
L2: 6.111 Spring 2005 1Introductory Digital Systems Laboratory

L2: Combinational Logic Design L2: Combinational Logic Design

(Construction and Boolean Algebra)(Construction and Boolean Algebra)

(Most) Lecture material derived from Chapter 2 of R. Katz, G. Borriello, “Contemporary
Logic Design” (second edition), Pearson Education, 2005.

L2: 6.111 Spring 2005 2Introductory Digital Systems Laboratory

The InverterThe Inverter

IN OUT OUTIN

10

01

V(x)

V(y)

VOH

VOL

VIH
V

IL

Slope = -1

Slope = -1

VOL
VOH

"1"

"0"

VOH
VIH

VIL
VOL

Undefined
Region

Large noise margins protect against various noise sources

NML= VIL -VOL
NMH= VOH -VIH

Truth Table

L2: 6.111 Spring 2005 3Introductory Digital Systems Laboratory

TTL Logic Style (1970’sTTL Logic Style (1970’s--early 80’s)early 80’s)

74LS04
(courtesy TI)

+

-
vBE

+

-

vCE

E

C

B

Q1
Q2

Q3

L2: 6.111 Spring 2005 4Introductory Digital Systems Laboratory

MOS Technology: The NMOS SwitchMOS Technology: The NMOS Switch

D

G

S

gate

N+
P-substrate

N+

drainsource

RNMOSSwitch
Model

VT = 1V

VGS < VT

OFF RNMOS

VGS > VT

ON

Vs

NMOS ON when Switch Input is High

L2: 6.111 Spring 2005 5Introductory Digital Systems Laboratory

PMOS: The Complementary SwitchPMOS: The Complementary Switch

S

G

D

gate

P+
N-substrate

P+

drainsource

RPMOSSwitch
Model

VT = -1V

VGS > VT

OFF RPMOS

VGS < VT

ON

PMOS ON when Switch Input is Low

Vs

L2: 6.111 Spring 2005 6Introductory Digital Systems Laboratory

The CMOS InverterThe CMOS Inverter

IN OUT

VDD
VDD

OUT

RPMOS

RNMOS

IN

IN

Switch Model

S

G

D

D

S
G

Rail-to-rail Swing in CMOS

L2: 6.111 Spring 2005 7Introductory Digital Systems Laboratory

Possible Function of Two InputsPossible Function of Two Inputs

X

Y
F

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X Y

X NOR Y
NOT (X OR Y)

X NAND Y
NOT (X AND Y)

10 NOT X
X AND Y

X OR Y

NOT Y
X XOR Y X = Y

There are 16 possible functions of 2 input variables:

In general, there are 2 (2^n) functions of n inputs

L2: 6.111 Spring 2005 8Introductory Digital Systems Laboratory

Common Logic GatesCommon Logic Gates

X
Y Z

Z
X
Y

1
1
0
0

X ZY

10
11
10
01

NAND

Gate Symbol Truth-Table Expression

1
1
0
0

X ZY

10
01
00
01

NOR

Z = X • Y

Z = X + Y

Z
X
Y

1
1
0
0

X ZY

00
11
10
11

OR Z = X + Y

X
Y Z

1
1
0
0

X ZY

00
01
00
11

AND
Z = X • Y

L2: 6.111 Spring 2005 9Introductory Digital Systems Laboratory

Exclusive (N)OR GateExclusive (N)OR Gate

X
Y Z

Z
X
Y

1
1
0
0

X ZY

00
11
10
01

1
1
0
0

X ZY

10
01
00
11

XOR
(X ⊕ Y)

XNOR

(X ⊕ Y)

Widely used in arithmetic structures such as adders and multipliers

Z = X Y + X Y
X or Y but not both

("inequality", "difference")

Z = X Y + X Y
X and Y the same

("equality")

L2: 6.111 Spring 2005 10Introductory Digital Systems Laboratory

Generic CMOS RecipeGeneric CMOS Recipe

Vdd

A1
F(A1,…,An)

pullup: make this connection
when we want F(A1,…,An) = 1

pulldown: make this connection
when we want F(A1,…,An) = 0

An

...

...
...

A

B

A B PDN PUN O
0 0 0ff 0n 1
0 1 0ff 0n 1
1 0 0ff 0n 1
1 1 0n 0ff 0

B

A

CL

PUN

PDN

How do you build a 2-input NOR Gate?

A
B

Note: CMOS gates
result in inverting
functions!
(easier to build NAND
vs. AND)

O

L2: 6.111 Spring 2005 11Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (I)Theorems of Boolean Algebra (I)

Elementary
1. X + 0 = X 1D. X • 1 = X
2. X + 1 = 1 2D. X • 0 = 0
3. X + X = X 3D. X • X = X
4. (X) = X
5. X + X = 1 5D. X • X = 0

Commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

Associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Distributivity:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

Uniting:
9. X • Y + X • Y = X 9D. (X + Y) • (X + Y) = X

Absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y) • Y = X • Y 11D. (X • Y) + Y = X + Y

L2: 6.111 Spring 2005 12Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (II)Theorems of Boolean Algebra (II)

Factoring:
12. (X • Y) + (X • Z) = 12D. (X + Y) • (X + Z) =

X • (Y + Z) X + (Y • Z)

Consensus:
13. (X • Y) + (Y • Z) + (X • Z) = 13D. (X + Y) • (Y + Z) • (X + Z) =

X • Y + X • Z (X + Y) • (X + Z)

De Morgan's:
14. (X + Y + ...) = X • Y • ... 14D. (X • Y • ...) = X + Y + ...

Generalized De Morgan's:
15. f(X1,X2,...,Xn,0,1,+,•) = f(X1,X2,...,Xn,1,0,•,+)

Duality
Dual of a Boolean expression is derived by replacing • by +, + by •, 0

by 1, and 1 by 0, and leaving variables unchanged
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

L2: 6.111 Spring 2005 13Introductory Digital Systems Laboratory

Simple Example: One Bit AdderSimple Example: One Bit Adder

1-bit binary adder
inputs: A, B, Carry-in
outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin S Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Sum-of-Products Canonical Form

S = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

Product term (or minterm)
ANDed product of literals – input combination for which output
is true
Each variable appears exactly once, in true or inverted form (but
not both)

L2: 6.111 Spring 2005 14Introductory Digital Systems Laboratory

Simplify Boolean ExpressionsSimplify Boolean Expressions

Cout = A B Cin + A B Cin + A B Cin + A B Cin

= A B Cin + A B Cin + A B Cin + A B Cin + A B Cin + A B Cin

= (A + A) B Cin + A (B + B) Cin + A B (Cin + Cin)

= B Cin + A Cin + A B

= (B + A) Cin + A B

S = A B Cin + A B Cin + A B Cin + A B Cin

=(A B + A B)Cin + (A B + A B) Cin

=(A ⊕ B) Cin + (A ⊕ B) Cin
= A ⊕ B ⊕ Cin

L2: 6.111 Spring 2005 15Introductory Digital Systems Laboratory

SumSum--ofof--Products & ProductProducts & Product--ofof--Sum Sum

short-hand notation form in terms of 3 variables

A B C minterms
0 0 0 A B C m0
0 0 1 A B C m1
0 1 0 A B C m2
0 1 1 A B C m3
1 0 0 A B C m4
1 0 1 A B C m5
1 1 0 A B C m6
1 1 1 A B C m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7

canonical form ≠ minimal form
F(A, B, C) = A B C + A B C + AB C + ABC + ABC

= (A B + A B + AB + AB)C + ABC
= ((A + A)(B + B))C + ABC
= C + ABC = ABC + C = AB + C

Product term (or minterm): ANDed product of literals – input combination for which output is true

F = + A B C+ A B C + A B C + ABCA B C

A B C maxterms
0 0 0 A + B + C M0
0 0 1 A + B + C M1
0 1 0 A + B + C M2
0 1 1 A + B + C M3
1 0 0 A + B + C M4
1 0 1 A + B+ C M5
1 1 0 A + B +C M6
1 1 1 A +B + C M7

short-hand notation for maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B + C) (A + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + B + C)
(A + B + C) (A + B + C)

= (A + C) (B + C)

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

L2: 6.111 Spring 2005 16Introductory Digital Systems Laboratory

Mapping Between FormsMapping Between Forms

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(A,B,C) = Σm(3,4,5,6,7) = ΠM(0,1,2)

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(A,B,C) = ΠM(0,1,2) = Σm(3,4,5,6,7)

3. Minterm expansion of F to Minterm expansion of F':
in minterm shorthand form, list the indices not already used in F

E.g., F(A,B,C) = Σm(3,4,5,6,7) F'(A,B,C) = Σm(0,1,2)
= ΠM(0,1,2) = ΠM(3,4,5,6,7)

4. Minterm expansion of F to Maxterm expansion of F':
rewrite in Maxterm form, using the same indices as F

E.g., F(A,B,C) = Σm(3,4,5,6,7) F'(A,B,C) = ΠM(3,4,5,6,7)
= ΠM(0,1,2) = Σm(0,1,2)

L2: 6.111 Spring 2005 17Introductory Digital Systems Laboratory

The Uniting TheoremThe Uniting Theorem

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A B +AB = (A +A)B = B

Key tool to simplification: A (B + B) = A
Essence of simplification of two-level logic

Find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be
eliminated and a single product term used to represent both
elements

L2: 6.111 Spring 2005 18Introductory Digital Systems Laboratory

Boolean CubesBoolean Cubes

1-cube
X

0 1

Just another way to represent truth table
Visual technique for identifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

WXYZ

0111
0011

0010

0000

0001

0110

1010

0101

0100
1000

1011

1001

1110

1111

1101

1100
Y

Z
W

X
3-cube

XYZ

X

011

010

000

001

111

110

100

101
Y Z

4-cube

XY

L2: 6.111 Spring 2005 19Introductory Digital Systems Laboratory

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes

Circled group of the on-set is called the
adjacency plane. Each adjacency plane
corresponds to a product term.

A varies within face, B does not
this face represents the literal B

Mapping truth tables onto Boolean cubesMapping truth tables onto Boolean cubes

Uniting theorem

A

B

11

00

01

10

F

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B)Cin
The on-set is completely covered by the combination (OR) of the subcubes of
lower dimensionality - note that “111” is covered three times

A

B C

000

111

101

(A+A)BCin AB(Cin+Cin)

Three variable example: Binary full-adder carry-out logic

L2: 6.111 Spring 2005 20Introductory Digital Systems Laboratory

Higher Dimension CubesHigher Dimension Cubes

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2 (2-D adjacency plane)
represents an expression in one variable
i.e., 3 dimensions – 2 dimensions
A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A
A

B C

000

111

101

100

001
010

011
110

In a 3-cube (three variables):
0-cube, i.e., a single node, yields a term in 3 literals
1-cube, i.e., a line of two nodes, yields a term in 2 literals
2-cube, i.e., a plane of four nodes, yields a term in 1 literal
3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
m-subcube within an n-cube (m < n) yields a term with n – m
literals

L2: 6.111 Spring 2005 21Introductory Digital Systems Laboratory

KarnaughKarnaugh MapsMaps

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Alternative to truth-tables to help visualize adjacencies
Guide to applying the uniting theorem - On-set elements with only one
variable changing value are adjacent unlike in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

A
B 0 1

0

1

0

1

2

3

0

1

2

3

6

7

4

5

AB
C

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

A

B

AB
CD

A

00 01 11 10

0

1

00 01 11 10

00

01

11

10
C

B

D

2-variable
K-map

3-variable
K-map

4-variable
K-map

L2: 6.111 Spring 2005 22Introductory Digital Systems Laboratory

KK--Map ExamplesMap Examples

Cout = F(A,B,C) =

A B A

B

Cin 00 01 11 10

0

1

0

0

0

1

1

1

0

1

AB
C

A

00 01 11 10

0

1

0

0

0

0

1

1

1

1

B

F(A,B,C) = Σm(0,4,5,7)

F =

00 C
AB

01 11 10

1 0 0 1

1 1 0 0

A

B

0

1

00 C
AB

01 11 10

0 1 1 0

0 0 1 1

A

B

0

1

F'(A,B,C) = Σm(1,2,3,6)

F' =

F' simply replace 1's with 0's and vice versa

L2: 6.111 Spring 2005 23Introductory Digital Systems Laboratory

Four Variable Four Variable KarnaughKarnaugh MapMap

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F = C + A B D + B D

K-map Corner Adjacency
Illustrated in the 4-Cube

Find the smallest number
of the largest possible

subcubes that cover the
ON-set

AB
00 01 11 10

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

00

01

11

10
C

CD

A

D

B

0011

D

0010

0000

0111

0110

0001 C

A

B 0100
1000

1100

1101

1111

1110

1001

1011

1010

0101

L2: 6.111 Spring 2005 24Introductory Digital Systems Laboratory

KK--Map Example: Don’t CaresMap Example: Don’t Cares

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A D + B C D w/o don't cares

F = C D + A D w/ don't cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do soDon't Cares can be treated as 1's or 0's if it is advantageous to do so

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

AB
00 01 11 10

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

00

01

11

10
C

CD

A

D

B AB
00 01 11 10

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

00

01

11

10
C

CD

A

D

B

In PoS form: F = D (A + C)

Equivalent answer as above,
but fewer literals

L2: 6.111 Spring 2005 25Introductory Digital Systems Laboratory

HazardsHazards

L2: 6.111 Spring 2005 26Introductory Digital Systems Laboratory

Fixing HazardsFixing Hazards

In general, it is difficult to avoid hazards – need a robust
design methodology to deal with hazards.

