
L11: 6.111 Spring 2005 1Introductory Digital Systems Laboratory

L11: Major/Minor L11: Major/Minor FSMsFSMs, ,

and RAM/ROM Instantiationand RAM/ROM Instantiation

Acknowledgements: Rex Min

L11: 6.111 Spring 2005 2Introductory Digital Systems Laboratory

QuizQuiz

Quiz will be Closed Book March 14, 1:00 PM - 2:00 PM
ROOM: 50-340 (AKA Walker Memorial)

Covers Problem Sets 1-3, Lectures 1-9 (through Arithmetic
structures), Labs 1-2

Topics to be covered
Combinational Logic: Boolean Algebra, Karnaugh Maps, MSP, MPS,
dealing with don’t cares
Latches and Edge Triggered Registers/Flip-flops

Understand the difference between latches, registers and unclocked
memory elements (e.g., SR-Flip Flop)
Different memory types: SR, D, JK, T
Understand setup/hold/propagation delay and how they are computed

System Timing (minimum clock period and hold time constraint)
Impact of Clock skew on timing

Counters and simple FSMs (understand how the ‘163 and ‘393 work)
FSM design (Mealy/Moore, dealing with glitches)
Combinational and sequential Verilog coding

Continuous assignments, blocking vs. non-blocking, etc.

L11: 6.111 Spring 2005 3Introductory Digital Systems Laboratory

Quiz (cont.)Quiz (cont.)

Tri-states basics
Dealing with glitches

When are glitches OK?
How do you deal with glitches in digital system design? (registered
outputs, appropriate techniques to gate a clock, etc.)

Memory Basics
Understand differences between DRAM vs. SRAM vs. EEPROM
Understand timing and interfacing to the 6264

Arithmetic
Number representation: sign – magnitude, Ones complement, Twos
complement
Adder Structures: Ripple carry, Carry Bypass Adder (Don’t worry about
Carry lookahead adder details)
False Paths and Delay Estimation
Shift/add multiplier, Baugh-Wooley Multiplier (Twos complement
multiplication)

L11: 6.111 Spring 2005 4Introductory Digital Systems Laboratory

Toward FSM ModularityToward FSM Modularity

Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

Suppose that each set of states ax...dx is a “sub-FSM” that
produces exactly the same outputs.
Can we simplify the FSM by removing equivalent states?

No! The outputs may be the same, but the
next-state transitions are not.

This situation closely resembles a procedure call or function call
in software...how can we apply this concept to FSMs?

L11: 6.111 Spring 2005 5Introductory Digital Systems Laboratory

The Major/Minor FSM AbstractionThe Major/Minor FSM Abstraction

Subtasks are encapsulated in minor FSMs with common
reset and clock
Simple communication abstraction:

START: tells the minor FSM to begin operation (the call)
BUSY: tells the major FSM whether the minor is done (the return)

The major/minor abstraction is great for...
Modular designs (always a good thing)
Tasks that occur often but in different contexts
Tasks that require a variable/unknown period of time
Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

L11: 6.111 Spring 2005 6Introductory Digital Systems Laboratory

Inside the Major FSMInside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until
the minor FSM

is ready

2. Trigger the
minor FSM

(and make sure
it’s started)

3. Wait until
the minor FSM

is done

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

L11: 6.111 Spring 2005 7Introductory Digital Systems Laboratory

Inside the Minor FSMInside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a
trigger from the

major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
major FSM that

work is done

can we
speed

this up?

L11: 6.111 Spring 2005 8Introductory Digital Systems Laboratory

Optimizing the Minor FSMOptimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START
T4

BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY

L11: 6.111 Spring 2005 9Introductory Digital Systems Laboratory

A FourA Four--FSM ExampleFSM Example

Operating Scenario:
Major FSM is triggered by
TICK
Minors A and B are started
simultaneously
Minor C is started once both
A and B complete
TICKs arriving before the
completion of C are ignored

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB
STARTA
STARTB

WTAB

TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and BUSYB
both rise before either minor

FSM completes. Otherwise, we
loop forever!

L11: 6.111 Spring 2005 10Introductory Digital Systems Laboratory

FourFour--FSM Sample WaveformFSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTABWTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

L11: 6.111 Spring 2005 11Introductory Digital Systems Laboratory

Use LPM to Create ROM/RAMUse LPM to Create ROM/RAM

Click on File → MegaWizard Plug-In Manager
This starts up a series of windows so that you can
specify parameters of the LPM module. You can choose

ROM
RAM

dp - Dual Ported
dq - Separate Inputs and Outputs
io - TriState Inputs and Outputs (like the 6264)

You choose the number of address bits and the word
size.
You should specify a file to set the values of the ROM.
You can choose registered or unregistered inputs,
outputs, and addresses.

L11: 6.111 Spring 2005 12Introductory Digital Systems Laboratory

ROM ContentsROM Contents

Prepare a .dat file.
You can type this in, write a computer program, get it from another
application (speech or graphics, etc.)
This has numbers separated by space.

The default base is HEX but you can use binary or decimal if you include the
following statement (before the numbers).

BASE = BINARY;
Insert, # SET_ADDRESS = 0; (specifies that data should start at address 0)

Run dat2ntl on Athena to format your .dat file into Intel HEX
for details, after ‘setup 6.111’ type ‘man dat2ntl’
dat2ntl <filename>.dat <filename>.ntl

rom8x8.ntl:
:080000000706050403020100DC
:00000001FF

rom8x8.dat:
SET_ADDRESS = 0;
7
6
5
4
3
2
1
0

dat2ntl

tool on athena

3
ROM

8
address data

See http://web.mit.edu/6.111/www/s2005/software.html for .mif format (memory initialization format)

L11: 6.111 Spring 2005 13Introductory Digital Systems Laboratory

rom8x8.v (generated automatically)rom8x8.v (generated automatically)

//===
// File Name: rom8x8.v
// Megafunction Name(s):
// lpm_rom
//===
module rom8x8 (

address,
q);
input [2:0] address;
output [7:0] q;

wire [7:0] sub_wire0;
wire [7:0] q = sub_wire0[7:0];

lpm_rom lpm_rom_component (
.address (address),
.q (sub_wire0));

defparam
lpm_rom_component.lpm_width = 8,
lpm_rom_component.lpm_widthad = 3,
lpm_rom_component.lpm_address_control = "UNREGISTERED",
lpm_rom_component.lpm_outdata = "UNREGISTERED",
lpm_rom_component.lpm_file = “rom8x8.ntl";

endmodule Path to location of Rom data

3 8

Example: 8 deep by 8 bits wide

ROM delay

L11: 6.111 Spring 2005 14Introductory Digital Systems Laboratory

ram4x2.vram4x2.v

// megafunction wizard: %LPM_RAM_DQ%
module ram4x2 (

address,
we,
data,
q);

input [1:0] address;
input we;
input [1:0] data;
output [1:0] q;

wire [1:0] sub_wire0;
wire [1:0] q = sub_wire0[1:0];

lpm_ram_dqlpm_ram_dq_component (
.address (address),
.data (data),
.we (we),
.q (sub_wire0));

defparam
lpm_ram_dq_component.lpm_width = 2,
lpm_ram_dq_component.lpm_widthad = 2,
lpm_ram_dq_component.lpm_indata = "UNREGISTERED",
lpm_ram_dq_component.lpm_address_control = "UNREGISTERED",
lpm_ram_dq_component.lpm_outdata = "UNREGISTERED",
lpm_ram_dq_component.lpm_hint = "USE_EAB=ON";

endmodule

2

RAM 2
address

q
2

data
we

L11: 6.111 Spring 2005 15Introductory Digital Systems Laboratory

Asynchronous RAM SimulationAsynchronous RAM Simulation

module ram4x2 (
address,
we,
data,
q);

input [1:0] address;
input we;
input [1:0] data;
output [1:0] q;

endmodule

2

RAM 2
address

q
2

data
we

Latch interface: Data must be setup and held around the
falling edge of the clock. Address must be setup before
rising edge and held after falling edge

L11: 6.111 Spring 2005 16Introductory Digital Systems Laboratory

SRAM with Registered Address and SRAM with Registered Address and
Data (Synchronous)Data (Synchronous)

Register interface:
Address, data and we should be setup and held on the rising edge of clock
If we=1 on the rising edge, a write operation takes place
If we=0 on the rising edge, a read operation takes place

