L4: Sequential Building Blocks
(Flip-flops, Latches and Registers)

(Most) Lecture material derived from R. Katz, G. Borriello, "Contemporary Logic Design" (second edition), Prentice-Hall/Pearson Education, 2005.
Some material from J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Prentice-Hall/Pearson Education, 2003.

Combinational Logic Review

- Combinational logic circuits are memoryless
- No feedback in combinational logic circuits
- Output assumes the function implemented by the logic network, assuming that the switching transients have settled
- Outputs can have multiple logical transitions before settling to the correct value

A Sequential System

- Sequential circuits have memory (i.e., remember the past)
- The current state is "held" in memory and the next state is computed based the current state and the current inputs
- In a synchronous systems, the clock signal orchestrates the sequence of events

A Simple Example

Adding N inputs ($\mathrm{N}-1$ Adders)

Using a sequential (serial) approach

Implementing State: Bi-stability

NOR-based Set-Reset (SR) Flipflop

- Flip-flop refers to a bi-stable element (edge-triggered registers are also called flip-flops) - this circuit is not clocked and outputs change "asynchronously" with the inputs

Making a Clocked Memory Element: Positive D-Latch

- A Positive D-Latch: Passes input D to output Q when CLK is high and holds state when clock is low (i.e., ignores input D)
- A Latch is level-sensitive: invert clock for a negative latch

Multiplexor Based Positive \& Negative Latch

2:1 multiplexor

Positive Latch

CLK

Negative Latch

74HC75 (Positive Latch)

OPERATING MODES	INPUTS		OUTPUTS	
	LE $_{\mathrm{n}-\mathrm{n}}$	$\mathbf{n D}$	$\mathbf{n Q}$	$\mathbf{n} \overline{\mathbf{Q}}$
data enabled	H	L	L	H
	H	H	H	L
data latched	L	X	q	$\overline{\mathrm{q}}$

Building an Edge-Triggered Register

- Master-Slave Register
- Use negative clock phase to latch inputs into first latch
\square Use positive clock to change outputs with second latch
- View pair as one basic unit
- master-slave flip-flop twice as much logic

Latches vs. Edge-Triggered Register

Edge triggered device sample inputs on the event edge

Transparent latches sample inputs as long as the clock is asserted

Timing Diagram:

Behavior the same unless input changes while the clock is high

Important Timing Parameters

Clock:

Periodic Event, causes state of memory element to change
memory element can be updated on the: rising edge, falling edge, high level, low level

Setup Time ($T_{\text {su }}$)

> There is a timing "window" around the clocking event during which the input must remain stable and unchanged in order to be recognized

Minimum time before the clocking event by which the input must be stable

Hold Time (T_{h})

Minimum time after the clocking event during which the input must remain stable

Propagation Delay ($T_{c q}$ for an edge-triggered register and $T_{d q}$ for a latch)

Delay overhead of the memory element

74HC74 (Positive Edge-Triggered Register)

FUNCTION TABLE					
INPUTS				OUTPUTS	
$\overline{\text { PRE }}$	$\overline{\text { CLR }}$	CLK	D	Q	$\overline{\mathbf{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H^{\dagger}	H^{\dagger}
H	H	\uparrow	H	H	L
H	H	\uparrow	L	L	H
H	H	L	X	Q_{0}	\bar{Q}_{0}

D-FF with preset and clear

			V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC74		SN74HC74		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		2 V	0	6	0	4.2	0	5	MHz
			4.5 V	0	31	0	21	0	25	
			6 V	0	36	0	25	0	29	
${ }_{\text {w }}$	Pulse duration	$\overline{\text { PRE }}$ or $\overline{C L R}$ low	2 V	100		150		125		ns
			4.5 V	20		30		25		
			6 V	17		25		21		
		CLK high or low	2 V	80		120		100		
			4.5 V	16		24		20		
			6 V	14		20		17		
$\mathrm{t}_{\text {su }}$	Setup time before CLK \uparrow	Data	2 V	100		150		125		ns
			4.5 V	20		30		25		
			6 V	17		25		21		
		$\overline{\operatorname{PRE}}$ or $\overline{\mathrm{CLR}}$ inactive	2 V	25		40		30		
			4.5 V	5		8		6		
			6 V	4		7		5		
th Hold time, data after CLK \uparrow		Hold time, data after CLK \uparrow	2 V	0		0		0		ns
		4.5 V	0		0		0			
		6 V	0		0		0			

The J-K Flip-Flop

- Eliminate the forbidden state of the SR Flip-flop
- Use output feedback to guarantee that R and S are never both one

J-K Master-Slave Register

Is there a problem with this circuit?

D Flip-Flop vs. Toggle Flip-Flop

T	Q_{N}
$\mathbf{0}$	$\mathrm{Q}_{\mathrm{N}-1}$
$\mathbf{1}$	$\overline{\mathrm{Q}}_{\mathrm{N}-1}$

Realizing different types of memory elements

Characteristic Equations

$$
\begin{array}{llr}
\mathrm{D}: & \mathrm{Q}+=\mathrm{D} & \text { E.g., } \mathrm{J}=\mathrm{K}=0, \text { then } \mathrm{Q}+=\mathrm{Q} \\
\mathrm{~J}=1, \mathrm{~K}=0, \text { then } \mathrm{Q}+=1 \\
\mathrm{~J}-\mathrm{K}: & \mathrm{Q}+=\mathrm{J} \overline{\mathrm{Q}}+\overline{\mathrm{K}} \mathrm{Q} & \begin{array}{l}
\mathrm{J}=0, \mathrm{~K}=1, \text { then } \mathrm{Q}+=0 \\
\mathrm{~J}=1, \mathrm{~K}=1, \text { then } \mathrm{Q}+=\mathbf{Q}
\end{array} \\
\mathrm{T}: & \mathrm{Q}+=\mathrm{T} \overline{\mathrm{Q}}+\overline{\mathrm{T} Q} &
\end{array}
$$

Implementing One FF in Terms of Another

Design Procedure

Excitation Tables: What are the necessary inputs to cause a particular kind of change in state?

Q	$\mathrm{Q}+$	J	K	T	D
0	0	0	X	0	0
0	1	1	X	1	1
1	0	X	1	1	0
1	1	X	0	0	1

Implementing D FF with a J-K FF:

1) Start with K-map of $\mathrm{Q}+=f(\mathrm{D}, \mathrm{Q})$
2) Create K-maps for J and K with same inputs (D, Q)
3) Fill in K-maps with appropriate values for J and K
 to cause the same state changes as in the original K-map

> E.g., $D=Q=0, Q+=0$ then $J=0, K=X$

Design Procedure (cont.)

Implementing J-K FF with a D FF:

1) K-Map of $Q^{+}=F(J, K, Q)$

2,3) Revised K-map using D's excitation table its the same! that is why design procedure with D FF is simple!

Resulting equation is the combinational logic input to D to cause same behavior as J-K FF. Of course it is identical to the characteristic equation for a J-K FF.

System Timing Parameters

Register Timing Parameters

T_{cq} : worst case rising edge clock to q delay
$\mathrm{T}_{\mathrm{cq}, \mathrm{cd}}$: contamination or minimum delay from clock to \mathbf{q}
T_{su} : setup time
T_{h} : hold time

Logic Timing Parameters

$\mathrm{T}_{\text {logic }}$: worst case delay through the combinational logic network
$\mathrm{T}_{\text {logic, cd }}$: contamination or minimum delay through logic network

Delay in Digital Circuits

(a) Low-to-high

(b) High-to-low

System Timing (I): Minimum Period

System Timing (II): Minimum Delay

Shift-Register

- Typical parameters for Positive edge-triggered D Register

all measurements are made from the clocking event that is, the rising edge of the clock
- Shift-register

