

L2: Combinational Logic Design (Construction and Boolean Algebra)

(Most) Lecture material derived from Chapter 2 of R. Katz, G. Borriello, "Contemporary Logic Design" (second edition), Pearson Education, 2005.

The Inverter

Large noise margins protect against various noise sources

TTL Logic Style (1970's-early 80's)

Introductory Digital Systems Laboratory

PMOS ON when Switch Input is Low

There are 16 possible functions of 2 input variables:

In general, there are 2 ^(2^n) functions of n inputs

Common Logic Gates

Introductory Digital Systems Laboratory

XOR (X ⊕ Y)

X	Y	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

 $\frac{\mathsf{XNOR}}{(\mathsf{X} \oplus \mathsf{Y})}$

 $Z = \overline{X} \overline{Y} + X Y$ X and Y the same ("equality")

Widely used in arithmetic structures such as adders and multipliers

Generic CMOS Recipe

How do you build a 2-input NOR Gate?

Introductory Digital Systems Laboratory

Elementary	
1. $X + 0 = X$	1D. X • 1 = X
2. $X + 1 = 1$	2D. $X \cdot 0 = 0$
3. $X + X = X$	3D. $X \cdot X = X$
4. $(\overline{\overline{X}}) = X$	
5. $X + \overline{X} = 1$	5D. $X \cdot \overline{X} = 0$
Commutativity:	
6. $X + Y = Y + X$	$6D. X \bullet Y = Y \bullet X$
Associativity:	
7. $(X + Y) + Z = X + (Y + Z)$	7D. $(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$
Distributivity:	
8. $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$	8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$
Uniting:	
9. $X \cdot Y + X \cdot \overline{Y} = X$	9D. $(X + Y) \cdot (X + \overline{Y}) = X$
Absorption:	
10. $X + X \cdot Y = X$	10D. $X \cdot (X + Y) = X$
11. $(X + \overline{Y}) \cdot Y = X \cdot Y$	11D. $(X \bullet \overline{Y}) + Y = X + Y$

Introductory Digital Systems Laboratory

Factoring: 12. $(X \bullet Y) + (X \bullet Z) =$ $X \bullet (Y + Z)$

12D.
$$(X + Y) \cdot (X + Z) = X + (Y \cdot Z)$$

Consensus: 13. $(X \bullet Y) + (Y \bullet Z) + (X \bullet Z) =$ $X \bullet Y + X \bullet Z$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (\overline{X} + Z) = (X + Y) \cdot (\overline{X} + Z)$$

De Morgan's: 14. $(\overline{X + Y + ...}) = \overline{X} \cdot \overline{Y} \cdot ...$ 14D. $(\overline{X \cdot Y \cdot ...}) = \overline{X} + \overline{Y} + ...$

Generalized De Morgan's: 15. $f(X1, X2, ..., Xn, 0, 1, +, \bullet) = f(X1, X2, ..., Xn, 1, 0, \bullet, +)$

Duality

 \Box Dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged $\Box f (X1, X2, ..., Xn, 0, 1, +, \bullet) \Leftrightarrow f(X1, X2, ..., Xn, 1, 0, \bullet, +)$

 1-bit binary adder inputs: A, B, Carry-in outputs: Sum, Carry-out 					$A \longrightarrow A$ $A \longrightarrow B$ ry-in $B \longrightarrow Cout$ arry-out Cin \longrightarrow Cout
A	В	Cin	S	Cout	Sum-of-Products Canonical Form
0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 1 1 0 1 0	0 0 1 0	$S = \overline{A} \overline{B} Cin + \overline{A} \overline{B} \overline{Cin} + \overline{A} \overline{B} \overline{Cin} + \overline{A} \overline{B} Cin$
1 1	1 1	0 1	0 1	1 1	Cout = \overline{A} B Cin + A \overline{B} Cin + A B \overline{Cin} + A B Cin

Cout = \overline{A} B Cin + A \overline{B} Cin + A B \overline{Cin} + A B Cin

Product term (or minterm)

- □ ANDed product of literals input combination for which output is true
- **Each variable appears exactly once, in true or inverted form (but** not both)

Cout = A B Cin + A B Cin + A B Cin + A B Cin
=
$$\overline{A}$$
 B Cin + A B Cin + A \overline{B} Cin + A B Cin + A B \overline{Cin} + A B Cin

=
$$(\overline{A} + A) B Cin + A (\overline{B} + B) Cin + A B (\overline{Cin} + Cin)$$

- = B Cin + A Cin + A B
- = (B + A) Cin + A B

$$S = \overline{A B} Cin + \overline{A B} \overline{Cin} + \overline{A B} \overline{Cin} + \overline{A B} Cin$$
$$= (\overline{A B} + \overline{A B})Cin + (\overline{A B} + \overline{A B})Cin$$
$$= (\overline{A \oplus B})Cin + (\overline{A \oplus B})\overline{Cin}$$
$$= A \oplus B \oplus Cin$$

Product term (or minterm): ANDed product of literals – input combination for which output is true

A	В	С	minterms	_	F in canonical form [.]
0	0	0	A B C	mO	$F(A, B, C) = \Sigma m(1.3.5.6.7)$
0	0	1	ABC	m1	= m1 + m3 + m5 + m6 + m7
0	1	0	A B C	m2	$F = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + ABC$
0	1	1	A B C	m3	canonical form ≠ minimal form
1	0	0	ABC	m4	$F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A\overline{B} C + ABC + AB\overline{C}$
1	0	1	ABC	m5	$= (\overline{A} \overline{B} + \overline{A} B + A\overline{B} + AB)C + AB\overline{C}$
1	1	0	ABC	m6	= $((\overline{A} + A)(\overline{B} + B))C + AB\overline{C}$
1	1	1	ABC	<mark>,</mark> m7	$= C + AB\overline{C} = AB\overline{C} + C = AB + C$
				/	

short-hand notation form in terms of 3 variables

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

Α	В	С	maxterms	
0	0	0	A + B + C N	NO E in comprised form:
0	0	1	$A + B + \overline{C} = N$	Λ^1 $E(A, B, C) = \Pi \Lambda(0, 2, 4)$
0	1	0	$A + \overline{B} + C = N$	$\Lambda^2 = \Lambda^2 + \Lambda^2 + \Lambda^2$
0	1	1	$A + \overline{B} + \overline{C} = N$	- (A + P + C) (A + P + C) (A + P + C)
1	0	0	\overline{A} + B + C N	- (A + B + C)(A + B + C)(A + B + C)
1	0	1	$\overline{A} + \underline{B} + \overline{C} = N$	$\sqrt{5} \qquad \qquad F(A B C) = (A + B + C)(A + B + C)(A + B + C)$
1	1	0	$\overline{A} + \overline{B} + C = N$	1(A, B, C) = (A + B + C)(A + B + C)(A + B + C)
1	1	1	$\overline{A} + B + \overline{C} = N$	$\sqrt{7} \qquad (A + B + C)(\overline{A} + B + C)$
short-ha	nd not	tation fo	or maxterms of 3	variables = $(A + C) (B + C)$

1. Minterm to Maxterm conversion: rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used

E.g., $F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$

2. Maxterm to Minterm conversion: rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

E.g., $F(A,B,C) = \prod M(0,1,2) = \sum m(3,4,5,6,7)$

3. Minterm expansion of F to Minterm expansion of F': in minterm shorthand form, list the indices not already used in F

E.g., $F(A,B,C) = \Sigma m(3,4,5,6,7)$ \longrightarrow $F'(A,B,C) = \Sigma m(0,1,2)$ $= \Pi M(0,1,2)$ \longrightarrow $= \Pi M(3,4,5,6,7)$

4. Minterm expansion of F to Maxterm expansion of F': rewrite in Maxterm form, using the same indices as F

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7)$$

= $\Pi M(0,1,2)$ \longrightarrow $F'(A,B,C) = \Pi M(3,4,5,6,7)$
= $\Sigma m(0,1,2)$

- Key tool to simplification: A (B + B) = A
- Essence of simplification of two-level logic
 - Find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

- Just another way to represent truth table
- Visual technique for identifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

Mapping truth tables onto Boolean cubes

Uniting theorem

Circled group of the on-set is called the *adjacency* plane. Each adjacency plane corresponds to a product term.

ON-set = solid nodes OFF-set = empty nodes

A varies within face, B does not______ this face represents the literal B

Three variable example: Binary full-adder carry-out logic

 $F(A,B,C) = \Sigma m(4,5,6,7)$ on-set forms a square i.e., a cube of dimension 2 (2-D adjacency plane) represents an expression in one variable i.e., 3 dimensions - 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

- In a 3-cube (three variables):
 - □ 0-cube, i.e., a single node, yields a term in 3 literals
 - □ 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - □ 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - □ 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,

m-subcube within an n-cube (m < n) yields a term with n – m literals

- Alternative to truth-tables to help visualize adjacencies
 - Guide to applying the uniting theorem On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

Numbering scheme based on Gray–code

□ e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

K-Map Examples

Cout =

F =

F(A,B,C) =

F' simply replace 1's with 0's and vice versa

$$F'(A,B,C) = \Sigma m(1,2,3,6)$$

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

 $F(A,B,C,D) = \Sigma m(1,3,5,7,9) + \Sigma d(6,12,13)$ $F = \overline{A} D + \overline{B} \overline{C} D w/o don't cares$ $F = \overline{C} D + \overline{A} D w/ don't cares$ By treating this DC as a "1", a 2-cube

can be formed rather than one 0-cube

Equivalent answer as above, but fewer literals

Hazards

Fixing Hazards

The glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

In general, it is difficult to avoid hazards – need a robust design methodology to deal with hazards.