Approaching your 6.111 Lab Report

Atissa Banuazizi (atissa@mit.edu) Program in Writing and Humanistic Studies 28 February 2005 What do you as a reader/engineer expect from a design report?

- 1. What is it about?
- 2. An overview of design/tech specs.
- 3. Background to understand design.
- 4. Why certain design decisions were made.
- 5. Why you chose to design the device.
- 6. Info needed to replicate.
- 7. The testing strategy.

Goals for Laboratory 2 Report

Designing a Traffic Light Controller

□ To describe your experimental work

- What did you do?
- How did you do it?
- Why did you do it?

□ To allow your design to be replicated

Consider your readers' needs:

- Concise language
- **ample** description
- Clear organization

To engage in a professional conversation

Others will learn from your problem-solving approach

Potential Pitfalls for Lab 2 Report

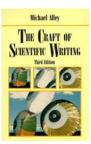
- Context is implied or unclear--What is the purpose of the device? Why should your reader care about your design?
- Reader is assumed to be an "insider" (e.g., "As Prof. Chandrakasan mentioned in lecture the other day....").
- Relationship of information is unclear -- Author did not use headings and subheadings for visual organization.
- Conclusions/implications are not offered -- what did you learn from this design and what would you like other engineers to learn?
- Figures and tables are not anchored in the text (e.g., "See Figure 1") and/or are not adequately titled or described.
- Abstract does not describe entire report (including conclusions).
- Title is not descriptive or compelling.

Use Section Hierarchies to **Clarify Structure**

Performance of the Solar One Receiver

Introduction **Steady State Efficiency** Average Efficiency Start-Up Time **Operation Time Operation During Cloud Transients** Panel Mechanical Supports Operation Time **Tube Leaks** Conclusion

Performance of the Solar One Receiver


Introduction **Receiver's Efficiency** Steady State Efficiency Average Efficiency **Receiver's Operation Cycle** Start-Up Time **Operation Time Operation During Cloud Transients Receiver's Mechanical Wear** Michael Alley Panel Mechanical Supports **Tube Leaks** Conclusion

Section Headings Should Be Descriptive and Parallel

Non-Parallel Non-Descriptive

Introduction Background Marx Generators Line Pulse Beam Generation Transporting Beam Pellets Results Conclusion

Parallel Descriptive

Introduction Past Designs for Particle Beam Fusion New Design for Particle Beam Fusion Charging Marx Generators Forming Line Pulse Generating Particle Beam Transporting Particle Beam Irradiating Deuterium-Tritium Pellets Results of New Design Conclusions and Recommendations

Good MIT Resources

Writing Center: web.mit.edu/writing
Offers feedback on organization and delivery of practice presentations
32-081 (Stata Basement); 617-253-3090
Appointment preferred but nor required

Mayfield Handbook of Technical and Scientific Writing Available online at: https://web.mit.edu/21.guide/www/home.htm (MIT certificates required)

6.111 Writing Resources

Handouts on 6.111 Web Site (under "General Handouts")

CI-M Report Guide

CI-M Lecture Notes

Writing Program Staff

Atissa Banuazizi (atissa@mit.edu)

Bill Haas (wjhaas@mit.edu)

Mary Zoll (mzoll@mit.edu)