L6: FSMs and Synchronization

it

Lecture material courtesy of Rex Min

L6: 6.111 Spring 2005

Introductory Digital Systems Laboratory

ﬁ% Asynchronous Inputs in Sequential Systems ﬁ%

What about external signals?

T I Can’t guarantee
—0 O0— >
L Sequential System setup and hold
A times will be met!
Clock

When an asynchronous signal causes a setup/hold

violation...
l] i}
Q / _ =<z
D | L)
Clock O\ S\ [\)\ [\
Transition is missed Transition is caught Output is metastable
on first clock cycle, on first clock cycle. for an indeterminate
but caught on next amount of time.
clock cycle. Q: Which cases are problematic?

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 2

ﬁ% Asynchronous Inputs in Sequential Systems ﬁ%

All of them can be, if more than one happens
simultaneously within the same circulit.

ldea: ensure that external signals directly feed
exactly one flip-flop

Clocked
. Synchronous

T //V> Sequential System

—O0 © D Q
I N

Clock

AN

This prevents the possibility of | and Il occurring in different places in
the circuit, but what about metastability?

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 3

ﬁ% Handling Metastability ﬁ%

m Preventing metastability turns out to be an impossible problem

m High gain of digital devices makes it likely that metastable conditions will
resolve themselves quickly

m Solution to metastability: allow time for signals to stabilize

Likeley to be Very unlikely to Extremely unlikely
metastable be metastable for to be metastable for
right after >1 clock cycle >2 clock cycle

sampling \ \ /
0 i 4 Complicated
B

—o0 o© D QHD QHD Q Sequential Logic
L System

Clock

How many registers are necessary?
m Depends on many design parameters(clock speed, device speeds, ...)
m In 6.111, one or maybe two synchronization registers is sufficient

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 4

it

ﬁ% Finite State Machines

m Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “ states” of operation

m At each clock edge, combinational logic computes outputs and next
state as a function of inputs and present state

inputs outputs
+ +
present next
state state

CLK

Introductory Digital Systems Laboratory

L6: 6.111 Spring 2005

ﬁ% Two Types of FSMs ﬁ%

Moore and Mealy FSMs are distinguished by their output generation

Moore FSM:

next

State
S+

Inputs outputs
Xg---Xp, ’ Y = Tk(S)
CLK
present state S
Mealy FSM:
direct combinational path! outputS

. Vi = (S, Xo---X,)
inputs

Xg--Xpy

S

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 6

ﬁ% Design Example: Level-to-Pulse

m A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

m In other words, it’s a synchronous rising-
edge detector.

m Sample uses:

O Buttons and switches pressed by humans for
arbitrary periods of time

O Single-cycle enable signals for counters

Level to
—L Pulse Pf—
S Converter out P orod
: ...output P produces a
Whenever mput_ L goes |_ single pulse, one clock
from low to high... : :
CLK period wide.

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 7

ﬁ% State Transition Diagrams ﬁ%

m Block diagram of desired system:

Synchronizer Edge Detector
. Level to
unsynchronized
user input D Q DQ L Pulse PI—
L L S FSM

CLK

m State transition diagram is a useful FSM representation and design aid

“if L=1 at the clock edge, — | =1
then jump to state 01.”

L=1 Binary values of states

This is the output that results from
this state. (Moore or Mealy?)

“if L=0 at the clock edge,
then stay in state 00.”

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 8

ﬁ% Logic Derivation for a Moore FSM

m Transition diagram is readily converted to a

e) Current Next
state transition table (just a truth table) state | M| state | OUt
O o|O0O|lO 0] O
O oO|1]0 1] 0
- o 1|o|lo o] 1
o 1|11 1] 1
1 1]/0] 0 0] O
1 11111 1] o0
m Combinational logic may be derived by Karnaugh maps
s,s, fOr S;™:
LN\ 00 01 11 10
01]0:0:0:X
11]0:1:1:X
= for P
s,5, 10rSy™ SN_0 1
LN\ 00 01 11 10 oTo %
S,f=L

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 9

ﬁ% Moore Level-to-Pulse Converter ﬁ%

next
Ay Stsafe Ay Ay
|)r(1puxts) Comb. —I—V D Flip- @ Comb, == OULPULS
o Logic Flops Logic Y = T (S)

CLK m>
present state S

S;"=LS, _<

SO+ =L P= S1SO

Moore FSM circuit implementation of level-to-pulse converter:

So* Sy

CLK—> O
\ D
| Q
J S,* | s
_> Q

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 10

ﬁ% Design of a Mealy Level-to-Pulse

it

direct combinational path!

S

m Since outputs are determined by state and inputs, Mealy FSMs may
need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is
asserted immediately and until the
state transition occurs (or L changes).

L=0 | P=0

L=1|P=0

2. After the transition to S=1 and as long
as L remains at 1, this output is asserted.

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory

L
P
Clock
State

Output transitions
immediately.

State transitions at the

clock edge.

11

ﬁ% Mealy Level-to-Pulse Converter ﬁ%

Pres. Next
State State Out

L=0| P=0

~ P OO
R O Fr O
R O Fr O
O O r o

L=1| P=0

Mealy FSM circuit implementation of level-to-pulse converter:

D

S* S

Ol O

D
CLK —>

S
m FSM’s state simply remembers the previous value of L

m Circuit benefits from the Mealy FSM’s implicit single-cycle
assertion of outputs during state transitions

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 12

it

ﬁ% Moore/Mealy Trade-Offs

m Remember that the difference is in the output:
O Moore outputs are based on state only
O Mealy outputs are based on state and input
O Therefore, Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P
L__/ L
P P \
Clock Clock \
State[0] State

m Compared to a Moore FSM, a Mealy FSM might...
O Be more difficult to conceptualize and design
O Have fewer states

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 13

ﬁ% FSM Timing Requirements ﬁ%

m Timing requirements for FSM are identical to any generic
sequential system with feedback

Minimum Clock Period Minimum Delay

inputs outputs inputs outputs
+ + + +
present next present . next
State state State * gtate

CLK CLK w0 EESESS, L. :

T> T + Tloglc Tsu ch,cd T Tlogic,cd > Thold

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 14

ﬁ% The 6.111 Vending Machine

m Lab assistants demand a new
soda machine for the 6.111 lab.
You design the FSM controller.

m All selections are $0.30.

m The machine makes change.
(Dimes and nickels only.)

m Inputs: limit 1 per clock
O Q - quarter inserted
O D - dime inserted
O N - nickel inserted

m Qutputs: limit 1 per clock
O DC - dispense can
O DD - dispense dime
O DN - dispense nickel

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 15

ﬁ% What States are in the System? ﬁ%

m A starting (idle) state:

m A state for each possible amount of money captured:

m What's the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

m States to dispense change (one per coin dispensed):

e —GD— @D

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 16

ﬁ% A Moore Vender

Here’s a first cut at the
state transition diagram.

See a better way?
So do we.
Don’t go away...

*

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 17

ﬁ% State Reduction

Duplicate states have:

m The same outputs, and N=1

m The same transitions D=1

There are two duplicates @ B
in our original diagram. D=1 .’ Q=1

N=1
D=1

’
2

=

D=1

> p=1

17 states 15 states
5 state bits 4 state bits

18

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory

ﬁ% Verilog for the Moore Vender ﬁ%

module mooreVender (N, D, Q, DC, DN, DD,
clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
output [3:0] state;

y 4 y 4
=== Comb. —’n—>D State Q

Logic Register reg [3:0] state, next;
CLK=>
States defined with parameter keyword
parameter IDLE = O0;
. . parameter GOT 5c = 1;
FSMS are easy In VerllOg parameter GOT_10c = 2;
. . parameter GOT 15c = 3;
Simply write one of each: parameter GOT 20 = 4;
parameter GOT 25c = 5;
. parameter GOT 30c = 6;
m State reg|Ster parameter GOT 35c = 7;
(sequential always block) S ometor GOT 450 - 5.
parameter GOT:SOC = 10;
m Next-state parameter RETURN 20c = 11;
. . . parameter RETURN 15c = 12;
Comb|nat|0na| |Og|C parameter RETURN 10c = 13;
(comb. always block with case) parameter RETURN_3c = 14;
= Output combinational Sltate regllstir defined with sequential
. always oC
logic block y
(COmb. a|WayS block or assign always @ (posedge clk or negedge reset)
if (!reset) state <= IDLE;
StatementS) else state <= next;

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 19

Verilog for the Moore Vender

Next-state logic within a
combinational always block

always @ (state or
case (state)

IDLE: if

else if

else

else

GOT 5c: if

else if

else

else

GOT 10c: if

else if

else

else

GOT 15c: if

else if

else

else

GOT 20c: if

else if

else

else

L6: 6.111 Spring 2005

N or D or Q) begin

(Q) next GOT 25c;
(D) next GOT_10c¢;
if (N) next = GOT 5c;
next = IDLE;

(Q) next = GOT 30c;

(D) next = GOT 15c;
if (N) next = GOT_10c;
next = GOT_5c;

(Q) next = GOT 35c;

(D) next = GOT 20c;
if (N) next = GOT_15c;
next = GOT _10c;

(Q) next = GOT 40c;
(D) next = GOT 25c;
if (N) next = GOT_20c;

next = GOT_15c;

(Q) next = GOT 45c;
(D) next = GOT 30c;
if (N) next = GOT_25c;

next = GOT_20c;

GOT 25c: if (Q)

next

else if (D)
else if
else next = GOT_25c;

GOT_30c: next =
GOT_35c: next =
GOT _40c: next =
GOT _45c: next =
GOT 50c: next =
RETURN_20c: next
RETURN 15c: next
RETURN 10c: next
RETURN 5c: next
default: next = I
endcase

end

= GOT_50c¢;
next = GOT_35c;
(N) next = GOT_30c;

IDLE;
RETURN_ 5c;
RETURN 10c;
RETURN 15c;
RETURN 20c;

= RETURN_ 10c;
= RETURN 5c¢c;
= IDLE;

= IDLE;

DLE;

Combinational output assignment

assign DC = (state
state
state
assign DN = (state
assign DD = (state
state

endmodule

== GOT_30c || state == GOT 35c ||

== GOT _40c || state == GOT 45c ||

== GOT_50c) ;

== RETURN 5c) ;

== RETURN 20c || state == RETURN 15c ||

Introductory Digital Systems Laboratory

RETURN 10c) ;

20

ﬁ% Simulation of Moore Vender

E fsm.sctf - Waveform Editor

Star‘[:|4.lilns |1- #(End: |0.0ns | Interval:|—4.l:lns | 1=

Mame: _Walue: .J-. 1IZIII|;II|ns EIIIIII;IZIns EEIIII;IIIns dIIIIII;IIIns EIIIIZI;IIIns EIZIIII;IIIns ?‘IIIIII;IIIns BIIIIII;IIIns ElIIIIII;IIIns 1.0
o)

= raset y 1 I'|J_ |

=

=
Sl

a
a
a
£ cik 1 e i O R LT
a
a
a

=L DC
=L DD
=L DM
= state H 0 0 o1 % o3 % o4 ¥ oa ¥ o c ¥ E X 0

il o

State @

Output @

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 21

Coding Alternative: Two Blocks

Next-state and output logic combined into a single always block

always @ (state or N or D or Q) begin

GOT 30c: begin
DC = 1; next = IDLE;
end
GOT 35c: begin

DC = 0; DD = 0; DN = 0; // defaults

case (state)

IDLE: if (Q) next = GOT 25c;
else if (D) next = GOT 10c; DENSIRN next = RETURN_5c;
else if (N) next = GOT_5C; end.
else next = IDLE; N GOT_40c: begin
DC = 1; next = RETURN 10c;
GOT 5c: if (Q) next = GOT 30c; end
~ else if (D) next = GOT_15C; GOT_45c: begin
else if (N) next = GOT_loc; DCU=ILG next = RETURN_15¢;
else next = GOT 5c¢; N end.
- GOT 50c: begin
GOT 10c: if (Q) next = GOT_ 35c; DC ="1; next = RETURN_20c;
~ else if (D) next = GOT 20c; end
else if (N) next = GOT_15c;
t =

RETURN 20c: begin

else nex GOT 10c;
- DD = 1; next = RETURN 10c;
GOT 15c: if (Q) next = GOT 40c; end
~ else if (D) next = GOT 25c; RETURN_15¢: begin
else if (N) next = GOT 20c; DDUSILi next = RETURN_5¢;
else next = GOT 15c; B end.
- RETURN 10c: begin
GOT 20c: if (Q) next = GOT 45c; CERCEER) next = IDLE;
~ else if (D) next = GOT_30C; end.
else if (N) next = GOT 25c; RETURN_5c: begin
else next = GOT 20c; DS next = IDLE;
- end
GOT 25c¢: if (Q) next = GOT 50c¢;
~ else if (D) next = GOT 35c; default: next = IDLE;
else if (N) next = GOT_30c; endcase
else next = GOT_25c; N end

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 22

ﬁ% FSM Output Glitching ﬁ%

m FSM state bits may not transition at precisely the same time

m Combinational logic for outputs may contain hazards
m Result: your FSM outputs may glitch!

...causing the
during this state ...the state registers may DC output to
transition... transtion like this... glitch like this!
oto3 0010 :
- 0110 | @ED 1 | glitch
= 0100 0
assign DC = (state == GOT 30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT 50c);

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent sodal

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 23

ﬁ% Registered FSM Outputs are Glitch-Free ﬁ%

registered
outputs
inputs
present state S
reg DC,DN,DD;
m Move output
. . // Sequential always block for state assignment
generatlon II’]'[O the always @ (posedge clk or negedge reset) begin
. if (!reset) state <= IDLE;
Sequentlal always else if (clk) state <= next;
bIOCk DC <= (next == GOT 30c || next == GOT 35c ||
next == GOT 40c || next == GOT 45c ||
m Calculate outputs next == GOT_50¢);
DN <= (next == RETURN 5c);
based on next state DD <= (next == RETURN 20c || next == RETURN 15c ||
- next == RETURN 10c) ;
end

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 24

ﬁ% Mealy Vender (covered In Recitation) ﬁ%

A Mealy machine can eliminate states devoted solely
to holding an output value.

Q=1 * | bb=1

* | DN=1

Q=1|DC=1

Q=1|DC=1 o | DD=1
D=1 g
qu
D=1| DC=1 Q=1|DC=1
D=1 Nzll D=1|
DC=1 * | bD=1
N=1| DC=1 Q=1|DC=1

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 25

Verilog for Mealy FSM

module mealyVender (N, D, Q, DC, DN, DD, clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
reg DC, DN, DD;

output [3:0] state;
reg [3:0] state, next;

parameter IDLE = 0;

parameter GOT _5c = 1
parameter GOT_ 10c
parameter GOT_ 15c
parameter GOT_ 20c
parameter GOT 25c =
parameter RETURN 20c
parameter RETURN 15c
parameter RETURN 10c
parameter RETURN 5c = 9;

1
Ul W N~

I ~e

~e

A

1l
o J O

A

// Sequential always block for state assignment
always @ (posedge clk or negedge reset)

if (!reset) state <= IDLE;

else state <= next;

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 26

always @ (state

DC = 0; DN =

case (state)
IDLE:

else

else
else

GOT 5c:
else
else
else

GOT_10c:
else
else
else

GOT 15c:
else
else

else

GOT 20c:

else

else
else

L6: 6.111 Spring 2005

Verilog for Mealy FSM

or N or D or Q) begin

0; DD = 0; // defaults
if (Q) next = GOT_25c;
if (D) next = GOT_10c;
if (N) next = GOT_5c;
next = IDLE;

if (Q) begin
DC = 1; next = IDLE;

if (D) next = GOT_15c;
if (N) next = GOT_10c;
next = GOT 5c¢;

DC = 1; next = RETURN 5c;

if (D) next = GOT_20c;
if (N) next = GOT_15c;
next = GOT 10c;

DC = 1; next = RETURN 10c;

if (D) next = GOT_25c;
if (N) next = GOT_20c;
next = GOT 15c;

if (Q) begin
DC = 1; next = RETURN 15c;

if (D) begin

DC = 1; next = IDLE;

end
if (N) next = GOT_25c;
next = GOT 20c;

For state GOT_5c, output DC
IS only asserted If Q=1

GOT 25c: if (Q) begin
DC = 1; next = RETURN 20c;
end
else if (D) begin
DC = 1; next = RETURN 5c;
end
else if (N) begin
DC = 1; next = IDLE;
end
else next

GOT 25c;

RETURN 20c: begin
DD = 1; next = RETURN 10c;
end
RETURN 15c: begin
DD = 1; next = RETURN 5c;
end
RETURN 10c: begin
DD = 1; next = IDLE;
end
RETURN 5c: begin
DN = 1; next = IDLE;
end

default: next = IDLE;
endcase

end

endmodule

Introductory Digital Systems Laboratory

27

ﬁ% Simulation of Mealy Vender

EEF - D x

" =1 1
Start|4.[lns | +|+| End: |D.Elns | Interval: |-4.0ns 1=

Mame: _Walue: J_| 1IZIIZI:EIns EIZIIZI:EIns SIZIEI:IZIns 4IIIIII:IZIns EIIIEI:IZIns EDD:Dns ?IIIEI:EIns BIIIIZI:EIns EIIIIIZI:EIns 1.C

L |)
= reset 1 |

=)
=D
=
=k
= D
=r DO
=L D
S5 state H 0 o % 1 % 3 ¥ 4 ¥ 7 ¥ 93 ¥ 0

o0 o o = o o O

A _

State @

Output @

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 28

ﬁ% Clocks are not perfect: Clock Skew ﬁ%

CLout
N

nlp g Combinational l D O}—
Logic

T L J —T—
. CIkD

I Wire delay
Clk

CLK ‘

CLKD ‘

T> T+ Tipgic + Tou- 0

logic

Teqea T T > Thog T 0

cq,cd logic,cd

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 29

ﬁ% Summary

m Synchronize all asynchronous inputs
OUse two back to back registers

m Two types of Finite State Machines introduced
O Moore — Outputs are a function of current state
O Mealy — outputs a function of current state and input

m A standard template can be used for coding FSMs

m Register outputs of combinational logic for critical
control signals

L6: 6.111 Spring 2005 Introductory Digital Systems Laboratory 30

