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Problem 1 – Convolution 
 
Part (a) 
We can answer this problem using the convolution sum or the flip and shift method. 
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Part (d) 
 
For this part we consider a multiply-accumulate module of the form similar to the one to be used 
in Lab 3.  
 
The multiplication of two eight-bit numbers requires 16 output bits. The fact that we are using a 
10-tap filter means that we will need to accumulate ten 16-bit numbers. The summation of ten 
product terms affects the width of the adder by requiring the addition of the binary representation 
of 10 (4’b1010) with the width of the multiplier output (16 bits). Thus we have 16 + 4 = 20 bits.  
 
Problem 2 – Two’s Complement Multiplier 
 
Several methods of designing an 8x8 multiplier are possible for this problem. The easiest 
approach is to use unsigned multiplication using the * multiply operation in Verilog and then 
accounting for the sign on the MSB. The Verilog code and screen capture for this approach are 
provided below. In this solution we present both a blocking solution (asynchronous) and a non-
blocking (synchronous) solution. The synchronous solution pipelines the logic from the 
asynchronous solution.  There is a delay of four clock cycles associated with using the 
synchronous multiplier. Please note that we account for both zero representations in magnitude 
representation by checking for this condition on the input y. 
 
Other approaches are possible for answering this question.  One possible alternative was to 
implement an 8x8 Baugh-Wooley multiplier based off the 4x4 implementation presented in 
Lecture 8.  
 
Asynchronous Multiplier 
 
//8x8 Multiplier (Two's Complement x Magnitude) 
module twos_compliment_multiplier (x, y, z); 
 input [7:0] x, y; 
 output [15:0] z;  
 wire [7:0] x_neg, y_neg; 
 wire [15:0] z_pos, z_neg, z;   
    
 assign x_neg = (x == 8'b0) ? 8'b0: (~x + 1);    
      assign y_neg = (y == 8'b0 || y == 8’b10000000) ? 8'b0: (~y + 1);  
 assign z_pos = (x[7] ? x_neg : x) * (y[7] ? y_neg : y); 
 assign z_neg = (z_pos == 8'b0) ? 8'b0 : (~z_pos + 1); 
 assign z = (x[7] ^ y[7]) ? z_neg : z_pos;   
endmodule 
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Synchronous Multiplier 
 
module synch_twosmult (clk, reset, x, y, z); 
input clk, reset; 
input [7:0] x, y; 
output [15:0] z; 
reg [7:0] x_d0, y_d0, x_d1, y_d1, x_d2, y_d2, x_d3, y_d3; //delay registers 
reg [7:0] x_neg, y_neg; 
reg [15:0] z_pos, z_neg, z_pos_d1; 
reg [15:0] z; 
 
always @ (posedge clk or negedge reset)   begin 
   x_d0 <= x; 
   y_d0 <= y; 
   x_d1 <= x_d0; 
   y_d1 <= y_d0; 
   x_d2 <= x_d1; 
   y_d2 <= y_d1; 
   x_d3 <= x_d2; 
   y_d3 <= y_d2; 
   z_pos_d1 <= z_pos; 
  
     if (x_d0 == 8'b0) begin 
        x_neg <= 8'b0; 
     end else begin 
        x_neg <= ~x_d0 + 1; 
  end 
  if (y_d0 == 8'b0 || y_d0 == 8'b10000000) begin 
        y_neg <= 8'b00000000; 
     end else begin 
        y_neg <= ~y_d0 + 1; 
  end 
   
  if (x_d1[7] == 1'b1 & y_d1[7] == 1'b1) begin 
  z_pos <= x_neg * y_neg; 
  end else if (x_d1[7] == 1'b1 & y_d1[7] == 1'b0) begin 
  z_pos <= x_neg * y_d1; 
  end else if (x_d1[7] == 1'b0 & y_d1[7] == 1'b1) begin 
  z_pos <= x_d1 * y_neg; 
  end else if (x_d1[7] == 1'b0 & y_d1[7] == 1'b0) begin 
  z_pos <= x_d1 * y_d1; 
 end 
 
 if (z_pos == 16'b0) begin 
     z_neg <= 16'b0; 
 end else begin 
  z_neg <= (~z_pos + 1); 
 end 
 
 if (x_d3[7] ^ y_d3[7]) begin 
  z <= z_neg; 
 end else begin 
  z <= z_pos_d1; 
 end 
   end 
endmodule 
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Testbench (for Synchronous Multiplier) 
 
module twosmult_tb; 
 
reg clk, reset; 
reg [7:0] x, y; 
wire [15:0] z; 
 
synch_twosmult mult1 
( 
.clk(clk), 
.reset(reset), 
.x(x), 
.y(y), 
.z(z) 
); 
 
always #50 clk = ~clk; 
 
initial begin 
 x = 0; 
 y = 0; 
 clk = 0; 
 reset = 0; 
 #100 
 reset = 1; 
 #100 
 x = 8'd0; 
 y = 8'd50; 
 #100 
 x = 8'd1; 
 y = 8'd50; 
 #100 
 x = 8'b11111111; // x = -1 
 y = 8'd50; 
 #100 
 x = 8'b01111111; 
 y = 8'b01111111; 
 #100 
 x = 8'b11111111; 
 y = 8'b01111111; 
 #100 
 x = 8'd50; 
 y = 8'b10000000; 
end 
endmodule 
 

 
Note that we handle the Magnitude Case where y = 8’b10000000. There is a delay of four clock 

cycles using this multiplier. 
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Problem 3 – Critical Path Timing Analysis 
 

 
For each 4-bit carry bypass adder the critical path for generation of the carry out bit must go 
through one P, G unit (1 unit) and four full adders (4 units) for a total of 5 units.   
 
Each BP signal BP, BP2, BP3, etc… are generated in parallel and equally affect the critical path 
so we only need to add the contribution of generating the carry out bit for a 4-bit adder once. 
 
For the critical path computation we consider the path originating from the leftmost 4-bit adder 
because it must bypass the most 4-bit adder units (i.e. travel through the most 2:1 multiplexors). 
For the case shown above we pass through three 2:1 multiplexors (3 units).  
 
Finally, the critical path is dependent on the computation of the most significant sum bit (S15) 
which is a function of the propagate and carry-in bit (S15 = P15 xor Ci,15). Ci,15 is a function of the 
final 4-bit adder so the critical path must pass through an additional 4 full adders (4 units).  
 
Adding up the critical path we have 5 + 3 + 4 = 12 units. In summary, that is 5 units for the first 
4-bit adder, 3 units for the 2:1 multiplexors, and 4 units for the final sum bit computation which is 
a function of Ci,15. 
 
Problem 4 - FIFO Design and Major/Minor FSMs 
 
A parameterized RAM was created using MaxPlusII’s MegaWizard 
(http://web.mit.edu/6.111/www/s2004/software.html#rom --  adjust directions for RAM) using 
the following memory initialization file.  
 

-- MEMORY INITIALIZATION FILE  
-- EXAMPLE DATA FOR AN 8x8 ROM 
 
WIDTH = 8;  % WIDTH OF OUTPUT IS REQUIRED, ENTER A DECIMAL VALUE % 
DEPTH = 8;  % DEPTH OF MEMORY IS REQUIRED, ENTER A DECIMAL VALUE % 
 
ADDRESS_RADIX = HEX;  % Address and data radixes are optional, default is 
hex % 
DATA_RADIX = HEX;     % Valid radixes = BIN,DEC,HEX or OCT  % 
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CONTENT BEGIN 
        0       :       07;  % ADDRESS :  VALUE % 
        1       :       06; 
        2       :       05; 
        3       :       04; 
        4       :       03; 
        5       :       02; 
        6       :       01; 
        7       :       00; 
 8 : 10; 
 9 : 20; 
 A : 30; 
 B : 40; 
 C : 50; 
 D : 60; 
 E : 70; 
 F : 80; 
END; 
 
-- SHORTCUTS FOR SPECIFYING CONTENTS  
--   [0..FF]    :       0;   % Range--Every address from 0 to FF = 0% 
--      D       :       7;      % Single address--Address D = 7 % 
--      6       :       9 C 8;  % Range starting from specific address--% 
-- If there are multiple values for the same address only the last value 
is used 

 
 

The following module was automatically generated: 
 

module ram8x16 (address,inclock,we,data,q); 
 
 input [3:0]  address; 
 input   inclock; 
 input   we; 
 input [7:0]  data; 
 output [7:0]  q; 
 
 wire [7:0] sub_wire0; 
 wire [7:0] q = sub_wire0[7:0]; 
 
 lpm_ram_dq lpm_ram_dq_component ( 
    .address (address), 
    .inclock (inclock), 
    .data (data), 
    .we (we), 
    .q (sub_wire0)); 
 defparam 
  lpm_ram_dq_component.lpm_width = 8, 
  lpm_ram_dq_component.lpm_widthad = 4, 
  lpm_ram_dq_component.lpm_indata = "REGISTERED", 
  lpm_ram_dq_component.lpm_address_control = "REGISTERED", 
  lpm_ram_dq_component.lpm_outdata = "UNREGISTERED", 
  lpm_ram_dq_component.lpm_file = "U:/ps3.mif", 
  lpm_ram_dq_component.lpm_hint = "USE_EAB=ON"; 
 
 
endmodule 

 
 
The FSM for our FIFO controller consists of five states, one for initialization of internal 
variables, one for an idle state that waits for queue or dequeue operations, two for the queue 
operation, and one for the dequeue operation. 
 
The queue operation requires two states since it entails a write—one state to setup address and 
data and one state to pulse write enable. The dequeue operation—just a read—requires one state 
to setup the address. 
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The following are a state transition diagram and the Verilog code implementation. 
 

 

Q1

qu = 1 | addr = tail, data = 
data_in

reset = 1 | head = 0, tail = 0, 
we = 0

Q2

* | we = 1

* | tail++, we = 0

DQ

dq = 1 | addr = head

* | head++
IDLE

INIT

*

 
 

module FIFO (clk, reset, qu, dqu, data, out, tail, head, addr, we, 
tail_int, head_int); 
  
 input clk, qu, dqu, reset; 
 input [7:0] data; 
 output [7:0] out; 
 output [3:0] head, tail, addr, tail_int, head_int; 
 output we; 
 
 reg [7:0] out_ram; 
 reg [7:0] data_ram; 
 reg [3:0] addr, addr_int, head, head_int, tail, tail_int; 
 reg we, we_int, out_oen, out_oen_int; 
 reg [2:0] state, next; 
 
 parameter INIT = 0; 
 parameter IDLE = 1; 
 parameter Q1 = 2; 
 parameter Q2 = 3; 
 parameter DQ = 4; 
 
 assign out = (out_oen) ? out_ram : 8'bZ; 
 
 ram8x16 myram ( 
  .address(addr), 
  .inclock(clk), 
  .we(we), 
  .data(data_ram), 
  .q(out_ram) 
 ); 
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 always @ (posedge clk) begin 
  if (reset) begin 
   state <= INIT; 
  end 
  else state <= next; 
   
  addr <= addr_int; 
  tail <= tail_int; 
  head <= head_int; 
  we <= we_int; 
  out_oen <= out_oen_int; 
  
  if (next == Q1) data_ram <= data; 
 end 
 
 
 always @ (state or dqu or qu or reset) begin 
  tail_int = tail; 
  head_int = head; 
  we_int = 0; 
  addr_int = addr; 
  out_oen_int = out_oen; 
   
 
  if (state == INIT) begin 
   tail_int = 0; 
   head_int = 0; 
   addr_int = 0; 
   out_oen_int = 0; 
   next = IDLE; 
  end 
  else if ((state == IDLE) && (qu)) begin  // do a queue 
operation 
   addr_int = tail; 
   out_oen_int = 0; 
   next = Q1; 
  end 
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else if ((state == IDLE) && (dqu)) begin  // do a dequeue operation 
   addr_int = head; 
   out_oen_int = 1; 
   next = DQ; 
  end 
  else if (state == Q1) begin 
   we_int = 1; 
   next = Q2; 
  end 
  else if (state == Q2) begin  // incr the tail after a queue 
   tail_int = tail + 1; 
   next = IDLE; 
  end 
  else if (state == DQ) begin  // incr the head after a 
dequeue 
   head_int = head + 1; 
   next = IDLE; 
  end 
  else 
   next = IDLE; 
 end 
 
 
endmodule 

 

In the Verilog code, we instantiate the RAM we created in our earlier part. There are two internal 
variables to keep track of the tail and the head of the FIFO. On a queue operation, the address 
(tail) and data are first established, and write enable is pulsed in the next cycle. We return to the 
idle state on the next cycle while incrementing our tail pointer. Note that we rely on the 
contamination time of the combinational logic to hold our address. On a dequeue operation, the 
address (head) is established and it takes one cycle for the data to appear at the output. Upon 
returning to the idle state, we increment our head pointer. Also, as an optional feature the output 
is tristated during queue operations. 
 
The following is the simulation waveform from MaxPlusII. 
 

 
 
 


