
 
 
 

FROGGER 
 
 
 

Nathan Vantzelfde 
Cory Zue 

 
6.111 Introductory Digital Systems Laboratory  

Final Project 
May 13, 2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract  
 
 Video games, introduced with the advent of computer technology have become extremely 
popular in today’s society.  The old video game Frogger is designed and implemented on a Field 
Progammable Gate Array (FPGA).  The goal of the game is to navigate an animated frog across a 
highway avoiding a series of cars, and then a river, jumping on logs and bobbing turtles.  The 
interface to the game is an Atari joystick, and the game can be displayed on any VGA compatible 
monitor.  The game consists primarily of two modules.  The game module controls the logic of 
the game including the location of objects, movement of the frog, and end of game conditions.  
The video module displays the game data on the monitor, using images stored on a read only 
memory (ROM).  Both modules use a major/minor FSM structure.  Design and testing strategies 
are discussed. 



1 Introduction 
 
 We designed and implemented the popular arcade game Frogger.  The game consists of 
an animated frog that first crosses a highway and then a river.  The goal of the game is to make it 
safely from the bottom of the screen to the top. 

The frog must cross the highway without colliding with a series of cars and trucks that 
move across the screen, alternating directions and varying speeds with each successive line of 
traffic.  Each lane of the highway is a set of identical cars that move with the same speed.  
Between the highway and the river is one row of grass with no obstacles.  Logs and lily pads float 
across the river, and the frog can only cross on these objects.  If the frog reaches the top of the 
screen, the level is completed and the speed increases.  Also, The number of cars on the freeway 
increases with each level, just as the number of logs and lily pads on the river decreases.  If the 
frog collides with a car or falls in the water the game starts over with the frog at the bottom of the 
screen.  The version of the game that we attempted to mimic is shown in Figure 1. 

 

 
 

Figure 1:  The Frogger Arcade Game 
 

The input to the game is a standard Atari Joystick.  This controller consists of four 
directional buttons (up, down, left, and right), and a fire button.  The directional buttons control 
the movement of the frog, with each press corresponding to a movement of 1 unit (one lane of the 
highway).  During gameplay, the fire button pauses the game, causing the screen to freeze.  
Releasing the fire button resumes play.   

The output of the game is a video signal for interfacing with the color TV monitors in the 
6.111 lab.  The video outputs are three color bits—red, green, and blue—and four synchronizing 
and blanking bits—horizontal and vertical synch and blank.   
 
 
2 Gameplay Unit 
 
The gameplay unit is responsible for controlling the flow of the game.  It processes user input 
from the joystick, moves the frog accordingly, and places and moves various other objects on the 
screen such as logs and cars.  It tests for collisions between the frog and the other objects and acts 
accordingly, depending on whether the frog is on the road or over the river.  It also tests whether 



the frog has safely reached the opposite side of the river, and if so, increases the level and the 
corresponding speeds of the cars and logs. 
 A block diagram for the gameplay unit is shown in figure 2.  A number of smaller 
modules have been omitted for clarity.   The gameplay unit only has two inputs, a global reset 
signal and a five-bit input from the joystick.   There are two large finite state machines, one to 
control the frog movement and one to control the flow of the game.  All of the objects, including 
the frog, are stored in the ram, which has two read ports, one of which is used by the video unit to 
access the type and location of all the objects.  The gameplay unit also outputs a signal 
num_objs to the video unit, which signals how many of the locations in the object ram contain 
valid objects to be displayed.  Each of the major modules of the gameplay unit will be discussed 
in subsequent sections. 
 
2.1 Synchronizer and Divider 
 
The synchronizer synchronizes asynchronous inputs from the joystick and reset signal to the 
system clock by delaying each bit through two or more registers.  The divider produces a 15 Hz 
enable signal from the 27 MHz system clock.  This enable signal is used by the frog FSM, the 
gameplay FSM and the several of the other modules to signify to start a new game cycle, since 
each object is updated only once every 1/15 second.  The divider also takes the pause input 
from the joystick interpreter; when pause is high, the divider stops produces the enable signal, 
effectively stopping the every element of the game in its current state. 
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Figure 2: Block Diagram for the Gameplay Unit



 
2.2 Joystick Interpreter 
 
The joystick interpreter is responsible for taking in the five-bit synchronized input from the Atari 
joystick and produce five usable signals, pause, up, down, left, and right, the first of 
which is used by the divider to pause the game and the latter four of which are used by the frog 
FSM to control the frog’s movement.  The Atari joystick has five output pins, corresponding to 
each of the four cardinal directions and one for the button.  These pins are forced low when the 
corresponding direction or button is pressed.  Before being used by the gameplay unit, each of 
these signals are passed through two inverters on the lab kit to ensure that each has a valid voltage 
level before being used by the FPGA.   
 The joystick interpreter, therefore, needs only to invert each of the five signals to 
generate the desired signals.  While the joystick module is not very complex, it was included in 
the design nevertheless so that the function of processing the user input is decoupled from other 
modules.  That is, if we chose to switch to a difference joystick, only the joystick interpreter 
would need to be change; all other modules will not by affected at all. 
 
 
2.3 Frog FSM 
 
The frog FSM maintains the frog’s position and state, in terms of whether the frog is jumping, 
dying, or standing idle.  It uses the four direction inputs from the joystick interpreter to move the 
frog accordingly.  It also takes in three inputs from the gameplay FSM: collided, restart, 
and velocity.  The first of these is a single bit which signifies whether the frog has collided 
with one or more of the other moving objects.  If the frog is on the road, a high value for 
collided signifies that the frog has hit and car and should die.  Likewise, if the frog is jumping 
over the river, a low value for collided means that the frog has not landed on a log or turtle, 
and has fallen in the water.  The restart signal is used to reset the frog to its initial position on 
the bottom of the screen, for example, after completing a level.  The third input, velocity, is 
the velocity of the object which has collided with the frog.  If the frog is standing on a log or 
turtle, therefore, the frog FSM uses this velocity to update the frog’s position, since the frog is 
riding the given log or turtle.   
 The frog FSM outputs three signals to the gameplay FSM: died, finished, and 
frog_ram_data.  The first of these signifies that the frog has died, and the gameplay should 
update the remaining number of lives accordingly.  The signal finished signifies that frog has 
safely reached the top of the screen, and the game should continue with the next level.  Lastly, the 
frog_ram_data is the data for this current frog state that should be stored in the ram to be 
used by the video unit. 
 The frog FSM also outputs four signals to the overlap tester module, which correspond to 
the four corners of the frog.  These four values are used by the overlap tester, along with the 
corresponding four values from an arbitrary object, to determine if the frog and the object collide 
with one another.   
 A simplified version of the state transition diagram for the frog FSM is shown in figure 3.  
The frog FSM only transitions state when the enable signal is high, so that the frog’s position and 
state and only updated once every 1/15 of a second.  Signals such as should_jump_up are 
determined not only by the input from the joystick, but also from the frog’s current position, so 
the frog is not allowed to jump beyond the edges of the screen.  While the state transition diagram 
does not shown this, the frog remains in each of the jump states for several cycles, so that a single 
jump takes around a quarter of a second.  Likewise, there are in reality several dying states, each 
corresponding to a new picture being drawn on the screen, so the animation is smooth.  The 
signal died is only asserted on the last cycle of the frog dying. 



 
2.4 Overlap Tester 
 
The overlap tester is a small piece of combinational logic that takes in four inputs, frog_left, 
frog_right, frog_top, and frog_bottom, from the frog FSM, corresponding to the 
edges of the frog, and four inputs—obj_left, obj_right, obj_top, and obj_bottom—
from the object bounds module, corresponding similarly to the edges of the object currently being 
updated in the ram.  It outputs one bit to the gamplay FSM, overlap, which is assert if and only 
if the boundaries of the frog overlap with the boundaries of the current object. 
 
2.5 Object Bounds 
 
The object bounds module takes in the 32-bit data current being read from the object RAM.  
Based on the object type and location of this data, it chooses appropriate object bounds (left, 
right, up and down) and passes the four signals to the overlap tester module.  It also outputs a 32-
bit signal, updater_ram_data, which is the ram data modified to correspond to the objects 
velocity, as well as its type—in the case of turtles, for example, the object type changes gradually 
so that turtles appear to bob up and down in the water.  As long as the updated object is still 
within the screen bounds, the gameplay FSM will use this 32-bit data to update the RAM on the 
following clock cycle. 
 
2.6 Object Placer 
 
The object placer module is responsible for placing all of the objects on the screen initially, for 
example, after a reset or at the beginning of a new level.  The object placer also places new 
objects on the screen during levels so that there are always cars and logs coming from the left and 
right sides of the screen. 
 The object placer signifies to the gameplay FSM that it is ready to place a new object by 
asserting should_add.  When the gameplay FSM asserts add_next, the RAM data for the 
new object are passed back to the gameplay FSM as placer_ram_data. 
 Internally, the object placer maintains dozens of small modules, each of which is 
responsible for determining when to place one type of new object, perhaps the left block of a log 
on a given row.  These small modules maintain two registers, most_recent_x and spacing, which 
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Figure 3: State transition diagram for the frog FSM 



hold, respectively, the most recent x position of the last object placed by the module, and the 
desired horizontal spacing between objects placed by the module.  On enable, these modules 
update most_recent_x based on the object velocity, and determine whether the next object to 
be added, given the most recent position and the spacing, would be on the screen.  If so, it signals 
that it is ready to add an object.  When signaled to do so, it latches the RAM data for the new 
object. 
 The large object placer module is responsible for maintaining each of these smaller 
modules, and routing signals accordingly so the larger module signals should_add when any 
of the small modules signal, and when add_next is asserted, the object placer module makes 
sure the correct smaller module is signaled. 
 
2.7 Object RAM 
 
The object RAM maintains, for each object on the screen, the object type, its x location, its y 
location, and its velocity, which are stored in 6, 10, 10, and 6 bits, respectively.  The object RAM 
has one write port, used by the gameplay FSM to update and add new objects, and two read ports.  
One of these read ports is used by the gameplay FSM; the other is used by the video unit to read 
the objects stored by the gameplay unit.   

For the read ports, new data is latched to the output when read enable is high.  Similarly, 
for the write port, new data is latch into the RAM when write enable is high. 
 
2.8 Gameplay FSM 
 
While the gameplay FSM controls the flow of the game, most of the bulk of the work of updating 
and moving objects is done by other modules.  The gameplay FSM is, however, chiefly 
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responsible for writing and reading to and from RAM, and supplying signals that control the other 
modules.   
 The state transition diagram for the gameplay FSM is shown in figure 4.  The basic flow 
of the FSM is as follows.  Starting in the IDLE state, the FSM waits for the enable signal before 
begin to the first stage in the game cycle, updating the objects stored in the RAM.  One by one, 
the FSM reads an object from the RAM, takes the new data from the object bounds module, and 
updates the RAM.  If the updated data is off the screen, nothing is written to the ram, and the 
write address is not incremented.  

Once all objects have been updated, the gameplay FSM then checks to see if the object 
placer is ready to add new objects.  The state BEGIN_PLACE_OBJECTS is needed because of 
the once clock cycle delay between add_next being asserted and placer_ram_data 
becoming valid.  The FSM keeps adding objects from the placer so long as should_add is 
high. 

Next, the FSM stores the frog data from the frog FSM in the RAM, and sets num_objs 
corresponding to the number of objects which are in the RAM.  Then, an additional 10 locations 
are written with the same frog data.  This is to prevent the video unit from reading junk data if the 
two are not synchronized perfectedly. 

Lastly, the FSM checks if any significant game conditions need to be handled, such as the 
frog dying or the frog finishing a level.  Once these have been handled, the FSM returns either to 
an IDLE state, or, if the frog has run out of lives or a new level was reached, to RESTART.  
Notice that, from the RESTART state, the updating the RAM objects part of the game cycle is 
skipped, because there are no valid objects in the RAM at that point.  
 
 
3 Video Unit 
 
The video unit is responsible for displaying the game data to a video screen.  The video format 
we chose is video graphics array (VGA), and we used a 640x480 bit resolution operating at 60Hz.  
The VGA output signal is generated by the ADV7125 codec, which is built into the new labkit.  
The video signal can output to any standard (LCD or other) computer monitor with the blue VGA 
pin cable.  A block diagram of the video unit can be seen in Figure 5. 
 The video unit uses a major/minor FSM structure.  The major FSM is the video FSM.  
The video FSM has three minor FSMs.  The Video Out RAM Controller controls the video output 
signals, including the horizontal and vertical syncing and blanking, as well as the ZBT SRAM 
control and addressing for video output.  The Write Blank FSM is responsible for writing a 
background screen to the ZBT SRAMs.  The background is everything that doesn’t move on the 
Frogger screen, including the road, river and grass.  It should be mentioned that 12 bits of data are 
written to the SRAM, with bits[3:0] representing red, bits [7:4] representing green, and bits[11:8] 
blue.  When data is sent to the video codec it is split up in these sections, with the lower 4 bits of 
each color being arbitrarily set to zero. 
 Finally, the Update Objects FSM is responsible for writing the moving objects to the 
ZBT SRAMs.  These include the frog, cars, logs, and turtles.  In order to update these objects, the 
Update Objects FSM must send control and address signals to the Game Unit, and receive back 
the data stored in the game unit regarding the position of each object.   
 Both ZBT SRAMs are used because as one is outputting video, the other is being 
overwritten with the next frame.  At the end of every video frame (sixty times per second) the 
SRAM controlling the video switches.  This is accomplished with the multiplexer that selects 
which SRAM data is passed to the AD7125 codec, using the video_ram_sel signal controlled by 
the video FSM. 
 Another important part of the video unit is that because all three minor FSM’s need to 
control both ZBT SRAMs at some point (either for addressing the video output, or writing data), 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5:  Video Unit Block Diagram 

 
 
 
there is some additional logic in the Video FSM that must output the correct enable and address 
signals at the correct time.  This is discussed in the next section. 
 The final module in Figure 5 is the delay unit.  This adds a two clock-cycle delay to the 
syncing and blanking signals passed to the AD7125.  This is because there is a two-cycle latency 
for the digital color signals to be converted to analog video outputs, but the sync signals are 
passed directly to the monitors.  In order for the syncing signals to correspond with the correct 
video data, this delay must be introduced. 
 
3.1 Video FSM 
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The video FSM is shown in Figure 6.  It uses a Mealy FSM structure with outputs on transitions.  
The main signals involved are shown in Table 1.  On a reset the FSM goes into the RESET state 
until reset goes high.  Then it goes into the IDLE state.  It waits in the IDLE state until it receives 
a start signal from the Video Out RAM Controller indicating that Video output has begun.  When 
this signal goes high, the Video FSM transitions into the VIDEO_OUT stage.  It also sends a 
start_blank signal to the Write Blank FSM indicating that a blank screen should be written to the 
other SRAM, changes the video ram, and sets image_out_en low.  The video output and blank 
screen writing are done in parallel in the VIDEO_OUT state, so that as video is being output from 
one of the SRAMs, every address of the other one is written the correct value for an empty 
background screen.  This allows the full screen of background to be written during the video 
output so that the objects may be written in the video blanking period.   
 When video output is completed, the FSM transitions to the UPDATE_OBJECTS state.  
On this transition start_objs is set high, as is image_out_en, which is held high during the entire 
UPDATE_OBJECTS cycle.  This results in the Update Objects FSM writing the updated images 
to the SRAM.  When the done_objs signal from the Update Objects FSM goes high, objects have 
been written, and the FSM goes back to the IDLE state waiting for the next video cycle to start.  
This is all done in 1/60th of a second every video cycle, with the majority of the time being spent 
in the VIDEO_OUT state.  The other minor FSMs are discussed briefly below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The Video FSM 
 
 
 

VIDEO_OUT 

UPDATE 
OBJECTS 

start_blank = 1 
video_ram = ~video_ram 

image_out_en = 0 

IDLE 

start _video = 1 

start_video = 0 

start_obs = 1 
image_out_en = 1 

image_out_en = 0 

done_video = 0 

done_video = 1 

done_objs = 0 

done_objs = 1 

reset = 0 
RESET 

reset = 1 



 
 
Name Type Source/destination Description 
reset Input User Causes the system to reset; disables video 
start_video Input Video_Control_FSM Indicates that video output is about to begin 
done_video Input Video_Control_FSM Indicates that video output has completed 
start_objs Output Update_Objects_FSM Starts writing the moving objects to the 

SRAMS 
done_objs Input Update_Objects_FSM Indicates that writing new objects has 

completed 
start_blank Input Write_Blank_FSM Starts writing a blank screen to the SRAMs 
image_out_en Control Video_FSM Controls whether Update Objects or Write 

Blank FSM controls SRAM 
video_ram_sel Control Video_FSM Controls which RAM outputs video 
 

Table 1:  Signals in the Video FSM 
 
 
3.2 Video Out RAM Controller 
 
The Video Out RAM Controller is basically an interpreter for the horizontal and vertical sync 
generators.  The function of the sync generators is to control the horizontal and vertical syncing 
and blanking signals.  They also keep internal counts of what row (for vertical) or column (for 
horizontal) they are on.  The Video Out RAM Controller concatenates these two values to 
generate the SRAM address, which is output through the Video FSM to the SRAM.  Each of 
these values is 10-bits, so the lowest-order 10-bits of the address is the horizontal location of the 
pixel, and bits [19:10] represent the vertical location.  The Video Controller also ensures that the 
SRAMs are in read-mode by setting oe_b low and w_b high during the video cycle. 
 
3.3 Write Blank FSM 
 
The Write Blank FSM writes the background screen to the SRAM.  When it receives a start signal 
from the Video FSM, it starts at location zero and writes 23x30 bit blocks across the screen.  The 
color of the block to be written is determined by the Background ROM, which allows a different 
color to be written to every block.  The Background ROM is an asynchronous ROM with a nine-
bit address, representing the location (in blocks) of the image on the screen.  The five lowest-
order bits represent the horizontal block address, and the four most-significant bits represent the 
vertical address.  The Background Writer module takes in the horizontal and vertical block 
numbers and outputs the correct color to every individual pixel in that block. 
 
3.4 Update Objects FSM 
 
The Update Objects FSM is similar to the Write Blank FSM.  On receiving the start_objs signal 
from the Video FSM it begins, accessing the game kit for information on the object type and 
location at location zero.  Then it sends this data to the Image Writer, which accesses the Image 
ROM for the color information about the specific image to be written and sends the color data to 
the SRAM with the correct addressing information.  When the Image Writer is done with an 
image, the Update Objects FSM moves onto the next location in the game unit’s ram until all of 
the objects have been written.  The num_objs input from the game unit determines this threshold 
value.   



4 Testing/Debugging 
 
The testing and debugging process was long and gradual.  The complexities of the game unit 
made it difficult to test until the video unit could display things properly on the screen, so that 
was our first goal. 
 Testing the video unit consisted of several steps.  The first step Cory took was using the 
sync generators to create a signal the could be sent the the AD7125 codec and output a colored 
screen (keeping the red, green, and blue pins constant).  This step was quick, and there were no 
problems.  The second step was interfacing the video to read from a ZBT SRAM.  This involved 
building controllers to both write and read from the SRAMS.  The reason we needed to be able to 
write to them was that the SRAMs contained random data on startup, so they needed to be 
blanked to see if we could display a pixel in specific locations.  When this step was complete we 
could combine our units for the first time, and Nate could check if we were able to control the 
movement of the frog (a single white pixel on a black screen) correctly.   
 Once this was working we worked on creating a system to display all of the objects from 
the game unit on the screen.  This was done by displaying different colored boxes for each object 
type.  This allowed us to test and debug issues with the game unit. 
 Attempting to simulate an entire working game can be tedious and often uninformative, 
since problems may get lost in the thousands of transitioning signals.  Therefore, the smaller parts 
of the game unit were simulated, starting with the  pieces of combinational logic such as the 
interpreter, the object bounds, and the overlap tester.  The small modules not mentioned in the 
description in section 2 were also simulated.  Once these were working, the more complex parts, 
such as the object placer and the frog FSM were tested.   Once these were all tested and 
simulating correctly, the gameplay FSM and the RAM were tested, first without input from other 
modules.  Gradually, more modules were connected and simulated together; however, as the 
circuit became more complex and more objects were present, simulations became overly large 
and difficult to examine, and therefore, less useful.  At this point, luckily, the video unit was 
working, so that the gameplay unit could be tested by actually playing the game.  Simulations 
were still used after this point, but generally only to find the source of a problem identified with 
the help of the video unit. 
 The only part of the gameplay unit that caused significant difficulties was the transition 
between levels.  The relative timing of the objects and the frog being updated caused quite a few 
errors.  This caused us to changed the design of the two FSMs slightly, and finally, the levels 
work correctly. 
 Burning the images to a ROM was a tedious final step.  We were unable to get any of the 
automatic file generating scripts working, so we were forced to hand code the images onto a .coe 
file.  Because of the building up process of the previous tests, all we had to do was replace the 
ROM that generated colored blocks with the one that generated images, and this worked on the 
first try. 
 
 
5 Conclusion 
 
The laboratory project was a success.  Both the gameplay unit and the video unit functioned 
correctly.  While programming the ROM bit by bit for each of the 1380 pixels for each of a few 
dozen images was tedious, the effort paid off because the graphics looked better than we had 
hoped.  Debugging a system as large as this was often frustrating, especially when seemingly 
minor changes in one unit caused major errors in the other unit.  However, all these problems 
were solved and the Frogger game worked correctly, and looked almost like the arcade version. 


