSM FindPixFSM ExtractCurveFSM

done

start

done done

done

curvestart pix

force

RAM control

RAM
edges
data

data

data

RAM
edges
data

edges
we

RAM

data
y

RAM

data
edges

RAM

clk reset
startstart

edge curve

start start

8

16

16 16
16

6817

8

MajorFilteringFSM

ROM

Zero
Force

MAC
16

Figure 3: Block Diagram of Edge and Line Detection

We created our own algorithm for extracting curves from edge pixels. The pseudocode
below shows the steps for the algorithm. First, we find a pixel which is an edge and which
has a neighbor that is also an edge. This pixel will be the start of a curve. The neighbors
of a pixel include the eight pixel position surrounding the pixel. Next, we calculate the
gradients between the pixel and its neighbors; select the minimum such gradient. Based on
the pixel whose gradient is the smallest (pixel Pg) , we compute which possible pixel position
to look at next. The possible pixel positions are the three neighbor pixels of Pg closest to

4

the direction of the gradient found for Pg. For example, if the Pg was found to be the pixel
right on top, then the possible position would be the three top neighbor pixels of Pg. In this
way, the previous gradient direction is used to guide the next locations to extract the curve
from. The algorithm keeps walking down pixels in the above manner, keeping track of the
maximum x and y position achieved, until Pg is a pixel which is not an edge. Every time a
new Pg is computed, we remove the pixel data from the edge ram so as not to loop back on
a curve and follow it forever.

For each pixel in image, P

If P is edge AND (any neighbor(P) is edge) then

StartPixel = P;

// now we have a start pixel

For each neighbor of StartPixel, N

compute gradient from StartPixel to N

InitialGradient = min(gradient found above)

// set up the current pixel and loop

CurPix = pixel with min gradient

Grad = InitialGradient

while CurPix is edge

PN = possible neighbors of CurPix given Grad

Set CurPix to pixel with min gradient within PN

Set Grad to the gradient found for CurPix

// have a end point

return StartPixel and CurPix as begin and end of curve

ConvolveFSM Slow The ConvolveFSM Slow module takes care of directing the YRAM
and ROM addresses for the MAC Slow module. The module simple keeps track of the current
pixel in the edge ram we are writing to, starting at (0,0). It then iterates through the 15x15
neighbors of this pixel in the YRAM addresses, which pass the data over to the MAC.
The ROM addresses are iterated from (0,0) to (14,0) to (14,14). Also, the module must
drive the mac clear, force zero, and ram edges write signals. The mac clear signal forces the
MAC Slow module to clear it’s accumulator and become ready for the next 225 values of the
filter. The force zero signal forces a 0 into the MAC Slow module when the addresses for
the YRAM are out-of-range in terms of the image size. Lastly, the ram edges write signal is
the write enable for the edge RAM.

ForceZero The ForceZero module takes in the data from the YRAM and a force zero sig-
nal, it outputs an 8-bit value to the MAC Slow. The module allows the ConvolveFSM Slow
to force the MAC Slow data for a certain address to be 0 regardless of what the YRAM data
actually is. It is used when the YRAM address is out-of-range in terms of the image size.

5

Start Pix
and Dataclk reset

addr

data

addr

sel

cur
pix

sel

start

done

begin/end

min grad
pix

min
 grad
 pix

(edges)
RAM

ExtractCurveFSM

InitGradient

Gradient

NextPixel

MaxX

MaxY

next
pix

curve

16

17

17

17

17

17

17

17

17

17

68

1617

Figure 4: Overall Block Diagram of Line Detection System

6

MAC Slow The MAC Slow module takes in an 8-bit value and a 16-bit value. The 8-bit
value comes from the ForceZero module, the 16-bit from the ROM. The 8-bit value is in
simple binary format, whereas the 16-bit value is in sign-magnitude format. The output of
the MAC Slow module is a 16-bit value and is in sign-magnitude format. The MAC Slow
module has an internal 32-bit accumulator, the top 16-bits of which become the output.
The MAC Slow module also has a clear signal which forces the accumulator to 0 to reset the
value.

FindPixFSM The FindPixFSM iterates through the edge ram to find a pixel correct for
the start pixel of the algorithm described above. It starts at the top left corner of the image
and looks for and edge pixel in the edge RAM. Once it finds a single edge pixel, it checks its
neighbors to see if any of them are edges. If one neighbor is, then we have found a pixel for
extracting curves. Once it finds such a pixel, it stores the value and allows the rest of the
system to know what the start pixel is.

ExtractCurveFSM The ExtractCurveFSM module is in chrage of implementing the logic
sequencing behind the algorithm for extracting a curve. It takes in a start pixel from the
FindPixFSM module as a starting point. The module constantly outputs the current pixel
it is looking at and has decided is part of a curve. The module begins by sending the
neighbors of the start pixel to the InitGradient module. It does this by setting up the edges
RAM addresses, sending all nine pixel address (8 neighbors plus 1 pixel). It then tells then
NextPixel module to compute the next pixels to look at, latching the output of the pixel from
InitGradient. If this pixel latched is an edge, it becomes the current pixel, else the module
finishes and returns the extracted begin and end positions of the curve found. The control
points are computed by the MaxY and MaxY modules. The ExtractCurveFSM also takes
care of selecting whether to use the InitGradient or Gradient modules (the InitGradient is
only used for the first pixel). Figure 4 shows the setup of the ExtractCurveFSM as well as
helper modules.

InitGradient The InitGradient takes the last nine inputs given to it and computes the
smallest gradient, outputting both the gradient and the pixel for it. It assumes that the nine
last inputs form a 3x3 square with the reference pixel being in the middle. This pixel is used
to compute the gradient against the other eight pixels. The found signal is not used within
the system.

Gradient The gradient module takes the last three pixels and their values. It returns
the smallest gradient given the reference pixel that is sent to it. It works similarly to the
InitGradient, but must be given the reference pixel and value separately.

NextPixel The NextPixel module takes the output from the Gradient or InitGradient
modules. It gets the current pixel from the ExtractCurveFSM and will output three addresses
for the next possible pixels to look for given the gradient information. These pixel addresses

7

%!
/curve [...] def
newpath

31 41 59 26 curve
23 32 22 12 curve
12 32 44 55 curve

stroke
showpage

68'hdeadbeef0beadfeed
68'h1232347521836ab32
68'h23232323232323223

Figure 5: Printing

loop back to the Gradient module which then goes back to the NextPixel. This forms the
loop for the algorithm, broken by the ExtractCurveFSM when a non-edge pixel is chosen as
the current pixel by the Gradient module.

MaxX and MaxY The MaxX module takes the current pixel from the Gradient module
and sotres the maximal x values of the values seen so far. The MaxY is similar to the MaxX
module, just for the y variable of pixels.

MajorFilteringFSM The MajorFIlteringFSM acts like a bus arbiter for the YRAM ad-
dresses and data as well as the edges RAM. It gives control over to the separate modules
then they need it. The module uses the signals sent by the other modules to know what
state it is in and change the control.

3.4 PostScript Printing

After finding curves in the image using the line-detect module, the Caricatron FSM transfers
control to the printing module. This module interfaces to a PostScript-based laser printer
using the Centronics Parallel Port standard (part of IEEE 1284). It accepts 68-bit curve
objects extracted from the image by the line detector via the Object RAM, and converts them
into a sequence of PostScript curveto commands. The printer interprets these commands
to produce smooth Bézier curves with the given end and control points (see Figure 5).

Figure 6 shows the organization of the module.

Parallel Port Protocol The Centronics (SPP) protocol is the simplest and least feature-
rich standard for parallel port communication. While it is outdated and has been replaced
by faster, bidirectional protocols like ECP and EPP in practice, printers and computers
still support it for backward compatibility. SPP is an asynchronous, half-duplex protocol
that either transfers 8 data bits from the host to the peripheral, or 4 control bits from the
peripheral to the host. The timing requirements are summarized in Figure 7.

8

Prolog
ROM

Printer FSM

Epilog
ROM

BCD Converter

address

address

enable

object[67..0]

data

control

control

Figure 6: SPP Timing Requirements

data[7..0]

n_busy

n_strobe

.5us

.5us

Figure 7: SPP Timing Requirements

9

PostScript Language Conversion Adobe PostScript is an interpreted, stack-based pro-
gramming language used to transfer text and graphics information to most laser printers.
The caricatures resulting from processing an image consist of a large number of short Bézier
curves, so the PostScript stream sent to the printer starts with a brief prolog that sets up
commands to draw these curves. Then, each object translates into one curve command,
which specifies the eight coordinate values needed to represent a curve.

4 Testing

4.1 Caricatron FSM

The Caricatron FSM was tested with dummy modules that sent automatic completion signals
when they received a start signal. We monitored the state changes on the logic analyzer to
make sure that all control outputs were sent at the correct times. Also, the proper operation
of the user reset, continue, and reject inputs were observed on the Caricatron FSM’s state
changes.

Before the Caricatron FSM could use the user inputs, they had to be synchronized
and debounced. A sync-debounce module first passed the pushbutton inputs through a
pair of registers to synchronize them to the system clock. Next, whenever a pushbutton
became active, a one-clock-cycle pulse was sent to the Caricatron FSM (and all other relevant
modules). An approximately one-second counter was activated, and all future user inputs
were ignored until the counter had completed counting. The module’s operation was verified
by observing the (bouncy) switch input and the one-cycle pulse on the logic analyzer.

4.2 Video Capture

The video capture module was first observed on the logic analyzer. The video-capture states
and write enable signals were compared to the video data stream to make sure that 320
luminence values were being captured after the start-active-video and that the video capture
started at the beginning of the field. We also verified the addresses passed to the rams on
the logic analyzer.

The creation and use of the RAM to store the video data proved to be a more difficult
challenge. When synthesizing from the shared directory, the process would hang on the
creation of even small RAMs; this was the primary reason that the code was initially changed
to record only the relevant luminence values. (Originally, even the 320x240x8 RAM had to
be synthesized as eight 320x240x1 RAMs.) Creating the project in a lcoal directory allowed
for the creation of larger RAMs, allowing us to use the register-array method instead of
CoreGen tools or the ZBT.

Once created, we still had trouble writing to the RAMs—even a simple module to write
the same grey value to all the relevant addresses, or put four quadrants of grey values to
the screen, would produce messy results. After double checking the timing on addresses and
write enable, we determined that the problem occurred only when the more significant bits

10

of the address were changing. The simplest solution appeared to be registering the address
inputs inside the RAM, but we were not able to make this method work. Instead, we decided
to have the RAM latch data on the negative clock edge so that all bits would have had time
to settle. This solved our image capture problem.

4.3 VGA Display

The duration and frequency of all sync and blanking signals, both to the DAC and directly
to the VGA were measured on the logic analyzer and verified against the timing parameters
given on the class website. The module was tested using a dummy input module that
displayed a separate gray for each quadrant and vertical gradient. Setting the signals based
on the given timing parameters was relatively straightforward and easy to implement.

4.4 Edge and Line Detection

Many lessons were learned through the implementation of this system. The first and foremost
lesson learned was that synthesis is a truly chaotic process. Any slight change will account
for unimaginable repercussion throughout the entire system synthesis, placement, routing,
and overall functionality. A single wire being assigned in module B can, and many times
did, cause the entire module A to stop working. Even when module B and module A had
nothing in common.

Secondly, we found that timing constraint can make or break a system. Several times,
adding a single extra bit to a counter broke the entire system. While this is to be expected,
timing being key, the nature of our inability to predict or even deal with the timing con-
straints was unexpected. Most, if not all, of the time for the processing unit was spent
debugging timing constraints where the unit broke the rest of the system (not even breaking
itself sometimes!).

Last of all, we found that the extremely long compilation time coupled with the chaotic
nature of the system greatly crippled our efficiency to debug and even implement a working
system. The expected number of compilations for our system before timing would be met
was around 4. Thins means that only one out of every four compilations were we actually
getting new data on the system. As such, we could not debug properly. Some signal even
refused to be changed from a set specific pattern that magically made the system work. The
original code written for the processing module changed less than 10 lines in terms of the
logic it was performing. However, it took many many iterations, and somewhere around
41 hours of actual lab time, to correctly make it work within the system because of timing
issues.

4.5 PostScript Printing

Unfortunately, we began testing the printing functionality very late in the design process.
An isolated module that attempted to handshake with the printer and send it a fixed image

11

did not produce any results whatsoever. Because the FPGA was sensitive to small changes
in code, this non-functional code was not added to the circuit.

5 Conclusions and Future Work

We were extremely excited and grateful for the opportunity to use the new VirtexII labkits.
While we had many diffulties in creating memory blocks and addressing associated Xilinx
timing issues, the built in video and VGA chips were quite useful in our project. A better
understanding of the fundamentals behind the timing and memory creation issues would
have allowed us to complete the project; once we grasped those concepts the obvious next
step would be to complete the printing portion of our project and reintroduce more efficent
edge and line detection algorithms.

A Top File (Abbreviated Version)

module caricatron (clk, clk31, clktv,

resetA, contA, rejectA, thresh, topButtonA,

parallel,

red, green, blue,

blank, sync, vsync, hsync,

videoIn,

debug,

toLeds);

//EXTERNAL

//clocks

input clk, clk31, clktv;

//user controls

input resetA, contA, rejectA;

input topButtonA;

wire reset, cont, reject;

wire topButton;

input [7:0] thresh;

//for printing

inout [31:0] parallel;

//for display

output [7:0] red, green, blue;

output blank, sync, hsync, vsync;

//for image capture

input [9:0] videoIn;

//INTERNAL

//with rams

12

wire yclk, eclk, oclk;

wire [16:0] lumAddr, edgeAddr, vgaAddr, vidAddr, procAddrY, procAddrE;

wire [10:0] procAddrO, printAddr, objAddr;

wire [7:0] origOut, origIn, vgaOut;

wire [15:0] edgeOut, edgeIn;

wire [67:0] procIn, printIn, objIn, objOut;

wire ywe, ewe/*baaa!*/, owe, printOwe, procOwe;

//with majorFSM

wire [2:0] muxcntl;

wire startGrab, doneGrab, startEdge, doneEdge, startLine;

wire doneLine, startPrint, donePrint, runVGA;

//with image capture

wire [9:0] vidQdata;

//for debuggering

wire [15:0] capdebug;

wire [15:0] vgadebug;

output [15:0] debug;

output [7:0] toLeds;

//wire done_t;

/*assign toLeds[0] = (muxcntl == 0) ? 0 : 1;

assign toLeds[1] = (muxcntl == 1) ? 0 : 1;

assign toLeds[2] = (muxcntl == 2) ? 0 : 1;

assign toLeds[3] = (muxcntl == 3) ? 0 : 1;

assign toLeds[4] = (muxcntl == 4) ? 0 : 1;

assign toLeds[5] = (muxcntl == 5) ? 0 : 1;

assign toLeds[6] = (muxcntl == 6) ? 0 : 1;

assign toLeds[7] = 0;*/

wire [4:0] dbleds;

assign toLeds = ~{muxcntl, dbleds};

//assign debug = {clk, hsync, vsync, sync, blank, red[2:0], thresh};

//assign debug = capdebug;

//for user signals

sync myReset (.reset(resetA), .sreset(reset), .clk(clk));

sync myCont (.reset(contA), .sreset(cont), .clk(clk));

sync myReject (.reset(rejectA), .sreset(reject), .clk(clk));

//major fsm and major mux

13

caricatronFSM rightBrain (.clk(clk), .reset(reset),

.continue(cont), .reject(reject),

.startGrab(startGrab), .doneGrab(doneGrab),

.startEdge(startEdge), .doneEdge(doneEdge),

.startLine(startLine), .doneLine(doneLine),

//.doneTemp(done_t),

.startPrint(startPrint), .donePrint(donePrint),

.runVGA(runVGA),

.state(muxcntl));

topMux theMuxinator (.state(muxcntl),

.vgaAddr(vgaAddr), .vidAddr(vidAddr),

.procAddrY(procAddrY), .procAddrE(procAddrE),

.lumAddr(lumAddr), .edgeAddr(edgeAddr),

.orig(origOut), .edges(edgeOut), .vgaout(vgaOut),

.procAddrO(procAddrO), .printAddr(printAddr),

.objAddr(objAddr),

.procWe(procOwe), .printWe(printOwe), .objWe(owe),

.procIn(procIn), .printIn(printIn), .objIn(objIn),

.clk27(clk), .clk31(clk31), .objclk(oclk),

.lumclk(yclk), .edgeclk(eclk));

//rams

Yram origImage (.clk(yclk), .we(ywe), .addr(lumAddr),

.di(origIn), .do(origOut));

Eram edgedImage (.clk(eclk), .we(ewe/*baaa!*/), .addr(edgeAddr),

.di(edgeIn), .do(edgeOut));

Oram objects (.clk(oclk), .we(owe), .addr(objAddr),

.di(objIn), .do(objOut));

//image capture

videoFifo myFifo (.reset(reset), .tvclk(clktv), .clk(clk),

.dataIn(videoIn), .dataOut(vidQdata));

captureVideoSmart framegrabber (.clk(clk), .reset(reset),

.capture(startGrab), .done(doneGrab), .addr(vidAddr),

.writeEn(ywe), .RAMdata(origIn),

.vidData(vidQdata), .debug(capdebug));

//image display

VGAout vgadisplay (.pix_clk(clk31), .sreset(reset), .srun(runVGA),

.imData(vgaOut), .imAddr(vgaAddr),

14

.red(red), .green(green), .blue(blue),

.blank(blank), .sync(sync),

.hsync(hsync), .vsync(vsync), .debug(vgadebug));

/*Javier: your module should have the following IO stuff:

control: inputs: startEdge, startLine; outputs: doneEdge, doneLine;

user: thresh (8)

luminence ram: procAddrY(17), origOut(8);

edge ram: ewe (baaa...), procAddrE(17), edgeOut(16), edgeIn (16);

object ram: procOwe, procAddrO (17), procIn (68), objOut (68);

*/

wire [15:0] dbdebug;

sync myTopButton(.clk(clk), .reset(topButtonA), .sreset(topButton));

DonkeyBalls db(.clk(clk),

.reset(~reset),

.start_convolution(startEdge || topButton),

.start_curves(startLine),

.threshold(thresh),

.ram_y_out(origOut),

.ram_edges_out(edgeOut),

.ram_y_address(procAddrY),

.ram_edges_address(procAddrE),

.ram_edges_data(edgeIn),

.ram_edges_write(ewe),

.ram_objects_address(procAddrO),

.ram_objects_data(procIn),

.ram_objects_write(procOwe),

.convolution_done(doneEdge),

.curves_done(doneLine),

//.done_temp(done_t),

.debug(dbdebug),

.leds(dbleds));

dummy printDummy (.clk(clk), .reset(reset),

//.start(startPrint), .done(donePrint));

endmodule

15

B Video Capture

//goal of this module is to capture video data that contains

//atleast one complete field

module captureVideoSmart (clk, reset, capture, done,

addr, writeEn, RAMdata,

vidData,

debug); //for the debuggering

output [15:0] debug;

//system inputs

input clk, reset;

input capture;

output done;

reg done, doneReg;

//video input

input[9:0] vidData;

reg [9:0] vidsync1, vidsync2;

reg [9:0] curr, prev1, prev2, prev3;

//video data sram

output [7:0] RAMdata;

//reg [7:0] RAMdata;

output [16:0] addr;

//reg [16:0] addr, addrReg;

output writeEn;

reg writeEn, writeEnReg;

//state parameters

reg [2:0] state, next;

parameter idle = 0;

parameter lookForBlankingOne = 1;

parameter lookForLineStart = 2; //of field one only

parameter grabData = 3;

parameter skipData1 = 4;

parameter skipData2 = 5;

parameter skipData3 = 6;

//code parameters

parameter start = 10’b1111111111;

parameter mid = 10’b0000000011;

parameter f2bstart = 10’b1110110011;

parameter f2bend = 10’b1111000111;

16

parameter f1bstart = 10’b1010101111;

parameter f1bend = 10’b1011011011;

parameter f1start = 10’b1000000011;

parameter f1end = 10’b1001110111;

parameter f2start = 10’b1100110011;

parameter f2end = 10’b1101101011;

//internal addresses

reg [8:0] xpos, xposReg;

reg [7:0] ypos, yposReg;

parameter xmax = 320;

parameter ymax = 240;

//internal data

reg [7:0] writeData;

//for that debuggering

assign debug = {state, ypos, capture, done, clk, reset, writeEn};

//keep track of the last four values (registered)

always @ (posedge clk) begin

//vidsync1 <= vidData;

//vidsync2 <= vidsync1;

//curr <= vidsync2;

curr <= vidData;

prev1 <= curr;

prev2 <= prev1;

prev3 <= prev2;

end

//advance the state

always @ (posedge clk) begin

if(reset)begin

state <= idle;

writeEn <= 0;

xpos <= 0;

ypos <= 0;

done <= 0;

end

else begin

state <= next;

17

writeEn <= writeEnReg;

xpos <= xposReg;

ypos <= yposReg;

done <= doneReg;

end

end

//set the next state

always @ (curr or state or xpos or ypos) begin

writeEnReg = 0;

doneReg = 0;

case(state)

idle: begin

writeData = writeData;

if(capture)begin

next = lookForBlankingOne;

xposReg = 0;

yposReg = 0;

end

else begin

next = idle;

xposReg = 0;

yposReg = 0;

end

end

lookForBlankingOne: begin

writeData = writeData;

if((curr == f1bend) &&

(prev1 == mid) &&

(prev2 == mid) &&

(prev3 == start)) begin

next = lookForLineStart;

xposReg = 0;

yposReg = 0;

end

else begin

next = lookForBlankingOne;

xposReg = 0;

yposReg = 0;

end

end

lookForLineStart: begin

writeData = writeData;

if((curr == f1start) &&

18

(prev1 == mid) &&

(prev2 == mid) &&

(prev3 == start)) begin

next = skipData3;

xposReg = xpos;

yposReg = ypos;

end

else begin

next = lookForLineStart;

xposReg = xpos;

yposReg = ypos;

end

end

//old stuff here

skipData1: begin

next = skipData2;

xposReg = xpos;

yposReg = ypos;

end

skipData2: begin

next = skipData3;

xposReg = xpos;

yposReg = ypos;

end

skipData3: begin

next = grabData;

xposReg = xpos;

yposReg = ypos;

writeEnReg = 1;

end

grabData: begin

if((xpos == xmax) && (ypos == ymax)) begin

next = idle;

xposReg = 0;

yposReg = 0;

doneReg = 1;

end

else if ((xpos == xmax) && (ypos < ymax)) begin

next = lookForLineStart;

xposReg = 0;

yposReg = ypos + 1;

end

else begin

next = skipData1;

19

//next = skipData3; //a change

xposReg = xpos + 1;

yposReg = ypos;

end

end

//end of old stuff

//new stuff so addr, data valid over En

/*

skipData1: begin

writeData = writeData;

next = skipData2;

xposReg = xpos;

yposReg = ypos;

end

skipData2: begin

writeData = writeData;

if((xpos == xmax) && (ypos == ymax)) begin

next = idle;

xposReg = 0;

yposReg = 0;

doneReg = 1;

end

else if ((xpos == xmax) && (ypos < ymax)) begin

next = lookForLineStart;

xposReg = 0;

yposReg = ypos + 1;

end

else begin

next = skipData3;

xposReg = xpos + 1;

yposReg = ypos;

end

end

skipData3: begin

writeData = writeData;

next = grabData;

xposReg = xpos;

yposReg = ypos;

end

grabData: begin

writeData = curr[9:2];

next = skipData1;

xposReg = xpos;

yposReg = ypos;

writeEnReg = 1;

20

end

*/ //end of new stuff

endcase

end

//always set RAMdata, addr to current value

//assign RAMdata = writeData; //new

assign RAMdata = curr[9:2]; //old

assign addr = {xpos, ypos};

endmodule

C Laplacian of Gaussian Values in Edge ROM

// *fudge-factor* == \infty

// 15x15 rom found using MatLab

//all values not specified here are 16’d27

8’h00: rom_data <= 16’d27;

8’h01: rom_data <= 16’d27;

8’h02: rom_data <= 16’d27;

8’h03: rom_data <= 16’d27;

8’h04: rom_data <= 16’d27;

8’h05: rom_data <= 16’d27;

8’h06: rom_data <= 16’d27;

8’h07: rom_data <= 16’d27;

8’h08: rom_data <= 16’d27;

8’h09: rom_data <= 16’d27;

8’h0A: rom_data <= 16’d27;

8’h0B: rom_data <= 16’d27;

8’h0C: rom_data <= 16’d27;

8’h0D: rom_data <= 16’d27;

8’h0E: rom_data <= 16’d27;

...

8’h50: rom_data <= 16’d27;

8’h51: rom_data <= 16’d27;

8’h52: rom_data <= 16’d27;

8’h53: rom_data <= 16’d27;

8’h54: rom_data <= 16’d27;

21

8’h55: rom_data <= 16’d27;

8’h56: rom_data <= 16’d28;

8’h57: rom_data <= 16’d28;

8’h58: rom_data <= 16’d28;

8’h59: rom_data <= 16’d27;

8’h5A: rom_data <= 16’d27;

8’h5B: rom_data <= 16’d27;

8’h5C: rom_data <= 16’d27;

8’h5D: rom_data <= 16’d27;

8’h5E: rom_data <= 16’d27;

8’h60: rom_data <= 16’d27;

8’h61: rom_data <= 16’d27;

8’h62: rom_data <= 16’d27;

8’h63: rom_data <= 16’d27;

8’h64: rom_data <= 16’d27;

8’h65: rom_data <= 16’d28;

8’h66: rom_data <= 16’d135;

8’h67: rom_data <= 16’d1014;

8’h68: rom_data <= 16’d135;

8’h69: rom_data <= 16’d28;

8’h6A: rom_data <= 16’d27;

8’h6B: rom_data <= 16’d27;

8’h6C: rom_data <= 16’d27;

8’h6D: rom_data <= 16’d27;

8’h6E: rom_data <= 16’d27;

8’h70: rom_data <= 16’d27;

8’h71: rom_data <= 16’d27;

8’h72: rom_data <= 16’d27;

8’h73: rom_data <= 16’d27;

8’h74: rom_data <= 16’d27;

8’h75: rom_data <= 16’d28;

8’h76: rom_data <= 16’d1014;

8’h77: rom_data <= 16’hA927; //d-10535;

8’h78: rom_data <= 16’d1014;

8’h79: rom_data <= 16’d28;

8’h7A: rom_data <= 16’d27;

8’h7B: rom_data <= 16’d27;

8’h7C: rom_data <= 16’d27;

8’h7D: rom_data <= 16’d27;

8’h7E: rom_data <= 16’d27;

8’h80: rom_data <= 16’d27;

8’h81: rom_data <= 16’d27;

22

8’h82: rom_data <= 16’d27;

8’h83: rom_data <= 16’d27;

8’h84: rom_data <= 16’d27;

8’h85: rom_data <= 16’d28;

8’h86: rom_data <= 16’d135;

8’h87: rom_data <= 16’d1014;

8’h88: rom_data <= 16’d135;

8’h89: rom_data <= 16’d28;

8’h8A: rom_data <= 16’d27;

8’h8B: rom_data <= 16’d27;

8’h8C: rom_data <= 16’d27;

8’h8D: rom_data <= 16’d27;

8’h8E: rom_data <= 16’d27;

8’h90: rom_data <= 16’d27;

8’h91: rom_data <= 16’d27;

8’h92: rom_data <= 16’d27;

8’h93: rom_data <= 16’d27;

8’h94: rom_data <= 16’d27;

8’h95: rom_data <= 16’d27;

8’h96: rom_data <= 16’d28;

8’h97: rom_data <= 16’d28;

8’h98: rom_data <= 16’d28;

8’h99: rom_data <= 16’d27;

8’h9A: rom_data <= 16’d27;

8’h9B: rom_data <= 16’d27;

8’h9C: rom_data <= 16’d27;

8’h9D: rom_data <= 16’d27;

8’h9E: rom_data <= 16’d27;

...

8’hE0: rom_data <= 16’d27;

8’hE1: rom_data <= 16’d27;

8’hE2: rom_data <= 16’d27;

8’hE3: rom_data <= 16’d27;

8’hE4: rom_data <= 16’d27;

8’hE5: rom_data <= 16’d27;

8’hE6: rom_data <= 16’d27;

8’hE7: rom_data <= 16’d27;

8’hE8: rom_data <= 16’d27;

8’hE9: rom_data <= 16’d27;

8’hEA: rom_data <= 16’d27;

8’hEB: rom_data <= 16’d27;

8’hEC: rom_data <= 16’d27;

23

8’hED: rom_data <= 16’d27;

8’hEE: rom_data <= 16’d27;

default: rom_data <= 16’h0;

D Line Extraction

module ExtractCurveFSM(clk,reset,start, start_pix, start_pix_data,

next_pix, next_pix_data, thresh, start_next_pixel,

ram_edges_write, ram_edges_address, ram_edges_data,

ram_edges_sel, cur_pix, cur_pix_data, grad_sel,

return_data, done);

input clk, reset, start;

input [16:0] start_pix;

input [15:0] start_pix_data;

input [16:0] next_pix;

input [15:0] next_pix_data;

input [7:0] thresh;

output start_next_pixel;

output ram_edges_write;

output [16:0] ram_edges_address;

output [15:0] ram_edges_data;

output ram_edges_sel;

output [16:0] cur_pix;

output [15:0] cur_pix_data;

output grad_sel;

output [33:0] return_data;

output done;

reg start_next_pixel, start_next_pixel_int;

reg ram_edges_write, ram_edges_write_int;

reg [16:0] ram_edges_address, ram_edges_address_int,

cur_pix, cur_pix_int;

reg [15:0] ram_edges_data, ram_edges_data_int,

cur_pix_data, cur_pix_data_int;

reg ram_edges_sel, ram_edges_sel_int,

grad_sel, grad_sel_int,

done, done_int;

reg [33:0] return_data, return_data_int;

reg [3:0] counter, counter_int, tcounter, tcounter_int;

/*reg latch_next_pix, latch_start_pix, load_cur_pix;*/

24

reg [16:0] cur_pix_reg;

//reg [15:0] cur_pix_data_reg;

reg [16:0] beg_pix_reg /*, end_pix_reg*/;

/*reg [15:0] beg_pix_data_reg , end_pix_data_reg;*/

reg [8:0] tempx;

reg [7:0] tempy;

reg [4:0] state, next;

\\eating one battery

\\eating five batteries

parameter THRESHOLD = 0; // ?!?!? what threshold??

parameter IMAGE_WIDTH = 320;

parameter IMAGE_HEIGHT = 240;

parameter INIT = 0;

parameter FIND_INIT_GRAD = 1;

parameter GENERATE_NEXT = 2;

parameter GENERATE_NEXT_WAIT = 7;

parameter FIND_MIN_GRAD = 3;

parameter NEW_POINT = 4;

parameter REMOVE_POINT = 5;

parameter RETURN = 6;

parameter RETURN_DATA = 8;

always @ (posedge clk)

begin

if(!reset) begin

state <= INIT;

ram_edges_write <= 0;

ram_edges_address <= 0;

ram_edges_data <= 0;

cur_pix <= 0;

cur_pix_data <= 0;

ram_edges_sel <= 0;

grad_sel <= 0;

done <= 0;

counter <= 0;

tcounter <= 0;

cur_pix_reg <= 0;

//cur_pix_data_reg <= 0;

beg_pix_reg <= 0;

//beg_pix_data_reg <= 0;

25

//end_pix_reg <= 0;

//end_pix_data_reg <= 0;

return_data <= 34’h3FFFF;

start_next_pixel <= 0;

end

else begin

state <= next;

start_next_pixel <= start_next_pixel_int;

ram_edges_write <= ram_edges_write_int;

ram_edges_address <= ram_edges_address_int;

ram_edges_data <= ram_edges_data_int;

cur_pix <= cur_pix_int;

cur_pix_data <= cur_pix_data_int;

ram_edges_sel <= ram_edges_sel_int;

grad_sel <= grad_sel_int;

done <= done_int;

return_data <= return_data_int;

counter <= counter_int;

tcounter <= tcounter_int;

if(start) begin

cur_pix <= start_pix;

cur_pix_data <= start_pix_data;

beg_pix_reg <= start_pix;

//beg_pix_data_reg <= start_pix_data;

end

else begin

cur_pix <= cur_pix_int;

cur_pix_data <= cur_pix_data_int;

beg_pix_reg <= beg_pix_reg;

//beg_pix_data_reg <= beg_pix_data_reg;

end

//end_pix_reg <= end_pix_reg;

//end_pix_data_reg <= end_pix_data_reg;

end

end

always @ (state or reset or start or start_pix or start_pix_data

or next_pix or next_pix_data or counter

or cur_pix_reg /*or cur_pix_data_reg*/

or ram_edges_address or ram_edges_data or cur_pix

or cur_pix_data or return_data or tcounter or thresh or beg_pix_reg)

begin

// defaults of signals

26

ram_edges_address_int = ram_edges_address;

ram_edges_data_int = ram_edges_data;

cur_pix_int = cur_pix;

cur_pix_data_int = cur_pix_data;

ram_edges_write_int = 0;

start_next_pixel_int = 0;

ram_edges_sel_int = 0;

grad_sel_int = 0;

done_int = 0;

return_data_int = return_data;

counter_int = counter;

tcounter_int = tcounter;

next = INIT;

if(!reset) begin

ram_edges_address_int = 0;

ram_edges_data_int = 0;

cur_pix_int = 0;

cur_pix_data_int = 0;

ram_edges_sel_int = 0;

grad_sel_int = 0;

done_int = 0;

return_data_int = 34’h3FFFF;

counter_int = 0;

tcounter_int = 0;

end

else begin

case(state)

INIT: begin

if(start) begin

counter_int = 0;

tcounter_int = 0;

grad_sel_int = 1;

ram_edges_sel_int = 1;

ram_edges_address_int = cur_pix_reg;

// start reading from Y ram

next = FIND_INIT_GRAD;

end

else begin

next = INIT;

end

end

27

FIND_INIT_GRAD: begin

if(counter == 2) begin

if(tcounter == 2) begin

//finally got done reading all data

next = GENERATE_NEXT_WAIT; // wait 2 cycles

counter_int = 0;

tcounter_int = 0;

//start_next_pixel_int = 1;

end

else begin

counter_int = 0;

tcounter_int = tcounter + 1;

next = FIND_INIT_GRAD;

end

end

else begin

counter_int = counter + 1;

next = FIND_INIT_GRAD;

end

tempx = cur_pix[16:8] - 1 + counter;

tempy = cur_pix[7:0] - 1 + tcounter;

ram_edges_address_int = {tempx,

tempy};

grad_sel_int = 1;

ram_edges_sel_int = 1;

end

GENERATE_NEXT_WAIT: begin

if(counter == 3) begin

// latch the next pix

cur_pix_int = next_pix;

cur_pix_data_int = next_pix;

counter_int = 0;

//start_next_pixel_int = 1;

next = GENERATE_NEXT;

end

else begin

counter_int = counter + 1;

next = GENERATE_NEXT_WAIT;

end

if(counter == 2) begin

start_next_pixel_int = 1;

end

if(counter < 2) begin

grad_sel_int = 1;

28

ram_edges_sel_int = 1;

ram_edges_address_int = cur_pix;

ram_edges_data_int = 0;

ram_edges_write_int = 1;

end

end

GENERATE_NEXT: begin

counter_int = 0;

next = FIND_MIN_GRAD;

//start_next_pixel_int = 1;

end

FIND_MIN_GRAD: begin

// wait for 2 cycles

if(counter == 4) begin

start_next_pixel_int = 1;

next = NEW_POINT;

counter_int = 0;

end

else begin

counter_int = counter + 1;

next = FIND_MIN_GRAD;

end

if(counter == 2) begin

//start_next_pixel_int = 1;

end

end

NEW_POINT: begin

if(next_pix_data > thresh && next_pix_data < 16’h8000) begin

// latch the next pix

cur_pix_int = next_pix;

cur_pix_data_int = next_pix_data;

// remove the point here, so in sync with cur_pix change

ram_edges_sel_int = 1;

ram_edges_address_int = next_pix;

ram_edges_data_int = 0;

// write to ram!

counter_int = 0;

//check if at edges of image

if(next_pix[16:8] > IMAGE_WIDTH - 1 || next_pix[7:0] > IMAGE_HEIGHT - 1)

next = RETURN;

29

else

next = REMOVE_POINT;

end

else begin

next = RETURN;

end

end

REMOVE_POINT: begin

// make sure to take enough time to sync with the NEXT PIX block!

// wait 2 cycles

if(counter == 1) begin

counter_int = 0;

next = GENERATE_NEXT; // might have to wait more?!?

end

else begin

counter_int = counter + 1;

next = REMOVE_POINT;

end

ram_edges_sel_int = 1;

ram_edges_address_int = cur_pix;

ram_edges_data_int = 0;

ram_edges_write_int = 1;

end

RETURN: begin

ram_edges_address_int = cur_pix;

ram_edges_sel_int = 1;

ram_edges_data_int = 0;

ram_edges_write_int = 1;

next = RETURN_DATA;

end

RETURN_DATA: begin

return_data_int = {beg_pix_reg, cur_pix};

done_int = 1;

next = INIT;

end

endcase

end

end

endmodule

30

