
 1

Jin Hock Ong
Christopher L. Falling

Final Project Report: Motion Sensor Baseball Game

Abstract
For the final project, our group implemented a baseball batting practice game utilizing a
motion sensor input. This sensor was implemented with a video camera that captures the
movement of LEDs attached to a rod that represent a baseball bat. This project was
divided into two main parts namely the motion sensor interface and the video and game
interface.

The motion sensor interface converts the video input into digital signals using the internal
AD7185 chip in the lab kit. The interface then decodes this information into meaningful
signals that represent the position and movement of the baseball bat. It is the
responsibility of the video and game interface to display these signals onto a VGA
monitor and convert them to graphic representation of the baseball bat. Additionally
video and game interface was responsible for converting the pitch control inputs to a
series of images representing the baseball in flight as well as providing information to the
scoring engine if a hit was scored.

While this baseball game was not fully implemented by the close of the project, a number
of milestones were accomplished including the successful tracking of the rod and the
synthesis of the video objects. The major milestone that we failed to accomplish was the
capability to detect a hit and full configuration of the bat movement that would have lead
to a playable game. Regardless we were able to draw a number of conclusions from the
experience of implementing and debugging this project, including the need to provide for
dynamic calibration between the sensor and the video interface.

1. Introduction/ Overview

Motion Sensor Interface

The purpose of utilizing motion sensing using a camera as an input to a baseball

game is to allow users to simulate a hit at an angle that will ensure the ball to travel the
furthest distance. Moreover, using a regular game controller will not provide the most
realistic experience of swinging a baseball bat. While we initially decided to use
accelerometers, the scale and packaging of the components we ordered proved to be too
difficult to assemble onto a baseball bat representation. Thus, we conceived the idea of
using a camera to capture the movement of a simulated bat

To ensure that we can recognize the movement of the rod, and not other moving
objects, three LEDs are attached to the two ends. The lower end will be connected with
one LED while the upper end will be connected with two LEDs. The upper end is
connected with two LEDs so that we can observe whether the rod is being swung forward
or backward, since the length between them will increase if they are swung towards the
camera and vice versa.

 2

The motion sensor interface will send the coordinates of the LEDs, and the
speed of the swing to the ‘Video and Game interface’ so that user can interact with
the baseball game by swinging a simulated baseball bat apart from generating a
score if a hit is detected.

Video and Game Interface

The video for the game was synthesized for each frame based on the pixel being

rendered. The eight bit VGA outputs for each color (Red, Blue, Green) and a visibility
bit were generated for each game element at each pixel location. Based on this visibility
information and the priority of the element, the appropriate color value was routed to the
VGA encoder on the labkit.

The video and game interface will make use the coordinates sent from the
motion sensor interface and translate the movement of the input rod onto the video
screen. The game interface should also detect a hit if the user is able to swing the bat
towards the ball at the appropriate time.

These two interfaces are then connected in the top module called labkit.v.

2. Motion Sensor Interface

2.1 Motion Sensor Architecture

The motion sensor interface is consisted of seven modules: tv_sync, decoder module,
filter, coordinator module, register, speedometer, square and sqrt.

Data is updated every time the AD7185 chip finishes decoding a page. A page refers
to 525 horizontal lines of video data including blanking lines, while each line comprises
858 samples. It takes two clock cycles to decode one sample data.

Moreover, the motion sensor can be further separated into two parts, Coordinator and
Speedometer. The Coordinator computes the coordinate of each LED while the
Speedometer utilizes data from Coordinator to compute the speed of the swing.

 3

Motion Sensor Interface Block Diagram

2.2 Motion Sensor Module Description

TV_SYNC

This module serves the purpose as a synchronizer due to the delay of the output data
relative to the positive edge of the clock. Moreover, the 27MHz clock connected to this
module is from the AD7185 chip, instead of the default 27MHz clock in the lab kit. This
again ensures that the output is not shifted in anyway relative to the clock. The other
input to the TV_SYNC module is the video data from the AD7185 chip.

 4

DECODER
This module is implemented as a finite state machine. Moreover, this module also serves
the purpose of a counter but the counter is reset and triggered based on TRS (time
referencing signals) preamble of the video data. Below is the FSM diagram that explains
the workings of this module.

At state TestFF, the Decoder module compares if the incoming video data is equivalent
to x3FF. If it is, the FSM transitions to the next state, Test00a. If not, the FSM stays in
the same state until the incoming video data is equivalent to x3FF.

At Test00a state, the FSM checks if the incoming vide data is equivalent to 0. If it is, the
FSM transitions to the next state, Test00b. If not, the FSM will go back to the first state,
TestFF.

The same thing happens in state Test00b. However, if the incoming video data is
equivalent to 0, then the FSM will transition to the next state, word_test. At this point, we
are certain that the video data submitted is the TRS preamble, since a sequence of x3FF,
x000 and x000 is found.

Depending on the value of the incoming video data at this point, the signal at_even_field,
and blank_signal can either be set to high or low. At this state also, counterx is reset to 0.

 5

Countery may be incremented by two or reset to one or two depending on the values of
the incoming video data and the value at_even_field, and blank_signal at that point.

Also, counterx will always increment by one every clock cycle regardless of the state the
FSM is in. The value of counterx divided by two is equivalent to the data of sample nth

being sent, while countery represents the line nth the AD7185 chip is decoding.

The main outputs of this module is the Luminance value of the video data, and the
corresponding coordinates of the luminance values being sent.

FILTER
The filter module decides whether the luminance of the video pixel being received is high
enough to be passed off as a pixel that represents the LED (since the LED’s luminance
should be higher than all other surrounding objects) If the pixel data passes the filter test,
then one bit LEDpos signal will be triggered high or otherwise. All outputs of the filter
are connected to the COORDINATOR module.

COORDINATOR
The COORDINATOR module decides which LED the filtered pixel belongs to. This
module is also implemented as a finite state machine. The FSM diagram below will
explain the workings of this module.

At the first state, FIRSTPOINT, the module will wait for a LEDpos signal. It will then
randomly assign the register bottom_point the coordinate {ledy, ledx} sent from the
FILTER module. It will then transition to the next state SECONDPOINT.

At both SECONDPOINT and THIRDPOINT, the states will first check if the next
coordinate of the pixel representing the LED is adjacent to the already assigned point. If
not, these coordinates will be assigned to top_point1 or top_point2 depending on their
coordinates. This is an important process because we need to distinguish the points such
that the speed of the swing can be calculated since we are always checking the difference
of top_point1 and bottom_point to determine the speed. All outputs of the
COORDINATOR module are sent to REGISTER module and SPEEDOMETER module.

 6

REGISTER
The register module is meant to store the value (coordinates) of the LEDs so that the
game and video interface can translate the movement of the simulated to the video.

SPEEDOMETER
The speedometer is designed to calculate the speed of the swing of the simulated baseball
bat. Since we are unable to compute the length between bottom_point and top_point1,
this module is implanted as a finite state machine. This module is also connected to two
helper modules that will compute the square root and the square of the values being sent
from the SPEEDOMETER module. Below is a FSM diagram that explains the workings
of this module.

The FSM starts at the IDLE state and wait for a start (coordinate_done signal from
COORDINATOR) signal before moving on to the next state, SUBSTRACT. At this state,
the differences of the x-coordinates and y-coordinates are calculated and startmult signal
is set as high. The FSM will remain in the SQUARE state until the SQUARE module
finish multiplying, where a high multdone signal will be sent from the SQUARE module.
It will then transition to the next state, SQRT and remains there until a high sqrtdone
signal is sent from the SQRT module.

SQUARE/ SQRT

 7

The SQUARE and SQRT module is generated using the math functions found in CORE
GEN. The SQUARE module performs multiplication operation on its inputs while the
SQRT module computes the square root of the input.

2.3 Sensor Design Methodology/Decisions/Trade Offs

I originally planned to use accelerometers to track the moving rod. However, due to
difficulties in soldering the actual accelerometers, we decided to use a camera to detect
the movement of the simulated baseball bat. By doing so, the coordinates of the baseball
bat will be more accurate. However, we will not be able to measure the actual speed of
the swing. On the other hand, the speed of the swing is calculated by measuring the
change of distance between the points of the baseball bat.

As we can see in figure 1, when the bat is being swung towards the camera, the distance
between LED A and LED B is further compared to figure 2, when the bat is being swung
away from the camera. On the other hand, the distance between LED A and LED C is
further in figure 2 as compared to figure 1. From these facts, we can determine the
direction of the swing, and the relative speed of the swing.

Moreover, the counting of the DECODER module is designed such that the counting will
not be affected if the camera is suddenly turned off. This is done by keeping track of the
TRS preamble at all times so that the counters will always be reset to the correct value
after a few cycles (or after getting information through the TRS preamble).

While designing the COORDINATOR module, error handling is also taken into
consideration to avoid infinite loops if no LEDs can be found on the screen. Not only will
an error signal be triggered high, the old coordinates of the LED will be retained on the
video output.

 8

3. Video and Game Interface
3.1 Video block Diagram and descriptions

The video for the game was synthesized for each frame based on the pixel being

rendered. The final resolution chosen was 800x600 @ 75Hz which required a 11 bit
counter for the horizontal pixel count and a 10 bit counter for the vertical row count.
These counts as well as the inverse of the vertical synchronization signal were passed to
the picture generation module that determined the VGA color values for the pixel. Using
the inverse of the vertical synchronization signal allowed for updates to occur outside the
active video region. This constraint prevented any duplication or skipping of elements
based on a changing value location during the rendering of a frame.

Figure 7 Block diagram for VGA Module

 9

DCM
This is the digital clock manager provided by the xilinx FPGA used to implement the
game. This functions as a clock multiplier which produces a 49.5 MHz pixel clock from
the 27 MHz clock of the lab kit. Because the video is being synthesized on the fly this
pixel clock is also used as the clocking signal for all of the VGA components.

SYNCHONIZER
This is a standard synchronizer used to bring signals from outside the pixel clock realm
into synch with the pixel clock. In particular it is responsible for synchronizing the three
19 bit led coordinates as well as the pitch and pitch select game inputs from the lab kit in
addition to the global reset signal.

POINT REGISTER

This module serves as a small register based memory that keeps track of the three LED
points for the frame that is being generated. In particular the location of the points are
only updated during the video vertical blanking period to keep one point from being
drawn multiple times in a single frame. The picture generation component uses the data
from this register to determine if the bat or point sub-elements are visible for a given
point of the frame.

SYNC. GENERATOR

This module is responsible for generating the synchronization signals for VGA output.
This is where the parameters for the horizontal and vertical blanking periods are defined
as well as the logic to determine if these synch signals should be generated for a given
pixel or row. While the counters needed to store and determine the actual line and pixel
counts are actually defined in the overall VGA module, Figure 7. shows these counts
being defined by the sync generator for diagram clarity.

PICTURE GENERATOR

This module is composed of a number of elements that are each responsible for
generating the video output values for a given pixel on a line. Each sub-module takes the
line and pixel counts as inputs and uses this to determine if a pixel should have a defined
output, or be transparent. These visible flags are combined into the selection input of a
multiplexer with priority logic incase multiple element overlays are visible. The output
of this multiplexer is then used to drive the outputs of the VGA monitor.

POINT TRACK

This module was designed as a debug component, which would render the detected
points of the bat on the screen as points. The visible range is computed by taking a three-
pixel border from the center defined by each of the three points from the motion sensor.
The bat track module was to use these points and potentially computed values such as the
difference between frames to render the bat in a reasonable orientation.

 10

BAT TRACK

This module was originally designed to take the points detected by the motion sensor and
then render the bats current position. However due to time constraints a simple threshold
based movement protocol was designed where the bat would move left, right, up or down
based on if one of the LEDs fell within certain boundaries. However the only method of
changing these values was in Verilog at compile time and this led to sporadic movement
of the bat. A better solution would have been to include a calibration routine where the
thresholds could have been set at “run” time by reading the actual measurements. As the
points defining the bat are held constant from the frame, the bat itself is also only updated
each frame.

BALL TRACK

This module is also composed of a number of sub modules to determine the image that
makes up a baseball based on the current state of the game. It should be noted that the
image of the baseball is defined to be off screen when the PITCH_FSM is in an idle state.

PITCH_FSM

This module is the finite state machine that controls the location of the pitch. Each type
of pitch is defined by 10 states. With the four different types of pitches, this leads to a
total of 41 states for pitches and idle. While not implemented, this FSM would have been
extended to provide transitions based on if a hit was scored. The state transition diagram
is provided in Figure 8. It should be noted that the transitions from the idle state occurs
when the pitch input is high and this is the time that the values from the pitch selection
switches are read. The remainder transitions are control by a timing module not shown
on the block diagram. This module takes a update signal indicating that a frame is
complete (the inverse of the vertical sync signal) and a number of frames based also on
the type of pitch have been rendering before updating the image offset for the ROM
address. The state transition diagram has been simplified to not show the output or the
complete number of states. In particular it only shows the first set of transitions for the
fast ball pitch and skips the intermediate transitions until the end of the pitches, FB_9 and
FB 10 which returns the state machine back to IDLE after the update size signal is
received. The state machine is defined in such a way that different timers controlled the
size and update signals so that the ball could rotate at one speed and travel at a second.
Each pitch contained a total of 10 images and thus states which defined the image
selection and ROM address offset.

 11

Figure 8 Simplified State transition diagram for Pitch FSM
PITCH_ROM

This module is a simple single port read only memory that was generated using the
xilinix CORE GEN program. This initialization file defined the point that represents the
colors of the baseball sprite at different sizes and orientations (based on stitch) pattern.
Each baseball image is 24 x 24 pixels and is stored as a 2 bit value with the following
interpretation.

 12

ROM Value Description
00 Transparent, override visible to false.
01 Ball mapped to white.
10 Edge mapped to black.
11 Stitch mapped to red.

Table 1 PITCH ROM values
Note that a value of 00 is transparent which overrides the visible bit and sets it to false,
even though the current counts may indicate that the ball is in view. This design allows
the memory to be read consistently for any size of ball, and for the background to
potentially be presented as a complex image as opposed to a simple blue green
separation. The values from the ROM are used to drive a palette selector and set the
VGA outputs.

3.2 Video Design Methodology/Decisions/Trade Offs

The synchronization of the VGA output is a well-understood process and the generation
of the synchronization signals is not very exciting. However there existed a number of
choices for rendering the active video region. The mechanism I used to synthesize the
video on the fly worked given the small number of elements that I was working with but
could have soon grown unwieldy. The complexity of this mechanism is further
constrained by the speed of the pixel clock, which limits the complexity and routing of
the logic generating the video images.

Another requirement was when to update the state for the video generation. In particular,
it was necessary to prevent a single point from being skipped or duplicated in a single
image. This could have occurred if the location of the point moved across the current
pixel or row count during the rendering of the video screen. As such, the vertical
synchronization signal was used as an update load enable for the state registers and to
coordinate the interpretation of the points when moving the bat.

Other designs that were considered included using a multiple memory interface where a
image would have been generated in a main memory and loaded into a video frame
buffer cache during the blanking period. Another method would have been to use the
external memory and a shared bus / major / minor FSM paradigm. While the video
component would have still used the bus at 49.5 MHz, the game logic and state could
have still been written using the 27 MHz clock of the FPGA. It would have been
necessary to intelligently update the memory by writing only the changed pixels given
the number of cycles for a given blanking period. This design could have been extended
to include multiple frame buffers and switching between them if the vertical blanking
period was insufficient to update the image. Another option would have been to store the
image in an encoded format such as vertices and colors and have designed a video
subsystem which would render these on the fly, yet this methodology was specified as a
project in its own right by another group.

 13

4. Testing/Simulations

The modules were tested separately with MaxPlus II simulation function and ModelSim
simulation program before being connected with a top module. This top module was also
simulated before being tested. Below is a screen capture of the simulation of the top
module of the motion sensor interface.

The screen capture above shows the change of states apart from the increment of the
counters of the motion sensor top module.

After programming the codes to the FPGA, the output of the important signals such as
coordinates of the bat, an error signal was connected to logic analyzer to determine the
possible bugs in the codes.

For system testing, the video input of the camera was passed though an analog to DV
converter, which allowed the video signal to be viewed on an auxiliary computer before
being passed onto the lab kit. This allowed us to see what the camera was seeing and
view the results of the interpretation on the logic analyzer and VGA screen at the same
time.

 14

5. Conclusion

Motion Sensor Interface
While previous labs exercises are not similar to the final project implemented, the

experience gained from the design and debugging process aid the implementation of the
final project. By debugging the codes systematically, I was able to save a lot of time
instead of random trial and error method.

 Moreover, it is also essential to take noise into consideration when designing a
project. A good project should also have some form of error handling to avoid the system
from crashing or going into infinite loops. In this final project, the noise (bright objects)
from the environment caused the LEDs to be poorly detected by the camera. This
constrains the bat into a box in order to ensure the integrity of the signal being read.

Video and Game Interface
The use of synthesized video made it more difficult to provide a pretty image for

the VGA screen however the main conclusion from the video subsystem is the need to
provide run time configuration of the bat movement. For example the detected location
for the bat depends not only on the position of the bat, but also the position and angle of
the camera, thus static thresholds where insufficient for determining desired movement.
Also some form of runtime configuration would have been needed if a more sophisticated
bat rendering algorithm was being used due to the resolution differences between the
video and VGA resolutions and the offsets introduced by the camera angles.

Acknowledgements/References

Nathan Ickes.
Initialization files for the AD7185 chip. Help in debugging the video decoding parts, and
initial file for generating a VGA image.

Keith Kowal, Chris Forker and Charlie Kehoe:
Significant help in debugging the video decoding and encoding.

