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Abstract 
For the final project, our group implemented a baseball batting practice game utilizing a 
motion sensor input.  This sensor was implemented with a video camera that captures the 
movement of LEDs attached to a rod that represent a baseball bat. This project was 
divided into two main parts namely the motion sensor interface and the video and game 
interface.  
 
The motion sensor interface converts the video input into digital signals using the internal 
AD7185 chip in the lab kit.  The interface then decodes this information into meaningful 
signals that represent the position and movement of the baseball bat. It is the 
responsibility of the video and game interface to display these signals onto a VGA 
monitor and convert them to graphic representation of the baseball bat.  Additionally 
video and game interface was responsible for converting the pitch control inputs to a 
series of images representing the baseball in flight as well as providing information to the 
scoring engine if a hit was scored. 
 
While this baseball game was not fully implemented by the close of the project, a number 
of milestones were accomplished including the successful tracking of the rod and the 
synthesis of the video objects.  The major milestone that we failed to accomplish was the 
capability to detect a hit and full configuration of the bat movement that would have lead 
to a playable game.  Regardless we were able to draw a number of conclusions from the 
experience of implementing and debugging this project, including the need to provide for 
dynamic calibration between the sensor and the video interface.  
 
1. Introduction/ Overview 
 
Motion Sensor Interface 

 
The purpose of utilizing motion sensing using a camera as an input to a baseball 

game is to allow users to simulate a hit at an angle that will ensure the ball to travel the 
furthest distance. Moreover, using a regular game controller will not provide the most 
realistic experience of swinging a baseball bat. While we initially decided to use 
accelerometers, the scale and packaging of the components we ordered proved to be too 
difficult to assemble onto a baseball bat representation.  Thus, we conceived the idea of 
using a camera to capture the movement of a simulated bat 

To ensure that we can recognize the movement of the rod, and not other moving 
objects, three LEDs are attached to the two ends. The lower end will be connected with 
one LED while the upper end will be connected with two LEDs. The upper end is 
connected with two LEDs so that we can observe whether the rod is being swung forward 
or backward, since the length between them will increase if they are swung towards the 
camera and vice versa.  
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The motion sensor interface will send the coordinates of the LEDs, and the 
speed of the swing to the ‘Video and Game interface’ so that user can interact with 
the baseball game by swinging a simulated baseball bat apart from generating a 
score if a hit is detected. 
 
Video and Game Interface 

 
The video for the game was synthesized for each frame based on the pixel being 

rendered.  The eight bit VGA outputs for each color (Red, Blue, Green) and a visibility 
bit were generated for each game element at each pixel location.  Based on this visibility 
information and the priority of the element, the appropriate color value was routed to the 
VGA encoder on the labkit.   

The video and game interface will make use the coordinates sent from the 
motion sensor interface and translate the movement of the input rod onto the video 
screen. The game interface should also detect a hit if the user is able to swing the bat 
towards the ball at the appropriate time. 
 
These two interfaces are then connected in the top module called labkit.v.  
 
2. Motion Sensor Interface 
 
2.1 Motion Sensor Architecture 
 
The motion sensor interface is consisted of seven modules: tv_sync, decoder module, 
filter, coordinator module, register, speedometer, square and sqrt. 
 
Data is updated every time the AD7185 chip finishes decoding a page. A page refers 
to 525 horizontal lines of video data including blanking lines, while each line comprises 
858 samples. It takes two clock cycles to decode one sample data.   
 
Moreover, the motion sensor can be further separated into two parts, Coordinator and 
Speedometer.  The Coordinator computes the coordinate of each LED while the 
Speedometer utilizes data from Coordinator to compute the speed of the swing.  
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Motion Sensor Interface Block Diagram 

 
 
 
 
2.2 Motion Sensor Module Description 
 
TV_SYNC 
 
This module serves the purpose as a synchronizer due to the delay of the output data 
relative to the positive edge of the clock. Moreover, the 27MHz clock connected to this 
module is from the AD7185 chip, instead of the default 27MHz clock in the lab kit. This 
again ensures that the output is not shifted in anyway relative to the clock. The other 
input to the TV_SYNC module is the video data from the AD7185 chip.  
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DECODER 
This module is implemented as a finite state machine. Moreover, this module also serves 
the purpose of a counter but the counter is reset and triggered based on TRS (time 
referencing signals) preamble of the video data. Below is the FSM diagram that explains 
the workings of this module. 
 
 

 
 
 
At state TestFF, the Decoder module compares if the incoming video data is equivalent 
to x3FF. If it is, the FSM transitions to the next state, Test00a. If not, the FSM stays in 
the same state until the incoming video data is equivalent to x3FF.  
 
At Test00a state, the FSM checks if the incoming vide data is equivalent to 0. If it is, the 
FSM transitions to the next state, Test00b. If not, the FSM will go back to the first state, 
TestFF.  
 
The same thing happens in state Test00b. However, if the incoming video data is 
equivalent to 0, then the FSM will transition to the next state, word_test. At this point, we 
are certain that the video data submitted is the TRS preamble, since a sequence of x3FF, 
x000 and x000 is found.  
 
Depending on the value of the incoming video data at this point, the signal at_even_field, 
and blank_signal can either be set to high or low. At this state also, counterx is reset to 0. 
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Countery may be incremented by two or reset to one or two depending on the values of 
the incoming video data and the value at_even_field, and blank_signal at that point.  
 
Also, counterx will always increment by one every clock cycle regardless of the state the 
FSM is in. The value of counterx divided by two is equivalent to the data of sample nth 

being sent, while countery represents the line nth the AD7185 chip is decoding.  
 
The main outputs of this module is the Luminance value of the video data, and the 
corresponding coordinates of the luminance values being sent.  
 
FILTER 
The filter module decides whether the luminance of the video pixel being received is high 
enough to be passed off as a pixel that represents the LED (since the LED’s luminance 
should be higher than all other surrounding objects) If the pixel data passes the filter test, 
then one bit LEDpos signal will be triggered high or otherwise. All outputs of the filter 
are connected to the COORDINATOR module. 
 
COORDINATOR 
The COORDINATOR module decides which LED the filtered pixel belongs to. This 
module is also implemented as a finite state machine.  The FSM diagram below will 
explain the workings of this module. 
 

 
At the first state, FIRSTPOINT, the module will wait for a LEDpos signal. It will then 
randomly assign the register bottom_point the coordinate {ledy, ledx} sent from the 
FILTER module. It will then transition to the next state SECONDPOINT. 
 
At both SECONDPOINT and THIRDPOINT, the states will first check if the next 
coordinate of the pixel representing the LED is adjacent to the already assigned point. If 
not, these coordinates will be assigned to top_point1 or top_point2 depending on their 
coordinates.  This is an important process because we need to distinguish the points such 
that the speed of the swing can be calculated since we are always checking the difference 
of top_point1 and bottom_point to determine the speed. All outputs of the 
COORDINATOR module are sent to REGISTER module and SPEEDOMETER module.  
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REGISTER 
The register module is meant to store the value (coordinates) of the LEDs so that the 
game and video interface can translate the movement of the simulated to the video.  
 
SPEEDOMETER 
The speedometer is designed to calculate the speed of the swing of the simulated baseball 
bat. Since we are unable to compute the length between bottom_point and top_point1, 
this module is implanted as a finite state machine. This module is also connected to two 
helper modules that will compute the square root and the square of the values being sent 
from the SPEEDOMETER module. Below is a FSM diagram that explains the workings 
of this module.  
 

 
The FSM starts at the IDLE state and wait for a start (coordinate_done signal from 
COORDINATOR) signal before moving on to the next state, SUBSTRACT. At this state, 
the differences of the x-coordinates and y-coordinates are calculated and startmult signal 
is set as high. The FSM will remain in the SQUARE state until the SQUARE module 
finish multiplying, where a high multdone signal will be sent from the SQUARE module. 
It will then transition to the next state, SQRT and remains there until a high sqrtdone 
signal is sent from the SQRT module.  
 
SQUARE/ SQRT 
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The SQUARE and SQRT module is generated using the math functions found in CORE 
GEN. The SQUARE module performs multiplication operation on its inputs while the 
SQRT module computes the square root of the input.  
 
2.3 Sensor Design Methodology/Decisions/Trade Offs 
 
I originally planned to use accelerometers to track the moving rod. However, due to 
difficulties in soldering the actual accelerometers, we decided to use a camera to detect 
the movement of the simulated baseball bat. By doing so, the coordinates of the baseball 
bat will be more accurate. However, we will not be able to measure the actual speed of 
the swing. On the other hand, the speed of the swing is calculated by measuring the 
change of distance between the points of the baseball bat.  
 

 
As we can see in figure 1, when the bat is being swung towards the camera, the distance 
between LED A and LED B is further compared to figure 2, when the bat is being swung 
away from the camera. On the other hand, the distance between LED A and LED C is 
further in figure 2 as compared to figure 1. From these facts, we can determine the 
direction of the swing, and the relative speed of the swing.  
 
Moreover, the counting of the DECODER module is designed such that the counting will 
not be affected if the camera is suddenly turned off. This is done by keeping track of the 
TRS preamble at all times so that the counters will always be reset to the correct value 
after a few cycles (or after getting information through the TRS preamble).  
 
While designing the COORDINATOR module, error handling is also taken into 
consideration to avoid infinite loops if no LEDs can be found on the screen. Not only will 
an error signal be triggered high, the old coordinates of the LED will be retained on the 
video output.  
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3. Video and Game Interface 
3.1 Video block Diagram and descriptions 

 
The video for the game was synthesized for each frame based on the pixel being 

rendered.  The final resolution chosen was 800x600 @ 75Hz which required a 11 bit 
counter for the horizontal pixel count and a 10 bit counter for the vertical row count.  
These counts as well as the inverse of the vertical synchronization signal were passed to 
the picture generation module that determined the VGA color values for the pixel.   Using 
the inverse of the vertical synchronization signal allowed for updates to occur outside the 
active video region.  This constraint prevented any duplication or skipping of elements 
based on a changing value location during the rendering of a frame. 

 

Figure 7 Block diagram for VGA Module 
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DCM 
This is the digital clock manager provided by the xilinx FPGA used to implement the 
game.  This functions as a clock multiplier which produces a 49.5 MHz pixel clock from 
the 27 MHz clock of the lab kit.  Because the video is being synthesized on the fly this 
pixel clock is also used as the clocking signal for all of the VGA components. 
 
SYNCHONIZER 
This is a standard synchronizer used to bring signals from outside the pixel clock realm 
into synch with the pixel clock.   In particular it is responsible for synchronizing the three 
19 bit led coordinates as well as the pitch and pitch select game inputs from the lab kit in 
addition to the global reset signal.   
 
POINT REGISTER 
 
This module serves as a small register based memory that keeps track of the three LED 
points for the frame that is being generated.   In particular the location of the points are 
only updated during the video vertical blanking period to keep one point from being 
drawn multiple times in a single frame.  The picture generation component uses the data 
from this register to determine if the bat or point sub-elements are visible for a given 
point of the frame. 
 
SYNC. GENERATOR 
 
This module is responsible for generating the synchronization signals for VGA output.  
This is where the parameters for the horizontal and vertical blanking periods are defined 
as well as the logic to determine if these synch signals should be generated for a given 
pixel or row.  While the counters needed to store and determine the actual line and pixel 
counts are actually defined in the overall VGA module, Figure 7. shows these counts 
being defined by the sync generator for diagram clarity. 
 
PICTURE GENERATOR 
 
This module is composed of a number of elements that are each responsible for 
generating the video output values for a given pixel on a line.  Each sub-module takes the 
line and pixel counts as inputs and uses this to determine if a pixel should have a defined 
output, or be transparent.  These visible flags are combined into the selection input of a 
multiplexer with priority logic incase multiple element overlays are visible.  The output 
of this multiplexer is then used to drive the outputs of the VGA monitor. 
 
POINT TRACK 
 
This module was designed as a debug component, which would render the detected 
points of the bat on the screen as points.  The visible range is computed by taking a three-
pixel border from the center defined by each of the three points from the motion sensor.  
The bat track module was to use these points and potentially computed values such as the 
difference between frames to render the bat in a reasonable orientation.   
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BAT TRACK 
 
This module was originally designed to take the points detected by the motion sensor and 
then render the bats current position.  However due to time constraints a simple threshold 
based movement protocol was designed where the bat would move left, right, up or down 
based on if one of the LEDs fell within certain boundaries.  However the only method of 
changing these values was in Verilog at compile time and this led to sporadic movement 
of the bat.  A better solution would have been to include a calibration routine where the 
thresholds could have been set at “run” time by reading the actual measurements.  As the 
points defining the bat are held constant from the frame, the bat itself is also only updated 
each frame. 
 
BALL TRACK 
 
This module is also composed of a number of sub modules to determine the image that 
makes up a baseball based on the current state of the game.  It should be noted that the 
image of the baseball is defined to be off screen when the PITCH_FSM is in an idle state. 
 
PITCH_FSM 
 
This module is the finite state machine that controls the location of the pitch.  Each type 
of pitch is defined by 10 states.  With the four different types of pitches, this leads to a 
total of 41 states for pitches and idle.  While not implemented, this FSM would have been 
extended to provide transitions based on if a hit was scored.  The state transition diagram 
is provided in Figure 8.  It should be noted that the transitions from the idle state occurs 
when the pitch input is high and this is the time that the values from the pitch selection 
switches are read.  The remainder transitions are control by a timing module not shown 
on the block diagram.  This module takes a update signal indicating that a frame is 
complete (the inverse of the vertical sync signal) and a number of frames based also on 
the type of pitch have been rendering before updating the image offset for the ROM 
address.  The state transition diagram has been simplified to not show the output or the 
complete number of states.  In particular it only shows the first set of transitions for the 
fast ball pitch and skips the intermediate transitions until the end of the pitches, FB_9 and 
FB 10 which returns the state machine back to IDLE after the update size signal is 
received.  The state machine is defined in such a way that different timers controlled the 
size and update signals so that the ball could rotate at one speed and travel at a second.  
Each pitch contained a total of 10 images and thus states which defined the image 
selection and ROM address offset.   
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Figure 8 Simplified State transition diagram for Pitch FSM 
PITCH_ROM 
 
This module is a simple single port read only memory that was generated using the 
xilinix CORE GEN program.  This initialization file defined the point that represents the 
colors of the baseball sprite at different sizes and orientations (based on stitch) pattern.  
Each baseball image is 24 x 24 pixels and is stored as a 2 bit value with the following 
interpretation. 
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ROM Value Description 
00 Transparent, override visible to false. 
01 Ball mapped to white. 
10 Edge mapped to black. 
11 Stitch mapped to red. 

Table 1  PITCH ROM values 
Note that a value of 00 is transparent which overrides the visible bit and sets it to false, 
even though the current counts may indicate that the ball is in view.  This design allows 
the memory to be read consistently for any size of ball, and for the background to 
potentially be presented as a complex image as opposed to a simple blue green 
separation.  The values from the ROM are used to drive a palette selector and set the 
VGA outputs. 
 
3.2 Video Design Methodology/Decisions/Trade Offs 
 
The synchronization of the VGA output is a well-understood process and the generation 
of the synchronization signals is not very exciting.  However there existed a number of 
choices for rendering the active video region.  The mechanism I used to synthesize the 
video on the fly worked given the small number of elements that I was working with but 
could have soon grown unwieldy.  The complexity of this mechanism is further 
constrained by the speed of the pixel clock, which limits the complexity and routing of 
the logic generating the video images.   
 
Another requirement was when to update the state for the video generation.  In particular, 
it was necessary to prevent a single point from being skipped or duplicated in a single 
image.  This could have occurred if the location of the point moved across the current 
pixel or row count during the rendering of the video screen.  As such, the vertical 
synchronization signal was used as an update load enable for the state registers and to 
coordinate the interpretation of the points when moving the bat. 
 
 
Other designs that were considered included using a multiple memory interface where a 
image would have been generated in a main memory and loaded into a video frame 
buffer cache during the blanking period.  Another method would have been to use the 
external memory and a shared bus / major / minor FSM paradigm.  While the video 
component would have still used the bus at 49.5 MHz, the game logic and state could 
have still been written using the 27 MHz clock of the FPGA.  It would have been 
necessary to intelligently update the memory by writing only the changed pixels given 
the number of cycles for a given blanking period.  This design could have been extended 
to include multiple frame buffers and switching between them if the vertical blanking 
period was insufficient to update the image.  Another option would have been to store the 
image in an encoded format such as vertices and colors and have designed a video 
subsystem which would render these on the fly, yet this methodology was specified as a 
project in its own right by another group. 
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4. Testing/Simulations 
 
The modules were tested separately with MaxPlus II simulation function and ModelSim 
simulation program before being connected with a top module. This top module was also 
simulated before being tested.  Below is a screen capture of the simulation of the top 
module of the motion sensor interface.  
 

 
The screen capture above shows the change of states apart from the increment of the 
counters of the motion sensor top module.  
 
 
After programming the codes to the FPGA, the output of the important signals such as 
coordinates of the bat, an error signal was connected to logic analyzer to determine the 
possible bugs in the codes. 
 
For system testing, the video input of the camera was passed though an analog to DV 
converter, which allowed the video signal to be viewed on an auxiliary computer before 
being passed onto the lab kit.  This allowed us to see what the camera was seeing and 
view the results of the interpretation on the logic analyzer and VGA screen at the same 
time. 
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5. Conclusion 
 

Motion Sensor Interface 
While previous labs exercises are not similar to the final project implemented, the 

experience gained from the design and debugging process aid the implementation of the 
final project. By debugging the codes systematically, I was able to save a lot of time 
instead of random trial and error method.  

 
 Moreover, it is also essential to take noise into consideration when designing a 
project. A good project should also have some form of error handling to avoid the system 
from crashing or going into infinite loops. In this final project, the noise (bright objects) 
from the environment caused the LEDs to be poorly detected by the camera. This 
constrains the bat into a box in order to ensure the integrity of the signal being read.  

 
Video and Game Interface 
The use of synthesized video made it more difficult to provide a pretty image for 

the VGA screen however the main conclusion from the video subsystem is the need to 
provide run time configuration of the bat movement.  For example the detected location 
for the bat depends not only on the position of the bat, but also the position and angle of 
the camera, thus static thresholds where insufficient for determining desired movement.  
Also some form of runtime configuration would have been needed if a more sophisticated 
bat rendering algorithm was being used due to the resolution differences between the 
video and VGA resolutions and the offsets introduced by the camera angles.  
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