

L11: Major/Minor FSMs, and RAM/ROM Instantiation

Acknowledgements: Rex Min

L11: 6.111 Spring 2005

Introductory Digital Systems Laboratory

Quiz will be Closed Book March 14, 1:00 PM - 2:00 PM ROOM: 50-340 (AKA Walker Memorial)

Covers Problem Sets 1-3, Lectures 1-9 (through Arithmetic structures), Labs 1-2

Topics to be covered

- Combinational Logic: Boolean Algebra, Karnaugh Maps, MSP, MPS, dealing with don't cares
- Latches and Edge Triggered Registers/Flip-flops
 - Understand the difference between latches, registers and unclocked memory elements (e.g., SR-Flip Flop)
 - Different memory types: SR, D, JK, T
 - Understand setup/hold/propagation delay and how they are computed
- **System Timing (minimum clock period and hold time constraint)**
 - Impact of Clock skew on timing
- □ Counters and simple FSMs (understand how the '163 and '393 work)
- **FSM** design (Mealy/Moore, dealing with glitches)
- Combinational and sequential Verilog coding
 - Continuous assignments, blocking vs. non-blocking, etc.

Tri-states basics

Dealing with glitches

- When are glitches OK?
- How do you deal with glitches in digital system design? (registered outputs, appropriate techniques to gate a clock, etc.)
- Memory Basics
 - Understand differences between DRAM vs. SRAM vs. EEPROM
 - Understand timing and interfacing to the 6264
- Arithmetic
 - Number representation: sign magnitude, Ones complement, Twos complement
 - Adder Structures: Ripple carry, Carry Bypass Adder (Don't worry about Carry lookahead adder details)
 - False Paths and Delay Estimation
 - Shift/add multiplier, Baugh-Wooley Multiplier (Twos complement multiplication)

Consider the following abstract FSM:

- Suppose that each set of states a_x...d_x is a "sub-FSM" that produces exactly the same outputs.
- Can we simplify the FSM by removing equivalent states? No! The outputs may be the same, but the next-state transitions are not.
- This situation closely resembles a procedure call or function call in software...how can we apply this concept to FSMs?

- Subtasks are encapsulated in minor FSMs with common reset and clock
- Simple communication abstraction:
 START: tells the minor FSM to begin operation (the call)
 BUSY: tells the major FSM whether the minor is done (the return)
- The major/minor abstraction is great for...
 - □ Modular designs (*always* a good thing)
 - Tasks that occur often but in different contexts
 - □ Tasks that require a variable/unknown period of time
 - Event-driven systems

Inside the Minor FSM

Good idea: de-assert BUSY one cycle early

A Four-FSM Example

Four-FSM Sample Waveform

Click on File \rightarrow MegaWizard Plug-In Manager

- □This starts up a series of windows so that you can specify parameters of the LPM module. You can choose
 - ROM
 - RAM
 - odp Dual Ported
 - o dq Separate Inputs and Outputs
 - o io TriState Inputs and Outputs (like the 6264)
- You choose the number of address bits and the word size.
- □You should specify a file to set the values of the ROM.
- □You can choose registered or unregistered inputs, outputs, and addresses.

ROM Contents

- Prepare a .dat file.
 - You can type this in, write a computer program, get it from another application (speech or graphics, etc.)
 - □ This has numbers separated by space.
 - The default base is HEX but you can use binary or decimal if you include the following statement (before the numbers).
 # BASE = BINARY:

□ Insert, # SET_ADDRESS = 0; (specifies that data should start at address 0)

- Run dat2ntl on Athena to format your .dat file into Intel HEX
 - □ for details, after 'setup 6.111' type 'man dat2ntl'

dat2ntl <filename>.dat <filename>.ntl

See http://web.mit.edu/6.111/www/s2005/software.html for .mif format (memory initialization format)

// megafunction wizard: %LPM RAM DQ% module ram4x2 (address, address we, data, 2 RAM **q);** data a input [1:0] address; we input we; input [1:0] data; output [1:0] q; wire [1:0] sub wire0; wire [1:0] q = sub_wire0[1:0]; lpm_ram_dqlpm_ram_dq_component (.address (address), .data (data), .we (we), .q (sub_wire0)); defparam lpm_ram_dq_component.lpm_width = 2, lpm_ram_dq_component.lpm_widthad = 2, lpm ram dq component.lpm indata = "UNREGISTERED", lpm_ram_dq_component.lpm_address_control = "UNREGISTERED", lpm_ram_dq_component.lpm_outdata = "UNREGISTERED", lpm_ram_dq_component.lpm_hint = "USE_EAB=ON"; endmodule

endmodule

® 1	🏶 MAX+plus II - c:\documents and settings\anantha\my documents\6.111\verilog\lecture10\ram4x2 - [ram4x2.scf - Waveform Editor]														
-	🐒 MAX+plus II File Edit View Node Assign Utilities Options Window Help 📃 🗗 🗙														
D	▶ 2 2 3 4 2 2 2 3 4 2 5 5 5 2 5 5 2 5 5 2 5 2 5 2 5 2 5 2														
ß	Ref: 200.0ns	+	• Time: 741.0ns	Inte	erval: 541.0	Dns									^
A			200.0ns												
Æ	Name:	_Value:]	200 <mark>7</mark> 0ns 400.	Dis 600.0ns	800.0ns	1.0us 1.2us	1.4us 1.6us	1.8us	2.Qus	2.2us	2.4us	2.6us	2.8us	3.Qus	3.2L
, saturdared	we we											_			
	💕 address	НО	0		1	2) 3		0) 1		X 3	2	(3	
	🗊 data	НЗ	3		2	χ 1	X			0					
€	🗐 q	но	0 (3	χοχ	2	<u>) 0) 1</u>) 0	X	3	χ	2	X	1	χ ο	
Q					Lat	ch interfa	ace: Data	a mus	st be	setu	o an	d hel	d ar	ound	the
<u>, E</u>		d d			fall	ina edae	of the c	lock	Δdd	ess r	nust	hes	etur	hefo	ore
0	rising adapted bold often falling adapted														
rising edge and held after failing edge															

SRAM with Registered Address and Data (Synchronous)

🝿 MAX+plus II - c:\documents and settings\anantha\my documents\6.111\verilog\lecture10\ram4x2_clocked - [ram4x2_clocked.scf - Waveform Editor]													X
5	🞇 MAX+plus II File Edit View Node Assign Utilities Options Window Help											- 6	X
□ 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
R	Ref: 0.0ns	•	• → Time: 1.023us	Interval:	1.023us								^
A		[0.0ns										
Æ	Name:	Value:	[200.0ns	400.0ns	600.0ns	800.0ns	1.0us	1.2us	1.4us	1.6us		1.8us	
	nclock												
	in- we	0											
	🗊 address	HO	ο χ	1) 2	?)	3	0)	1	2	3)	0) 1	
€	📭 data	H3	3	0 (1	(2			3				
Q	= q	HO) 0	(1		3	0	1	2		3]
0	2												×
													2

Register interface:

Address, data and we should be setup and held on the rising edge of clock If we=1 on the rising edge, a write operation takes place If we=0 on the rising edge, a read operation takes place