Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.111 - Introductory Digital Systems Laboratory

Problem Set 1 Solutions

Issued: February 13, 2004

Problem 1: Boolean Algebra Practice Problems (Problem 1 was not graded.)

1) $a+0=a$
2) $\bar{a} \cdot 0=0$
3) $a+\bar{a}=1$
4) $a+a=a$
5) $a+a b=a(1+b)=a$
6) $a+\bar{a} b=(a+\bar{a})(a+b)=a+b$
7) $a(\bar{a}+b)=a \bar{a}+a b=a b$
8) $a b+\bar{a} b=b(a+\bar{a})=b$
9) $(\bar{a}+\bar{b})(\bar{a}+b)=\bar{a} \bar{a}+\bar{a} b+\bar{b} \bar{a}+\bar{b} b=\bar{a}+\bar{a} b+\overline{a b}=\bar{a}(1+b+\bar{b})=\bar{a}$
10) $a(a+b+c+\ldots)=a a+a b+a c+\ldots=a+a b+a c+\ldots=a$
11) $f(a, b, a b)=a+b+a b=a+b$
12) $f(a, b, \bar{a} \cdot \bar{b})=a+b+\bar{a} \bar{b}=a+b+\bar{a}=1$
13) $f[a, b, \overline{(a b)}]=a+b+\overline{(a b)}=a+b+\bar{a}+\bar{b}=1$
14) $y+y \bar{y}=y$
15) $x y+x \bar{y}=x(y+\bar{y})=x$
16) $\bar{x}+y \bar{x}=\bar{x}(1+y)=\bar{x}$
17) $(w+\bar{x}+y+\bar{z}) y=y$
18) $(x+\bar{y})(x+y)=x$
19) $w+[w+(w x)]=w$
20) $x[x+(x y)]=x$
21) $\overline{(\bar{x}+\bar{x})}=x$
22) $\overline{(x+\bar{x})}=0$
23) $w+(w \bar{x} y z)=w(1+\bar{x} y z)=w$
24) $\bar{w} \cdot \overline{(w x y z)}=\bar{w}(\bar{w}+\bar{x}+\bar{y}+\bar{z})=\bar{w}$
25) $x z+\bar{x} y+z y=x z+\bar{x} y$
26) $(x+z)(\bar{x}+y)(z+y)=(x+z)(\bar{x}+y)$
27) $\bar{x}+\bar{y}+x y \bar{z}=\bar{x}+\bar{y}+\bar{z}$

Problem 2: Karnaugh Maps and Minimal Expressions

It is best to approach each expression by first simplifying it using Boolean algebra learned Problem 1. If you can put the expression into a product-of-sums or sum-ofproducts form (not necessary minimal), then it is very easy to declare when the expression is a 0 or a 1 , respectively.

$$
\text { 1) } \begin{aligned}
& (a+b \cdot \bar{c})+d \cdot(\bar{a} \cdot \bar{b} \cdot \bar{c}+a \cdot b) \\
= & a+b \cdot \bar{c}+\bar{a} \cdot \bar{b} \cdot \bar{c} \cdot d+a \cdot b \cdot d \\
= & a+b \cdot \bar{c}+\bar{a} \cdot \bar{b} \cdot \bar{c} \cdot d
\end{aligned}
$$

i)

	000	00	0	
	000	0		
	00	10	0	
	00	1		
	010	00	0	
	010	0	1	
	01	10	0	
	01	1		
	10	00	0	
	10	0	1	
	10	10	0	
	10	1	1	
	11	00	0	
	11	0	1	
	1	10	0	
	1	1		

$$
\begin{aligned}
& \text { 2) }(\bar{d}+b \cdot \bar{c}) \cdot(c \cdot d+(\bar{a}+c) \cdot(\bar{c}+d)) \cdot(b+\bar{c}) \\
&=(\bar{d}+\cdot b \cdot \bar{c}) \cdot(c \cdot d+\bar{a} \cdot \bar{c}+\bar{a} \cdot d+\bar{c} \cdot c+c \cdot d) \cdot(b+\bar{c}) \\
&=(\bar{d}+b \cdot \bar{c}) \cdot(b+\bar{c}) \cdot(c \cdot d+\bar{a} \cdot \bar{c}+\bar{a} \cdot d) \\
&=(b \cdot \bar{d}+b \cdot \bar{c}+b \cdot \bar{c}+\bar{c} \cdot \bar{d}) \cdot(c \cdot d+\bar{a} \cdot \bar{c}+\bar{a} \cdot d) \\
&= b \cdot \bar{d} \cdot c \cdot d+\bar{a} \cdot b \cdot \bar{c} \cdot \bar{d}+a \cdot b \cdot d \cdot \bar{d}+b \cdot \bar{c} \cdot c \cdot d+\bar{a} \cdot b \cdot \bar{c}+\bar{a} \cdot \bar{c} \cdot \bar{d} \\
&=\bar{a} \cdot b \cdot \bar{c} \cdot \bar{d}+\bar{a} \cdot \bar{c} \cdot \bar{c}+\bar{a} \cdot \bar{c} \cdot \bar{d} \\
&= \bar{a} \cdot b \cdot \bar{c}+\bar{a} \cdot \bar{c} \cdot \bar{d}
\end{aligned}
$$

i)

a	b	c	d	\mathbf{e}
\mathbf{x}				
0	0		\mathbf{p}	
0	0	0	$\mathbf{1}$	
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{0}$
0	0	1	1	$\mathbf{0}$
0	1	0	0	$\mathbf{1}$
0	1	0	1	$\mathbf{1}$
0	1	1	0	$\mathbf{0}$
0	1	1	1	$\mathbf{0}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	$\mathbf{0}$
1	0	1	1	$\mathbf{0}$
1	1	0	0	$\mathbf{0}$
1	1	0	1	$\mathbf{0}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{0}$

ii)

iii)
$M S P=\bar{a} \cdot \bar{c} \cdot \bar{d}+\bar{a} \cdot b \cdot \bar{c}$
iv)
$M P S=\bar{a} \cdot \bar{c} \cdot(b+\bar{d})$

$$
\begin{aligned}
& \text { 3) } \overline{(w \cdot y)} \cdot(\bar{w}+\bar{y}+z) \cdot(w+x+\bar{y}) \\
& =(\bar{w}+\bar{y}) \cdot(\bar{w}+\bar{y}+z) \cdot(w+x+\bar{y}) \\
& =(\bar{w}+\bar{y}) \cdot(w+x+\bar{y})
\end{aligned}
$$

i)

| \boldsymbol{w} | x | y | z | \mathbf{e} |
| :--- | :--- | :--- | :--- | :--- | :--- |

wx		- MSP		. MPS
yz	00	01	11	10
00	1--		1	1
	11	[101	1	1
11	0	$\left\lvert\, \begin{array}{lll}1 & & 1 \\ 1 & 1 & 1 \\ 1 & & 1\end{array}\right.$	0	0
10	0	$\left\lvert\, \begin{array}{ccc}1 & & \\ 1 & 1 & 1 \\ 1 & - & \prime\end{array}\right.$	0	0
iii)				
$M S P=\bar{y}+\bar{w} \cdot x$				
iv)				
MPS $=(\bar{w}+\bar{y}) \cdot(x+\bar{y})$				

Problem 3: Karnaugh Maps with "Don't Cares"

1)

i) $M S P=\bar{c} \cdot \bar{d}+\bar{a} \cdot \bar{c}+\bar{b} \cdot c$
ii) $M P S=(\bar{b}+\bar{c}) \cdot(\bar{a}+c+\bar{d})$
iii) Yes, the solutions are unique.
iv) Yes. We can tell that the MSP=MPS, without algebra, if their groupings on the Karnaugh map do not overlap and collectively cover the map.
2)

i) $M S P=b \cdot \bar{c} \cdot \bar{d}+\bar{a} \cdot \bar{b} \cdot \bar{d}+\bar{b} \cdot c \cdot d$
ii) $M P S=(c+\bar{d}) \cdot(\bar{b}+\bar{c}) \cdot(\bar{a}+b+d)$
iii) Yes, the solutions are unique. But, consider a similar K-map with the following groupings:

In this case, neither the MSP nor the MPS are unique since the following groupings are also valid. But in both groupings, the MSP=MPS.

iv) Yes, the MSP equals the MPS.

Problem 4: DeMorgan's Theorem

$$
\text { 1) } \begin{aligned}
& \overline{(\bar{a}+d)} \cdot \overline{(\bar{a}+\bar{c})} \\
&=\overline{(\bar{a}+d)}+(\overline{(\bar{a}+\bar{c})} \\
&=(\bar{a}+d)+(\bar{a}+\bar{c}) \\
&= \bar{a}+\bar{c}+d
\end{aligned}
$$

2) $\overline{a \cdot b \cdot c}$ (already simplified)

$$
\text { 3) } \begin{aligned}
\overline{a+d} \cdot \overline{\bar{a}+\bar{c}} \cdot \overline{c+\bar{d}} \\
=(\bar{a} \cdot \bar{d}) \cdot(\overline{\bar{a}} \overline{\bar{c}}) \cdot(\overline{\bar{c}} \cdot \overline{\bar{d}}) \\
=(\bar{a} \cdot \bar{d}) \cdot(a \cdot c) \cdot(\bar{c} \cdot d) \\
=0
\end{aligned}
$$

Problem 5: Setup and Hold Times for D Flip-Flop

1) The setup time is twice the delay of the inverter. The hold time is zero.
2) The new memory element is a negative-edge triggered flip flop.
3) The setup time is $2 t_{i n v}$, the hold time is zero, and the clock to Q delay is $2 t_{i n v}$.
