Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.111 - Introductory Digital Systems Laboratory

Problem Set 1 Solutions

Issued: February 13, 2004

Problem 1: Boolean Algebra Practice Problems (Problem 1 was not graded.)

1) a + 0 = a2) $\bar{a} \cdot 0 = 0$ 3) $a + \bar{a} = 1$ 4) a + a = a5) a + ab = a(1+b) = a6) a + ab = (a + a)(a + b) = a + b7) $a(\overline{a}+b) = a\overline{a}+ab = ab$ 8) $ab + \bar{a}b = b(a + \bar{a}) = b$ 9) $(\overline{a} + \overline{b})(\overline{a} + b) = \overline{aa} + \overline{ab} + \overline{ba} + \overline{bb} = \overline{a} + \overline{ab} + \overline{ab} = \overline{a}(1 + b + \overline{b}) = \overline{a}$ 10) a(a+b+c+...) = aa+ab+ac+... = a+ab+ac+... = a11) f(a,b,ab) = a+b+ab = a+b12) $f(a,b,\overline{a}\cdot\overline{b}) = a+b+\overline{ab} = a+b+\overline{a} = 1$ 13) $f[a,b,\overline{(ab)}] = a + b + \overline{(ab)} = a + b + \overline{a} + \overline{b} = 1$ 14) $y + y\bar{y} = y$ 15) $xy + x\overline{y} = x(y + \overline{y}) = x$ 16) $\bar{x} + v\bar{x} = \bar{x}(1 + v) = \bar{x}$ 17) $(w + \bar{x} + y + \bar{z})y = y$ 18) (x + y)(x + y) = x19) w + [w + (wx)] = w20) x[x + (xy)] = x21) $\overline{(x+x)} = x$ 22) $\overline{(x+x)} = 0$ 23) w + (wxyz) = w(1 + xyz) = w24) $\overline{w} \cdot \overline{(wxyz)} = \overline{w}(\overline{w} + \overline{x} + \overline{y} + \overline{z}) = \overline{w}$ 25) $xz + \overline{xy} + zy = xz + \overline{xy}$ 26) (x+z)(x+y)(z+y) = (x+z)(x+y)27) $\overline{x} + \overline{y} + x\overline{y}\overline{z} = \overline{x} + \overline{y} + \overline{z}$

Problem 2: Karnaugh Maps and Minimal Expressions

It is best to approach each expression by first simplifying it using Boolean algebra learned Problem 1. If you can put the expression into a product-of-sums or sum-of-products form (not necessary minimal), then it is very easy to declare when the expression is a 0 or a 1, respectively.

1)
$$(a+b\cdot c) + d \cdot (\overline{a} \cdot \overline{b} \cdot \overline{c} + a \cdot b)$$

= $a+b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot b \cdot d$
= $a+b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d$

i)

a	b	с	d	e
				X
				р
				r
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2)
$$(\overline{d} + b \cdot \overline{c}) \cdot (c \cdot d + (\overline{a} + c) \cdot (\overline{c} + d)) \cdot (b + \overline{c})$$

= $(\overline{d} + b \cdot \overline{c}) \cdot (c \cdot d + \overline{a} \cdot \overline{c} + \overline{a} \cdot d + \overline{c} \cdot c + c \cdot d) \cdot (b + \overline{c})$
= $(\overline{d} + b \cdot \overline{c}) \cdot (b + \overline{c}) \cdot (c \cdot d + \overline{a} \cdot \overline{c} + \overline{a} \cdot d)$
= $(b \cdot \overline{d} + b \cdot \overline{c} + b \cdot \overline{c} + \overline{c} \cdot \overline{d}) \cdot (c \cdot d + \overline{a} \cdot \overline{c} + \overline{a} \cdot d)$
= $b \cdot \overline{d} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot d \cdot \overline{d} + b \cdot \overline{c} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{c} \cdot \overline{d}$
= $\overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{c} \cdot \overline{d}$

i)

a	b	c	d	e
				X
				р
				r
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

ii) ab 00 01 11 10 cd -----...... 1 ~ 00 1 1 0 0 1 0 -----T 01 0 0 I. 0 11 0 0 0 ł Ì ••••• 10 0 0 0 0 ----······

$$MSP = \overrightarrow{a \cdot c} \cdot \overrightarrow{d} + \overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$$

$$iv)$$
$$MPS = \overline{a} \cdot \overline{c} \cdot (b + \overline{d})$$

3)
$$\overline{(w \cdot y)} \cdot \overline{(w + y + z)} \cdot (w + x + \overline{y})$$

= $\overline{(w + y)} \cdot \overline{(w + y + z)} \cdot (w + x + \overline{y})$
= $\overline{(w + y)} \cdot (w + x + \overline{y})$

i)

W	Х	У	Z	e
				X
				р
				r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$$iv)$$
$$MPS = (w + y) \cdot (x + y)$$

Problem 3: Karnaugh Maps with "Don't Cares"

i)
$$MSP = \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{c} + \overline{b} \cdot c$$

ii) $MPS = (\overline{b} + \overline{c}) \cdot (\overline{a} + c + \overline{d})$

iii) Yes, the solutions are unique.

iv) Yes. We can tell that the MSP=MPS, without algebra, if their groupings on the Karnaugh map do not overlap and collectively cover the map.

i) $MSP = b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot \overline{d} + \overline{b} \cdot c \cdot d$ *ii)* $MPS = (c + \overline{d}) \cdot (\overline{b} + \overline{c}) \cdot (\overline{a} + b + d)$

iii) Yes, the solutions are unique. But, consider a similar K-map with the following groupings:

In this case, neither the MSP nor the MPS are unique since the following groupings are also valid. But in both groupings, the MSP=MPS.

iv) Yes, the MSP equals the MPS.

Problem 4: DeMorgan's Theorem

1)
$$(\overline{a} + d) \cdot (\overline{a} + \overline{c})$$

$$= \overline{(\overline{a} + d)} + \overline{(\overline{a} + \overline{c})}$$

$$= (\overline{a} + d) + (\overline{a} + \overline{c})$$

$$= \overline{a} + \overline{c} + d$$

2) $\overline{a \cdot b \cdot c}$ (already simplified)

3)
$$\overline{a+d} \cdot \overline{\overline{a+c}} \cdot \overline{\overline{c+d}}$$

= $(\overline{a} \cdot \overline{d}) \cdot (\overline{a} \cdot \overline{c}) \cdot (\overline{c} \cdot \overline{d})$
= $(\overline{a} \cdot \overline{d}) \cdot (a \cdot c) \cdot (\overline{c} \cdot d)$
= 0

Problem 5: Setup and Hold Times for D Flip-Flop

- 1) The setup time is twice the delay of the inverter. The hold time is zero.
- 2) The new memory element is a <u>negative</u>-edge triggered flip flop.
- 3) The setup time is $2t_{inv}$, the hold time is zero, and the clock to Q delay is $2t_{inv}$.