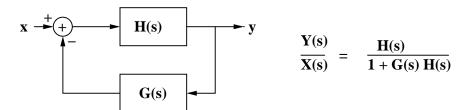


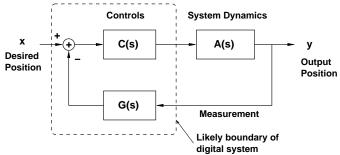
Motors and Position Determination

L17 6.111 Fall 2003 - Introductory Digital Systems Laboratory



Controlling Position

- Feedback is used to control position.
 - Measure the position, subtract a function of it from the desired position and then use this resulting signal to drive the system towards the desired position. This is negative feedback.
 - □ The natural frequencies of the feedback system are the "zeros" of
 - 1 + G(s)H(s).
 - The total system is unstable if these "zeros" are in the right half plane (RHP).
 With 180 degrees phase shift, "negative" feedback becomes "positive" feedback.
 - So we want these "zeros" to be in the left half plane (LHP).
 - Putting an integrator into H(s) drives steady state error to zero.
 - But high order systems are more likely to have RHP zeros.
 - Time delay and high gain lead to RHP zeros.



Servos

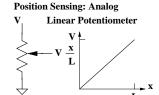
- We can control parts of the servo, but the system dynamics is often a part we can't control.
 - ☐ The system dynamics results from masses. springs, losses, etc.
- Likely, we will implement servos as digital systems.
 - □ Digital systems are more flexible to design.
 - They are more repeatable; they are not subject to gain drift.
 - We can use as many bits as we like so we can keep the computation noise small.
 - □ Digital systems can have significant delays.
 - These delays are sometimes fixed, but are sometimes stochastic.

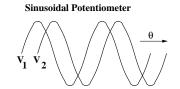
L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory

Analog Position Measurements

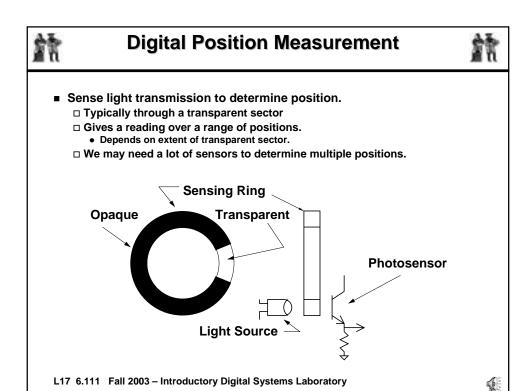
Voltage is proportional to position.

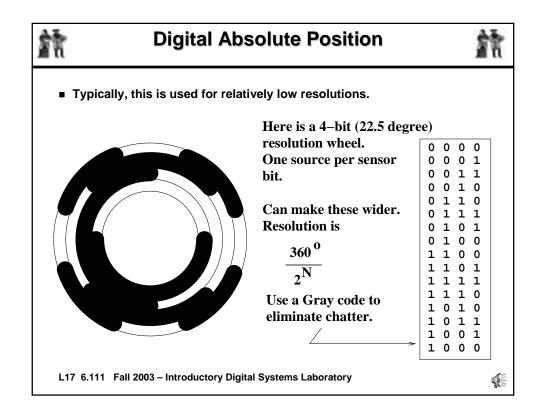
A linear or rotary potentiometer can be used.

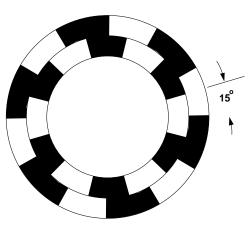

Accuracy is limited to that of the potentiometer and the noise of the power supply voltage.


Two sinusoidal potentiometers are used.

V1 = V0 cos (theta) V2 = V0 sin (theta)


This can also be done magnetically.

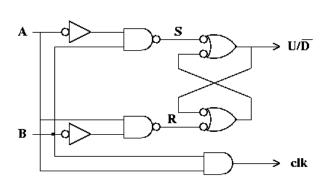

This is called a resolver and requires a complex analog signal detection. The computation can be done with either analog or digital circuitry.

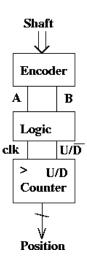


Two-Phase Encoder

- Two Source Sensor Sets
 - ☐ Their position is offset by half the sector width.
 - $\hfill\Box$ This example has 30 degree sectors
 - $\hfill\Box$ and 15 degree resolution.

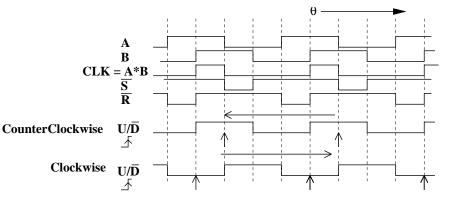
L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory


か


Use of Two-Phase Encoder

€E

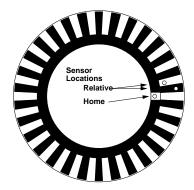
- This circuit generates:
 - □ An Up/Down signal depending on whether the motion is clockwise (CW) or counterclockwise (CCW).
 - □ A clk signal which rising edge is to operate the counter.



Waveforms

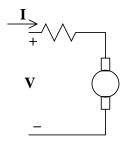
- A and B are signals derived from sensors.
- Rotating one way, the rising edge of clk is when U/D is high.
- Rotating the other way, the rising edge of clk is when U/D is low.

L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory



Another Way of Making an Encoder

- Use two sensors like the two-phase encoder but use only one ring and displace the sensors by ½ band.
- Add another ring and a sensor to sense the "home" position.

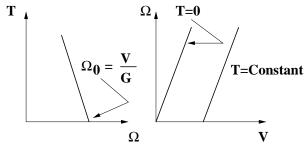


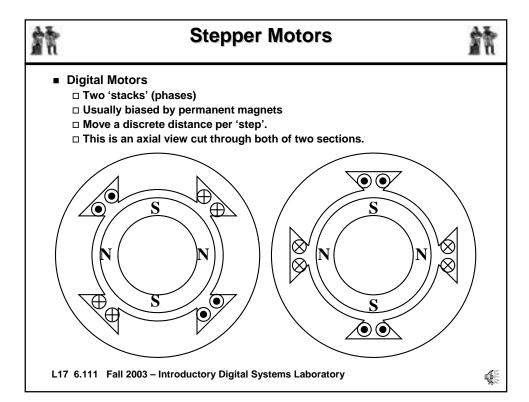
Motors

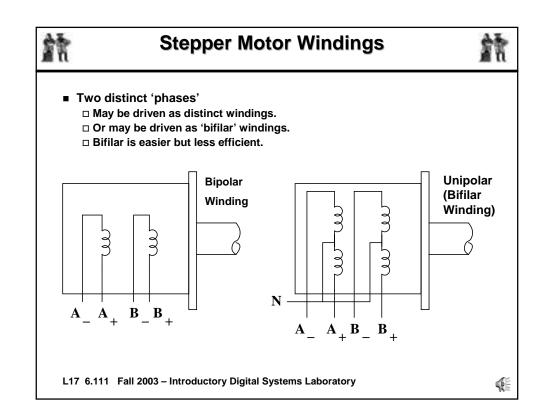
- Simple servomechanisms are made with DC motors.
 - □ DC motor model is very simple:
 - It consists of a resistor in series with a voltage source.
 - The voltage source is proportional to the rotational speed.
 - $\hfill\Box$ The mechanical system (controlled system) determines the speed as influenced by the torque.

$$V = G \Omega + R I$$
Torque $T = G I$

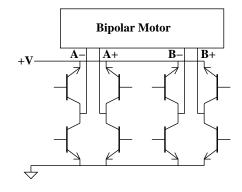
L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory

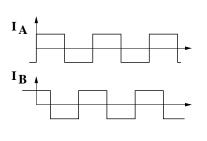



Permanent Magnet DC Motors



- They are very commonly used.
 - ☐ The 'Back Voltage' is proportional to speed.
 - ☐ The torque is proportional to the current.
- Servo Strategy:
 - □ Command torque by setting current.
 - □ Measure the speed.
- Running open loop:
 - ☐ There is a 'zero torque' speed.
 - $\hfill\Box$ Torque is proportional to the difference from that speed.

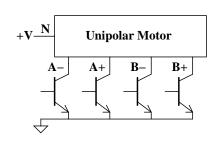


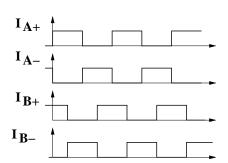


Bipolar Winding

- Driven by 'H-bridges' of transistors
 - ☐ Can put current through windings in either direction.
 - $\hfill\square$ But note that the upper transistor drive is tricky.
 - □ Uses all of the winding.

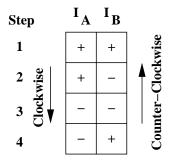
L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory




計

Bifilar Winding

- Driven by four transistors to ground.
- □ Note that the center of the windings is held high.
 - ☐ Transistors are between winding and ground.
 - ☐ NPN bipolar transistors work well.
 - ☐ Transistor drives are easily handled.


Motors Run in Either Direction

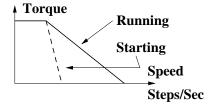
■ Current drive strategy:

Bipolar Winding

Bifilar Winding

Step	I _{A+}	I _{A-}	I _{B+}	I _B _	1
1	1	0	1	0	wise
2 .sise	1	0	0	1	Clock
2 Clockwise	0	1	0	1	
4	0	1	1	0	Com

L17 6.111 Fall 2003 – Introductory Digital Systems Laboratory



Dynamics are Important

- Stepper can hold a certain torque.
- Stepper can carry more torque at low speed.
- At high speed, torque must be de-rated.
- Motors draw CURRENT! Make sure your power supply is adequate by measuring the power supply voltage with a 'scope.
 - $\hfill\square$ Use an external supply, not the kit supply.
 - You don't want motor drive noise in your digital circuit (or analog circuit).
- You need to make sure that devices can handle the current and torque.

Must sometimes 'ramp up' speed. Holding torque is limited by heating and by saturation.

