Wireless Musical Electrocardiogram

Amy Tang and Sinit Vitavasiri

Motivation

- Wireless communication for medical applications is able to solve clinical needs and risks, while providing the patient with the freedom of movement.

Objectives

- Obtain EKG from patient
- Intelligently analyze, store, and transfer data to end user
- Ability to detect varying conditions of patient.

Modes of Operation

Mode 1:

- EKG Wireless Monitor
- Bright LED "Beat" Indicator
- Digital Heart Rate Display

Mode 2:

- Detecting Abnormality from Heart Rate
- Detecting Abnormality from EKG

Mode 3:

- Heart-Rate-Controlled Music

Typical EKG Waveform

Wireless Transceiver

> CC1010 (ChipCon)
> -8051 Compatible Microcontroller $-300-1000 \mathrm{MHz}$ RF Transmission
> -32 kB Flash Memory
> -A/D Converter (10 bit)

Wireless - Calibration Algorithm

Mode 1: Noise Filtering

Mode 1: Noise Filtering

Mode 1: Heart Beat Detector

Mode 1: Heart Rate

- Count number of positive edges in 10 seconds
- Heart rate $=\#$ count $\times 6$

Mode 2: Detecting Abnormality

- Normal heart rate range
$=[50,200]$
- If heart rate is out of this range, the LED will illuminate.
- Normally, T > P

- Compare the two peaks from stored data in SRAM
- If $\mathrm{T}<\mathrm{P}$, the LED will illuminate.

Mode 3: Music from the Heart

- Music tempo is controlled by the heart rate
- Change tempo without changing pitch

Location 1
Location 2
Location 3
Location 4
Location 5
Location 6
Location 7
Location 8
Location 9
Location 10

Mode 3: Algorithm

function output = timescale(sig, compression, maxfreq)
$\%$ takes in a signal in the time domain and scales its length, thus increasing its tempo.
$\%$ It scales the signal by compression, where compression is less than 1.
\% It takes in maxfreq in order to compute how often to remove samples.

```
if nargin < 3, maxfreq = 4096; end
n = length(sig);
% Computes how often to remove samples
Timediv = floor(.08*maxfreq*2)
% Computes how many samples to remove
remove = floor((1-compression)*timediv)
output = 0;
% Remove samples, and recombine signals
+ faster
for i = remove+1:(timediv\pmremove):(n-timediv)
    output = [output; sig((i-remove):(i+timediv-remove))];
end
```


Mode 3: Music of the Heart

Heart Rate Range

- 51-80
- 81-110
- 111-140
- 141-170
- 171-200

