L11: Major/Minor FSMs,
and RAM/ROM Instantiation

it

Acknowledgements: Rex Min

L11: 6.111 Spring 2005

Introductory Digital Systems Laboratory

ﬁ% Quiz ﬁ%

m Quiz will be Closed Book March 14, 1:00 PM - 2:00 PM
ROOM: 50-340 (AKA Walker Memorial)

O Covers Problem Sets 1-3, Lectures 1-9 (through Arithmetic
structures), Labs 1-2

m Topics to be covered
O Combinational Logic: Boolean Algebra, Karnaugh Maps, MSP, MPS,
dealing with don’t cares

O Latches and Edge Triggered Registers/Flip-flops

e Understand the difference between latches, registers and unclocked
memory elements (e.g., SR-Flip Flop)

e Different memory types: SR, D, JK, T
e Understand setup/hold/propagation delay and how they are computed

O System Timing (minimum clock period and hold time constraint)
e Impact of Clock skew on timing

O Counters and simple FSMs (understand how the ‘163 and ‘393 work)
O FSM design (Mealy/Moore, dealing with glitches)

O Combinational and sequential Verilog coding
e Continuous assignments, blocking vs. non-blocking, etc.

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 2

ﬁ% Quiz (cont.)

O Tri-states basics

0O Dealing with glitches
e When are glitches OK?

e How do you deal with glitches in digital system design? (registered
outputs, appropriate techniques to gate a clock, etc.)

O Memory Basics
e Understand differences between DRAM vs. SRAM vs. EEPROM

e Understand timing and interfacing to the 6264

O Arithmetic

e Number representation: sign — magnitude, Ones complement, Twos
complement

e Adder Structures: Ripple carry, Carry Bypass Adder (Don’t worry about
Carry lookahead adder details)

e False Paths and Delay Estimation

e Shift/add multiplier, Baugh-Wooley Multiplier (Twos complement
multiplication)

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory

ﬁ% Toward FSM Modularity ﬁ%

m Consider the following abstract FSM:

-6 @E-6 G -G
P® ©® 0@
W e @ e

N\ Y /

m Suppose that each set of states a,...d, is a “sub-FSM” that
produces exactly the same outputs.

m Can we simplify the FSM by removing equivalent states?
No! The outputs may be the same, but the
next-state transitions are not.

m This situation closely resembles a procedure call or function call
in software...how can we apply this concept to FSMs?

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 4

ﬁ% The Major/Minor FSM Abstraction ﬁ%

START, _
BUSY , Minor FSM A
= <
Major FSM START,
RESET — > RESET
Busy, | Minor FSM B
CLK —> < < CLK

m Subtasks are encapsulated in minor FSMs with common
reset and clock

m Simple communication abstraction:
O START: tells the minor FSM to begin operation (the call)
O BUSY: tells the major FSM whether the minor is done (the return)

m The major/minor abstraction is great for...
O Modular designs (always a good thing)
O Tasks that occur often but in different contexts
O Tasks that require a variable/unknown period of time
O Event-driven systems

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 5

ﬁ% Inside the Major FSM ﬁ%

BUSY BUSY BUSY
/ \ BUSY / S, \ BUSY / \ BUSY
1 START 3 "\ Sa

1. Wait until 2. Trigger the 3. Wait until
the minor FSM minor FSM the minor FSM

is ready (and make sure is done
it’s started)

Maijor FSM % %
ajorState{ >1 Z(S, kS

START n

4
0))]
w
T
0))]
w
0))]
w
4 <
92]
D
~——

BUSY [yff. L,fy
e .. .

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 6

ﬁ% Inside the Minor FSM

1. Wait for a
trigger from the
major FSM
» T4
BUSY

3. Signal to the
major FSM that
work is done

Major FSM i

State 51
START
BUSY
CLK =} ,
Min°r§t§M—(. { T % o X 1 X T X T)(T,)

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 7

ﬁ% Optimizing the Minor FSM ﬁ%

Good idea: de-assert BUSY one cycle early

START

Bad IdeaizHi: Bad idea #2:
T, may not immediately return to T4 BUSY never asserts!
START
sTaRT_ (7,
BUSY,

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 8

ﬁ% A Four-FSM Example ﬁ%

TICK START, Operating Scenario:
susy, | Minor FSMA |, _I\Iglla'ﬁr FSM is triggered by
STARTg _
Mi FSMB | ® Minors A and B are started
Major FSM BUSYp Inor simultaneously
m Minor C is started once both
START A and B complete
BUSY Minor FSM C | = TICKs al_'rivin? before the
c completion of C are ignored
Assume that BUSY, and BUSY
TICK both rise before either minor BUSY ,+BUSYg BUSY ,+BUSY,

FSM completes. Otherwise, we |—
loop forever!

TICK

BUSY,BUSYg

A

BUSY,

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 9

it

state
tick
START,
BUSY,
STARTg
BUSYg
START,

BUSY,.

Four-FSM Sample Waveform

it

TICK START,
BUSY » Minor FSM A
STARTR
) “| Minor FSM B
Major FSM BUSYg
START-~
BUSY. Minor FSM C
(lDLE\(lDLE\(STAB' STAB\QNTAQ TAEXNTABX STC> ST¢ WTC>WTC WTC> IDLEEIDLE>STAB

L11: 6.111 Spring 2005

Introductory Digital Systems Laboratory

10

ﬁ% Use LPM to Create ROM/RAM ﬁ%

m Click on File - MegaWizard Plug-In Manager

OThis starts up a series of windows so that you can
specify parameters of the LPM module. You can choose
e ROM
e RAM
o dp - Dual Ported
O dq - Separate Inputs and Outputs
oio - TriState Inputs and Outputs (like the 6264)
OYou choose the number of address bits and the word
size.

OYou should specify a file to set the values of the ROM.

OYou can choose registered or unregistered inputs,
outputs, and addresses.

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 11

ﬁ% ROM Contents ﬁ%

m Prepare a .dat file.
O You can type this in, write a computer program, get it from another
application (speech or graphics, etc.)

O This has numbers separated by space.

e The default base is HEX but you can use binary or decimal if you include the
following statement (before the numbers).

BASE = BINARY,;
O Insert, # SET_ADDRESS = 0; (specifies that data should start at address 0)

m Run dat2ntl on Athena to format your .dat file into Intel HEX
O for details, after ‘setup 6.111° type ‘man dat2ntl’
O dat2ntl <filename>.dat <filename>.ntl

rom8x8.dat: rom8x8.ntl:

SET ADDRESS = 0; > :080000000706050403020100DC
7 :00000001FF

6

5 tool on athena

4

3

2 3 8

1 address —#* ROM —/— data

0

See http://web.mit.edu/6.111/www/s2005/software.html for .mif format (memory initialization format)
L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 12

ﬁ% rom8x8.v (generated automatically) ﬁ%

Il File Name: rom8x8.v
Il Megafunction Name(s):

I lpm_rom Example: 8 deep by 8 bits wide

Il
module rom8x8 (
address, 3 8
q); / / q
input [2:0] address;
output [0l o address 7 ROM 7
wire [7:0] sub_wire0;
wire [7:0] q = sub_wire0[7:0];
Ipm_rom Ipm_rom_component (
.address (address),
.q (sub_wire0));
defparam
Ipm_rom_component.lpm_width = 8,
Ipm_rom_component.lpm_widthad = 3,
Ipm_rom_component.lpm_address_control = "UNREGISTERED",
Ipm_rom_component.lpm_outdata = "UNREGISTERED",
Iom_rom_component.lpm_file = “rom8x8.ntl"; .
pm_rom_comp P Path to location of Rom data
endmodule
i MAX+plus Il - e:ddocuments and settingslananthaymy documentsi6.111\werilogilecture10iromEx8 - [romEBx8.scf - Waveform Editor] E@@
gs Ma¥+plus I File Edit VWiew MNode Assign Uklities Options Window Help - 5 X
0= = &S M OaRB 2L BEE EEE BHEEZFE 8
[y | Ref [300.0ns | =l=>] Time: [266.4ns | Interval: [-33.6ns | -~
A rllSDD.Dns
=5 | Mame: _alue: J‘ 1DEI.IDns QDEI.IDns 300[0ns 400 .IElns SDD.IEIns EDEI.IDnS ?DEI.IEInS BEIEI.IDns
= address H 3 0 i 1 H 2 3 H 4 H 5 i B i 7 ¥o!
= HOs o7 H 08 H 05 H 04 H 03 H 0z M 01 W 0o L
& _/ ROM delay .
- >

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 13

ram4x2.v

I/l megafunction wizard: %LPM_RAM_DQ%

module ram4x2 (
address,
we,
data,
q);

input
input
input
output

RAM

2
address —#—
2
data ——>
[1:0] address;
we; we —
[1:0] data;
[1:0] q;

wire [1:0] sub_wire0;
wire [1:0] q = sub_wire0[1:0];

Ipm_ram_dqlpm_ram_dq_component (

defparam

endmodule

L11: 6.111 Spring 2005

.address (address),
.data (data),

.we (we),

.q (sub_wire0));

Ipm_ram_dq_component.lpm_width = 2,
Ipm_ram_dq_component.lpm_widthad = 2,
Ipm_ram_dq_component.lpm_indata = "UNREGISTERED",
Ipm_ram_dq_component.lpm_address_control = "UNREGISTERED",
Ipm_ram_dq_component.Ipm_outdata = "UNREGISTERED",
Ipm_ram_dq_component.lpm_hint = "USE_EAB=ON";

Introductory Digital Systems Laboratory

q

14

it

module ram4x2 (

Asynchronous RAM Simulation

it

address,
we,
data, 2
a); address —*—
2 2
input [1:0] address; data — /- RAM ,
input we; q
input [1:0] data; we —
output [1:0] q;
endmodule
it MAX+plus || - c:\documents and settingslananthaimy documents\6.111\verilog\lecture10\ram4x2 - [ram4x2.scf - Waveform Editor] E@@
!':.ﬂ Mak+pls 1T File Edit View Mode Assign Utiities Options Window Help - 0%

N2B& =2 - M ORESBEL BRAE HER RRZ2Z &

t@ Ref: | 200.0ns [€]#] Time: [741.0ns Interval: |541.0ns &
A 200, .
51| Name: _Yalug: l EDQFKM EDEI.IDns EDD.IEIns 1.D|us 1.2||.|s 1.11|us 1.Eius 1.B|us 2.II!us 2.2|us 2.f1||.|s 2.E|L|s E.Blus 3.D|L|s 3.2|L
N W_WE (=] 1 ol /

iD= address HO i 1 ! 2 { 3 i 0 I 1 { 2 | R
B dal3 H3 i 2 ' 1 { 0
g%q a0 I\l 8 oy 2 fef 1 Y § ¥ s ¥ @ { i Y U
& \/'\ Latch interface: Data must be setup and held around the
g o] falling edge of the clock. Address must be setup before

Introductory Digital Systems Laboratory

L11: 6.111 Spring 2005 15

ﬁ% SRAM with Registered Address and ﬁ%
Data (Synchronous)

i) MAX-+plus I - c:\documents and settings\ananthaimy documentsi8. 111 erilogblacture10\ram4x2_clocked - [ramdx2_clocked.scf - Waveform Editor]

'J;S MiplsID Fle Edt Yiew Node Assign Utiities Options Window Help _lgx
Bzt ¥ OREBEL 3% EER BRZE &

s | Ref [D0ns lel#| Time: |1.023us Intemal: 10230z A
A 0.0ns

o | Name: Value: T EDI].IDns dDI].IDns BDD.IDns BDI].IDns 1.I]|us 1.2|us Hlus 1.Eius 1.Blus

= inclock] 0 T | ‘ | J | | ’7
= i I _,_l_[)
D adiess | HO o f] ¢+ F 2 {3y {0 p ot F 2 f 3 b on)
& it H3 3 TR 3

:Eq UNANTDZ T B BN T N B B S B

Register interface:

Address, data and we should be setup and held on the rising edge of clock
If we=1 on the rising edge, a write operation takes place

If we=0 on the rising edge, a read operation takes place

L11: 6.111 Spring 2005 Introductory Digital Systems Laboratory 16

