
L5: 6.111 Spring 2005 1Introductory Digital Systems Laboratory

L5: Simple Sequential Circuits and L5: Simple Sequential Circuits and VerilogVerilog

Acknowledgements: Nathan Ickes and Rex Min

L5: 6.111 Spring 2005 2Introductory Digital Systems Laboratory

Key Points from L4 (Sequential Blocks)Key Points from L4 (Sequential Blocks)

Classification:
Latch: level sensitive (positive latch passes input to output on high phase, hold
value on low phase)
Register: edge-triggered (positive register samples input on rising edge)
Flip-Flop: any element that has two stable states. Quite often Flip-flop also used
denote an (edge-triggered) register

D

Clk

Q
QDD

Clk

Q
QDPositive

Latch
Positive
Register

Latches are used to build Registers (using the Master-Slave Configuration), but
are almost NEVER used by itself in a standard digital design flow.
Quite often, latches are inserted in the design by mistake (e.g., an error in your
Verilog code). Make sure you understand the difference between the two.
Several types of memory elements (SR, JK, T, D). We will most commonly use
the D-Register, though you should understand how the different types are built
and their functionality.

L5: 6.111 Spring 2005 3Introductory Digital Systems Laboratory

System Timing ParametersSystem Timing Parameters

D

Clk

QIn Combinational
Logic

D

Clk

Q

Register Timing Parameters

Tcq : worst case rising edge
clock to q delay

Tcq, cd: contamination or
minimum delay from
clock to q

Tsu: setup time
Th: hold time

Logic Timing Parameters

Tlogic : worst case delay
through the combinational
logic network
Tlogic,cd: contamination or

minimum delay
through logic network

L5: 6.111 Spring 2005 4Introductory Digital Systems Laboratory

Delay in Digital CircuitsDelay in Digital Circuits

Vout

tf

tpHL tpLH

tr
t

Vin

t

90%

10%

50%

50%

VoutVout

Ron

Ron

VDDVDD

(a) Low-to-high (b) High-to-low

CL
CL

vout

vin C

R

tp = ln (2) τ = 0.69 RC
review

L5: 6.111 Spring 2005 5Introductory Digital Systems Laboratory

System Timing (I): Minimum PeriodSystem Timing (I): Minimum Period

D

Clk

QIn Combinational
Logic

D

Clk

Q

CLK

Tsu

Th

Tsu

Th

Tcq

Tcq,cd

Tcq

Tcq,cd

FF1

IN

CLout

CLout

Tl,cd
Tsu2

Tlogic

T > Tcq + Tlogic + Tsu

L5: 6.111 Spring 2005 6Introductory Digital Systems Laboratory

System Timing (II): Minimum DelaySystem Timing (II): Minimum Delay

D

Clk

QIn Combinational
Logic

D

Clk

Q

CLK

Tsu

Th Th

Tcq,cd

FF1

IN

CLout
Tl,cd

Tcq,cd + Tlogic,cd > Thold

CLout

L5: 6.111 Spring 2005 7Introductory Digital Systems Laboratory

The Sequential The Sequential alwaysalways BlockBlock

Edge-triggered circuits are described using a sequential
always block

module combinational(a, b, sel,
out);

input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

endmodule

module sequential(a, b, sel,
clk, out);

input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin

if (sel) out <= a;
else out <= b;

end

endmodule

Combinational Sequential

1

0

sel

out
a

b

1

0

sel

out
a

b
D Q

clk

L5: 6.111 Spring 2005 8Introductory Digital Systems Laboratory

Note: The following is incorrect syntax: always @ (clear or negedge clock)

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

Assign any signal or variable from only one always block, Be
wary of race conditions: always blocks execute in parallel

Importance of the Sensitivity ListImportance of the Sensitivity List
The use of posedge and negedge makes an always block sequential
(edge-triggered)

Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

module dff_sync_clear(d, clearb,
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock)
begin

if (!clearb) q <= 1'b0;
else q <= d;

end
endmodule

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear

module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock)
begin

if (!clearb) q <= 1’b0;
else q <= d;

end
endmodule

always block entered only at
each positive clock edge

always block entered immediately
when (active-low) clearb is asserted

L5: 6.111 Spring 2005 9Introductory Digital Systems Laboratory

SimulationSimulation

tc-q Clear on Clock Edge

DFF with Synchronous Clear

Clear happens on falling edge of clearb

DFF with Asynchronous Clear

L5: 6.111 Spring 2005 10Introductory Digital Systems Laboratory

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

1. Evaluate a | b, assign result to x
2. Evaluate a^b^c, assign result to y
3. Evaluate b&(~c), assign result to z

Blocking vs. Blocking vs. NonblockingNonblocking AssignmentsAssignments

Verilog supports two types of assignments within always blocks, with
subtly different behaviors.
Blocking assignment: evaluation and assignment are immediate

Nonblocking assignment: all assignments deferred until all right-hand
sides have been evaluated (end of simulation timestep)

Sometimes, as above, both produce the same result. Sometimes, not!

always @ (a or b or c)
begin
x = a | b;
y = a ^ b ^ c;
z = b & ~c;

end

always @ (a or b or c)
begin
x <= a | b;

y <= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

L5: 6.111 Spring 2005 11Introductory Digital Systems Laboratory

Assignment Styles for Sequential LogicAssignment Styles for Sequential Logic

Will nonblocking and blocking assignments both produce
the desired result?

module nonblocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin

q1 <= in;
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based
Digital Delay

Line

module blocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin

q1 = in;
q2 = q1;
out = q2;

end

endmodule

L5: 6.111 Spring 2005 12Introductory Digital Systems Laboratory

Use Use NonblockingNonblocking for Sequential Logicfor Sequential Logic

always @ (posedge clk)
begin

q1 <= in;
q2 <= q1;
out <= q2;

end

always @ (posedge clk)
begin

q1 = in;
q2 = q1;
out = q2;

end

D Q D Q D Qin out
q1 q2

clk

D Qin out

clk

“At each rising clock edge, q1, q2, and out
simultaneously receive the old values of in,

q1, and q2.”

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in.
After that, out = q2 = q1 = in.
Therefore out = in.”

Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

Guideline: use nonblocking assignments for sequential
always blocks

q1 q2

L5: 6.111 Spring 2005 13Introductory Digital Systems Laboratory

SimulationSimulation

Non-blocking Simulation

Blocking Simulation

L5: 6.111 Spring 2005 14Introductory Digital Systems Laboratory

Use Blocking for Combinational LogicUse Blocking for Combinational Logic

Nonblocking and blocking assignments will synthesize correctly. Will both
styles simulate correctly?
Nonblocking assignments do not reflect the intrinsic behavior of multi-stage
combinational logic
While nonblocking assignments can be hacked to simulate correctly (expand
the sensitivity list), it’s not elegant
Guideline: use blocking assignments for combinational always blocks

x <= a & b;

Assignment completion

(Given) Initial Condition
a changes;
always block triggered

a b c x y Deferred

1 1 0 1 1
0 1 0 1 1
0 1 0 1 1 x<=0
0 1 0 1 1 x<=0, y<=1
0 1 0 0 1

y <= x | c;

Nonblocking Behavior

x = a & b;

(Given) Initial Condition
a changes;
always block triggered

y = x | c;

Blocking Behavior a b c x y

1 1 0 1 1
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0

module nonblocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x <= a & b;
y <= x | c;

end

endmodule

module blocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x = a & b;
y = x | c;

end

endmodule

a
b

c

x

y

L5: 6.111 Spring 2005 15Introductory Digital Systems Laboratory

The Asynchronous Ripple CounterThe Asynchronous Ripple Counter

A simple counter architecture
uses only registers
(e.g., 74HC393 uses T-register and
negative edge-clocking)
Toggle rate fastest for the LSB

…but ripple architecture leads to
large skew between outputs Clock

D Q
Q

D Q
Q

D Q
Q

D Q
Q

Count[0]
Count [3:0]

Clock

Count [3]

Count [2]

Count [1]

Count [0]

Skew

D register set up to
always toggle: i.e., T

Register with T=1

Count[1] Count[2] Count[3]

L5: 6.111 Spring 2005 16Introductory Digital Systems Laboratory

The Ripple Counter in The Ripple Counter in VerilogVerilog

module dreg_async_reset (clk, clear, d, q, qbar);
input d, clk, clear;
output q, qbar;
reg q;

always @ (posedge clk or negedge clear)
begin
if (!clear)
q <= 1'b0;
else q <= d;

end
assign qbar = ~q;
endmodule

clk

D Q
Q

D Q
Q

D Q
Q

D Q
Q

Count[0]

Count [3:0]
Count[1] Count[2] Count[3]

module ripple_counter (clk, count, clear);
input clk, clear;
output [3:0] count;
wire [3:0] count, countbar;

dreg_async_reset bit0(.clk(clk), .clear(clear), .d(countbar[0]),
.q(count[0]), .qbar(countbar[0]));

dreg_async_reset bit1(.clk(countbar[0]), .clear(clear), .d(countbar[1]),
.q(count[1]), .qbar(countbar[1]));

dreg_async_reset bit2(.clk(countbar[1]), .clear(clear), .d(countbar[2]),
.q(count[2]), .qbar(countbar[2]));

dreg_async_reset bit3(.clk(countbar[2]), .clear(clear), .d(countbar[3]),
.q(count[3]), .qbar(countbar[3]));

endmodule

Single D Register with Asynchronous Clear:

Structural Description of Four-bit Ripple Counter:

Countbar[0] Countbar[1] Countbar[2]

Countbar[3]

L5: 6.111 Spring 2005 17Introductory Digital Systems Laboratory

Simulation of Ripple EffectSimulation of Ripple Effect

L5: 6.111 Spring 2005 18Introductory Digital Systems Laboratory

Logic for a Synchronous CounterLogic for a Synchronous Counter

Count (C) will retained by a D Register
Next value of counter (N) computed by combinational logic

0 0

0 1

1 1

0 1C1

C2

C3
N3

1 1

0 0

1 1

0 0C1

C2

C3
N1 0 1

1 0

1 0

0 1C1

C2

C3
N2

D Q D Q D Q

C1 C2 C3

CLK

N1 := C1

N2 := C1 C2 + C1 C2
:= C1 xor C2

N3 := C1 C2 C3 + C1 C3 + C2 C3
:= C1 C2 C3 + (C1 + C2) C3
:= (C1 C2) xor C3

000111
111011
011101
101001
001110
110010
010100
100000

N1N2N3C1C2C3

From [Katz05]

L5: 6.111 Spring 2005 19Introductory Digital Systems Laboratory

The 74163 Catalog CounterThe 74163 Catalog Counter

Synchronous Load and Clear Inputs
Positive Edge Triggered FFs
Parallel Load Data from D, C, B, A
P, T Enable Inputs: both must be asserted
to enable counting
Ripple Carry Output (RCO): asserted when
counter value is 1111 (conditioned by T);
used for cascading counters

74163 Synchronous
4-Bit Upcounter

QA
QB
QC
QD

163
RCO

P
T

A
B
C
D

LOAD

CLR

CLK2

7
10

15

9

1

3
4
5
6

14

12
11

13

Synchronous CLR and LOAD
If CLRb = 0 then Q <= 0
Else if LOADb=0 then Q <= D
Else if P * T = 1 then Q <= Q + 1
Else Q <= Q

L5: 6.111 Spring 2005 20Introductory Digital Systems Laboratory

Inside the 74163 (Courtesy TI) Inside the 74163 (Courtesy TI) --
Operating ModesOperating Modes

0 0

0

0

0

0

0 1

DA

DB

DC

DD

0

0

0

0

CLR = 0, LOAD = 0:
Clear takes precedence

CLR = 1, LOAD = 0:
Parallel load from DATA

DA

DB

DC

DD

0

0

0

1

L5: 6.111 Spring 2005 21Introductory Digital Systems Laboratory

‘‘163 Operating Modes 163 Operating Modes -- IIII

1 0

QA

QB

QC

QD

0

0

0

0

1 0

NA

NB

NC

ND

1

0

0

0

0

0

0

0

0

CLR = 1, LOAD = 1, P T = 0:
Counting inhibited

CLR = 1, LOAD = 1, P T = 1:
Count enabled

1

1

1

1

L5: 6.111 Spring 2005 22Introductory Digital Systems Laboratory

VerilogVerilog Code for ‘163Code for ‘163

Behavioral description of the ‘163 counter:

module counter(LDbar, CLRbar, P, T, CLK, D,
count, RCO);

input LDbar, CLRbar, P, T, CLK;
input [3:0] D;
output [3:0] count;
output RCO;
reg [3:0] Q;

always @ (posedge CLK) begin

if (!CLRbar) Q <= 4'b0000;
else if (!LDbar) Q <= D;
else if (P && T) Q <= Q + 1;

end

assign count = Q;
assign RCO = Q[3] & Q[2] & Q[1] & Q[0] & T;

endmodule

priority logic for
control signals

RCO gated
by T input

QA
QB
QC
QD

163
RCO

P
T

A
B
C
D

LOAD

CLR

CLK2

7
10

15

9

1

3
4
5
6

14

12
11

13

L5: 6.111 Spring 2005 23Introductory Digital Systems Laboratory

SimulationSimulation

Notice the glitches on RCO!

L5: 6.111 Spring 2005 24Introductory Digital Systems Laboratory

Output TransitionsOutput Transitions

Care is required of the
Ripple Carry Output:
It can have glitches:
Any of these transition
paths are possible!

001

111

000

110 100

101

011 010

Any time multiple bits change, the counter output needs time to
settle.
Even though all flip-flops share the same clock, individual bits
will change at different times.

Clock skew, propagation time variations

Can cause glitches in combinational logic driven by the counter
The RCO can also have a glitch.

L5: 6.111 Spring 2005 25Introductory Digital Systems Laboratory

Cascading the 74163: Will this Work?Cascading the 74163: Will this Work?

‘163 is enabled only if P and T are high
When first counter reaches Q = 4’b1111, its RCO goes high
for one cycle
When RCO goes high, next counter is enabled (P T = 1)

So far, so good...then what’s wrong?

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

VDD

VDD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

CLK

bits 0-3 bits 8-11bits 4-7

L5: 6.111 Spring 2005 26Introductory Digital Systems Laboratory

Incorrect Cascade for 74163Incorrect Cascade for 74163

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

VDD

VDD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

CLK

1 1 1 1 0 1 1 1

1 0

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

VDD

VDD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

‘163
QA QB QC QD

DA DB DC DD

RCO

T

P
CL LD

CLK

0 0 0 0 1 1 1 1

0 1

Everything is fine up to 8’b11101111:

0 0 0 0

Problem at 8’b11110000: one of the RCOs is now stuck high for 16 cycles!

0 0 0 0

L5: 6.111 Spring 2005 27Introductory Digital Systems Laboratory

Correct Cascade for 74163Correct Cascade for 74163

P input takes the master enable
T input takes the ripple carry

QA QB QC QD

DA DB DC DD

RCO

P

T
CL LD

QA QB QC QD

DA DB DC DD

RCO

P

T
CL LD

Master enable

assign RCO = Q[3] & Q[2] & Q[1] & Q[0] & T;

L5: 6.111 Spring 2005 28Introductory Digital Systems Laboratory

SummarySummary

Use blocking assignments for combinational
always blocks
Use non-blocking assignments for sequential
always blocks
Synchronous design methodology usually used in
digital circuits

Single global clocks to all sequential elements
Sequential elements almost always of edge-triggered
flavor (design with latches can be tricky)

Today we saw simple examples of sequential
circuits (counters)

