
6 .111 FINAL PROJECT REPORT
Active Stabilization 3-Axis Sensor Platform

Scott Torborg
Kyle Vogt

Mike Scharfstein

Spring 2005
TA: Chris Forker

Abstract
Autonomous robotic platforms require input from a wide variety of sensors. In order to be
effective in rough and demanding environments, these sensors must be stabilized to produce
efficient output. To do this, high-level sensors are mounted on a 3-axis gimbal platform
controlled by a correction system. The system uses accelerometers, rate gyroscopes, and
feedback from motors to sense the actual position of each axis, and then correct for any
changes by controlling brushless motor amplifiers that are used to move each axis. A finite-
impulse response filter allows the system to correct for motion smoothly and effectively, and
take advantage of multiple sensors.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 1

Introduction and Lab Kit Overview
DARPA’s Grand Challenge competition is a 200-mile race across the California desert. The
race is entirely autonomous, and employs cutting edge algorithms and sensor technology. The
MIT Grand Challenge vehicle will primarily use two sensors: a LIDAR (scanning laser
rangefinder) unit and a stereo camera pair. In order to be usable, both of these sensors
require much more stability than a truck suspension can offer. To provide this, the team seeks
to build an actively stabilized three axis gimbal sensor platform. This platform will be controlled
by a low-latency control loop implemented in programmable logic.

The system uses accelerometers, rate gyroscopes, and quadrature encoder feedback from
motors to sense the actual position of each axis, both in reference to the base of the platform
and to the ground. The inertial data is passed through a pair of FIR filters and then combined
with the encoder data in an absolute control block. This data is output to a DAC which controls
brushless motor amplifiers for each axis.

For maximum flexibility, the filter is completely reconfigurable on the fly, and most configuration
parameters of the system can be easily modified.

Hardware
The axes of the sensor platform are actuated by 120 watt Maxon EC brushless motors. Each
of these motors is powered by a Maxon DES digital servo amplifier. On each axis is mounted
an Analog Devices ADXL213EB evaluation board and ADXRS300EB evaluation board.

On the lab kit breadboards there are several chips: Analog Devices AD558 DACs for output
voltage control, Microchip MCP3201 ADCs for sensor input. There are also various passives
for power supply decoupling, filtering, and attenuation.

Module Description and Implementation
The stabilization system is divided into three parts: the high-level control and interface blocks,
the configuration and feedback blocks, and the I/O blocks for sensors and actuators. Because
there is no shared data between the different axes, and the control system can be identical
across the axes, the overall stabilization system can be divided into three instances of the
same ‘axis’ module. Each instance of the feedback system handles only its own axis.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 2

RS232
Command
Interpreter

FSM

PWM
decoder

Transpose
Form

Convolution
Filters

DAC
output

ADC
MCP3201

Motor
Driver

Maxon

ADXRS
rate gyro

U
A

R
T

in

te
rf

ac
e

absolute
control

FPGA

encoder
feedback

Configuration
Registers

!

Coefficient
Register Bank

Configuration, trigger, and
diagnostic lines not shown.

ADC
read

ADXL
accelerometer

Block Diagram Overview of one axis of the Stabilization System

Sensor and Actuator Input/Output Blocks - Mike Scharfstein

Gyro ADC Input FSM
We used the ADXRS300 rate gyroscope from Analog Devices to help us determines the rate at
which each axis is rotating. The gyroscopes are rated for sensing angular speeds of up to 300
degrees per second, and output an analog signal between 0V and 5V accordingly. The signal
is offset so that 2.5V means an angular speed of 0 degrees per second.

Since the gyroscopes have such a wide range of operation, we decided to use 12-bit ADCs to
convert their output into a digital signal. The ADCs that we settled on are the Microchip
MCP3201, which use the SPI protocol, to transfer digital data. SPI is a serial protocol, which
involves the master device (the labkit in our case) sending the slave (the MCP3201) a clock
signal, and a chip select signal, while the slave pumps data out serially through a third, data
line. A simplified timing diagram and specifications can be found below. Using a serial ADC
also made wiring up our design much simpler. Only running 3 wires to the ADC, instead of over
12 was very convenient, and prevented a lot of tangling hardware debugging.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 3

Name Description Min Max
TSUCS CS fall to first riding clock edge 100ns N/A
TCSH CS disable time (time needed to get ready for next

conversion)
625ns N/A

THI CLK high time 312ns N/A
TLO CLK low time 312ns N/A

Simplified Timing Diagram for MCP3201, courtesy of Microchip

Accelerometer PWM Decoder

The ADXL213 two channel accelerometers we used are capable of sensing acceleration in two
perpendicular axes parallel to the plane of the chip with a range of +/- 1.2G. This information is
then conveyed using a pulse width modulation (PWM) signal. This signal is essentially a clock
signal with a variable duty cycle. The duration of the high phase of the cycle compared to the
clock period represents the output value. Again, this sensor outputs its data with an offset so
that a 0% duty cycle means -1.2G, 50% duty cycles means 0G, and 100% duty cycle means
1.2G. Again, only having to run a few wires from the sensor, instead of one for each bit of
resolution greatly simplified our hardware.

We could have decoded this signal by having it charge a capacitor, and sampling the
capacitor’s charge with and ADC, but we decided to make our own PWM decoder on the
FPGA since it would give us a more accurate signal. We configured the sensor to have a 1
millisecond clock period, so that we would have no trouble getting 12-bit resolution out of the
sensor.

The accelerometer’s data was used to orient each axis of our gimbal to earth. Using a ratio
between the acceleration sensed on each axis of the accelerometer, we are able to find out at
what angle to ground the axis rotated.

Motor Encoder Block

Another signal that was used as an input was the encoder signal from each of our motors. In
contrast with the rate gyroscope and accelerometer, which were used to tell how the axis they
are on has moved, the encoder was used to tell us how much the motor actually moved. The
encoders are rated at 500 counts per revolution, and when you multiply that by the 74:1 gear
head we used, that comes out to 37,000 counts per revolution of the motor, which is almost 16-
bit resolution.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 4

The signal coming from the encoder consists of two channels, each of which is a square wave,
with each period representing one count. The reason that two channels are needed is to find
the direction of rotation. Since each channel is situated 90 degrees out of phase from the
other, we can find the direction of rotation simply by looking at which channel leads the other.

After decoding these signals, we output a pulse representing a “count,” and a “direction” bit to
an integrator unit. This unit is responsible for keeping track of the position at which the motor
currently is. It also has the ability to set the count to zero when the system is being calibrated.

DAC Output FSM

We used AD558 DACs to convert our output signal into a digital one that the amplifiers used to
control the motors’ speed. The design of this module was similar to the one used in Lab 3, but
instead of controlling this FSM with some Major FSM, it ran continuously. In order to run
continuously, the output FSM had to have an internal pipeline stage to ensure that the data
that needed to be outputted stayed constant as long as the DAC was enabled.

AD558 Timing Diagram, courtesy of Analog Devices

All of the I/O blocks are separated from the rest of the system by pipeline stages. This allows
the sensors to run at their own maximum speeds, while the rest of the system is free to run at
a slower speed while still getting the most up-to-date sensor information.

Host Interface and Command Interpreter - Kyle Vogt

UART Interface
Although it’s entirely possible for a stabilization system to operate independently, it is very
useful to be able to tune filter parameters and override the system remotely. To facilitate this,
an RS-232 interface is integrated into the stabilizer design. The abilities enabled with this
approach include absolute position control, tuning filter parameters and coefficients, and
sending enable or disable commands to each of the three axis.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 5

There are two parts to a RS-232 based UART. A transmitter module was written to take a byte
wide input, serialize it, and pass it out on the transmit pin at the correct baud rate. The
receiver module is clocked at the correct baud rate and oversamples the input eight times in
order to eliminate bit errors due to glitches or noise from cabling. There are also two separate
modules generating baud clocks for the transmitter and receiver modules.

To sync with the host computer’s serial clock, the stabilizer’s clock must be divided down to
115,200 hertz. Since the 27mhz clock used for the stabilizer’s FPGA does not divide to
115,200 using integers, a simple counter was used to generate a one-cycle baud clock pulse
about 115,150 times per second. This leads to a baud rate error of about 0.04%, which is well
within the specified allowable baud rater error for the RS-232 protocol.

The transmitter module has a simple FSM to serialize the supplied data byte. The state is
advanced on every baud clock high pulse, so that a new bit is sent at the proper time. There is
also a start bit and stop bit added to each data byte before it is sent out as a single packet.
The receiver module works in a similar manner, but with a different clock. The clock is run
eight times faster so the input can be oversampled. The data is filtered and registered to make
sure that noise and glitches are not treated as data. The bits are then shifted into an output
byte and sent on to the command interpreter.

Command Interpreter

Once data is deserialized by the RS-232 UART module, it is ready to be processed. The
command interpreter FSM simply waits for an incoming command byte, then for a data byte.
Once it has these two bytes it updates the contents of the selected registers as specified.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 6

The FSM is run every time the UART receiver module flags that a new byte is ready. When
this flag goes high, the command interpreter reads the contents of the reciever’s data register
and proceeds to the next state. The final state of the FSM loads the transmit module with a
reply byte, which reports either success or failure, and triggers the UART for transmitting.

Feedback Filter and Absolute Controller - Scott Torborg

Transpose FIR Filter
There were two significant goals in the design of the FIR filter: low latency and high resolution.
To make generating coefficients easier, a straight convolution was preferred. For this reason,
both lattice structures and cascade structures were eliminated. To maximize performance for
large filters, a transpose form filter structure was chosen. This eliminates the adder delay
associated with a direct form filter, by spreading the cascaded adders (required for each fiter
tap) from one pipeline stage to many pipeline stages.

The filter then uses a set of transpose filter tap blocks, each of which has a very short critical
path. To further reduce the critical path, hardware multipliers (built into the Virtex II FPGA) are
used. This critical path, consisting of only a hardware multiplier and adder, should enable the
filter to be run at a very high clock speed (several hundred megahertz).

Transpose Form FIR Filter Structure, with one pipeline stage highlighted.

In order for the filter to be useful, the coefficients must be carefully tuned for the specific
application. It is likely that this tuning will happen on the fly and in the field, so the filter
coefficients are adjustable. To simplify the design and increase performance, a register bank is
used instead of an SRAM block.

The repetitive nature of the code required for this Verilog block may lead to errors. To
counteract this, a script is used to generate the Verilog source code for an arbitrary large filter

+ Reg + Reg

Coefficient
Multiplier

+ Reg + Reg

Input

Output
0

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 7

of this form, using a transpose_tap module as a building block. The script and example output
code are in the appendix.

Absolute Control Block

The absolute control block allows an external system (for example, a navigation computer or a
sensor controller) to give high-level control commands to the sensor platform and change the
direction of the platform, without completely overriding the stabilization function of the system.
It is set up as a simple negative feedback loop with adjustable gain and adjustable desired
position.

Overview of the absolute control block.

The control inputs to the absolute control are configuration registers, and the encoder value
comes from the encoder integrator input block.

Testing and Debugging
To test the receiver module, it was simulated by feeding random bits into the serial line input.
Once data started to appear in the data register, it could be tested with an actual serial port.
The lab kit’s LED’s were continuously assigned to the receiver module’s data register. A
HyperTerminal connection was then opened on the host computer. By pressing different keys
on the keyboard and observing which LED’s lit up, the module’s functionality could be
confirmed.
The transmitter module is tested in nearly the same way, but in reverse. Data is sent from the
lab kit’s switches to the host computer where the proper data bytes could be seen in the
HyperTerminal window.
The command interpreter was tested by simply assigning the contents of a particular data
register to LED’s and using a HyperTerminal connection to send the proper test data.
To test the I/O blocks, we used a two-step process. First, each module was tested by itself with
ModelSim. This was relatively easy to do, since each input block was independent from the
rest of the system. Second, and integration test was performed in hardware. The input blocks
were integrated with the sensors and DACs to make sure that a simple feed-through loop
functioned correctly. Each module passed if the output signal shadowed the input signal.

- +Actual position

DAC output

Desired position

Filter(from regfile)

(from encoders)

Gain

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 8

To facilitate testing of the FIR filter, a programmatic approach was used. First, the desired filter
shape was created in Matlab. This filter shape was then inverse fourier transformed and
quantized at the right granularity to produce a set of coefficients (shown as red squares on the
plot below).

These coefficients were then convolved with some test input to produce a sample output. The
simulated output of the filter for the same test input could then be verified against the sample
output from Matlab. This testing was done using the Verilog $display and $monitor commands
rather than the graphical waveform output; with text, the results for a complex numeric system
can be checked much more easily. This allowed the filter to be verified fairly effectively,
although a more thorough examination could model the quantization error resulting from lower-
order bits being discarded in the FPGA.

Conclusion
The design and construction of a three axis sensor stabilization system proved to be an
exciting yet difficult challenge. The electronic components, sensors, and motor electronics
were not available near the beginning of the project, and some major modules were not
completed early enough, so there was very little time available to integrate the system and test
it on actual hardware. Therefore, it was not possible to implement all the features that were
initially planned, including the command interface and host interface (UART and CAN).

! " #! #"
!!$%

!!$&

!

!$&

!$%

!$'

!$(

#

)*+,

-
.
/
0
*1
2
3
,

4*51,6789,::*;*,01<7:967=9>!?.<<74*51,67@1,A7B,<A90<,

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 9

The end result of the project is a functional two axis stabilizer. It operates with much of the
desired functionality, although it has a few bugs that could be corrected by further integrating
the completed code modules that have already been written and tested.
We discovered that the simple filter coefficients that we initially tried were not effective in
counteracting large angular displacements. The system showed the symptoms of an under
damped oscillator, and eventually the system oscillated out of control and the motor amplifiers
went into current limiting mode. Tuning the filter more carefully on the complete system and
controlling timing more effectively would probably help to solve these problems. The late
construction of the gimbal hardware prevented us from spending as much time tuning the
system as we would have liked.
This project was a great way to become familiar with the new lab kit and test out some of its
features. We used most of the available breadboard space and took advantage of the
expansion ports and logic analyzer. The gimbal hardware was the limiting factor in the full
implementation of the system, but it demonstrated most of the desired stabilization functionality
with two axes.

Acknowledgments
Thanks to Analog Devices and Maxon Motor AG for giving us free parts on short notice.

6.111 Spring 2005! Scott Torborg, Kyle Vogt, Mike Scharfstein! 10

