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ABSTRACT JS

The average alarm clock provides a poor wake-up experience due to its abrupt nature
and the vice that is the snooze button. In this document, we describe the design and
implementation of an alarm clock that uses a combination of light and sound over an
extended period of time. The functions of our alarm clock are as follows: a standard
buzzer, a gradually brightening light, implemented via a duty cycle controlled square
wave, audio playback from mp3 files using a mp3 decoder chip, and voice memo
recording and playback.  The alarm clock has a programmable ’main’ alarm time, and
each function can be independently started at a positive or negative programmable time
offset from the main alarm time. The alarm clock makes use of an LED display to
provide a visual indication of time and to allow for configuration of alarm settings.

INTRO AND USER INTERFACE JS

The Wake Up Your Way Alarm Clock (WUYWAC) was designed to alleviate the harsh
and abrupt experience associated with standard alarm clocks by adding multiple audio
and visual cues that can gradually "build in" over an extended period of time based on
some primary alarm time.  These additional functions include a light of gradually
increasing intensity, mp3 music, and a recordable voice memo in addition to the
standard buzzer.  Each of these four functions can be programmed to turn on
independently at a user specified time offset from the main alarm time.  So, for example,
a user might set the primary alarm time for 7am, but program the light to begin turning
on at 6:40am, the music at 6:50am, a voice memo reminding him or her of a 9am
meeting to play at 7am, and finally a "just in case" buzzer to go off at 5 after 7am.
Control and programmability of the WUYWAC is accomplished solely through the push
buttons and toggle switches provided by the new 6.111 lab kit.  Toggle switches were
used to turn the alarm on and off and to set the alarm time, clock time, and four function
alarm time offsets.  Push buttons were used to reset the system and to provide
increment or decrement inputs for adjusting times (via the D-pad, an homage to the
classic video game controller directional pad which four of the labkit buttons reminded
us of).
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ARCHITECTURAL OVERVIEW EF

This project was implemented on the new labkits provided by the 6.111 staff.  These kits
contain a 6 million gate FPGA which is programmed using Xilinx ISE software.  Specific
credit is due to Nathan Ickes for his code (display.v and the labkit.v template).  Most of
the functionality was contained within the FPGA, but addition external circuitry included
A/D and D/A converters, an op-amp amplifier, LEDs, and an MP3 encoder chip
(STA013).  Two main modules discussed are the MENU and ALARM modules.  The
MENU module keeps track of the delta times associated with each alarm function,
which are time offsets from the main alarm time.  The ALARM module triggers each of
these functions if the alarm is on and turns them off when the I’M UP button is pressed.

The design consists of several modules all contained within a top level labkit module.
All of the user inputs were synchronized, delayed two cycles of the 27MHz clock.  Most
were synchronized directly at this level, but the up, down, right, and left buttons were
synchronized within a module that created a variable called D_pad for use within other
modules.  The menu module was instantiated within labkit.v.  It took as inputs the four
switches and the D_pad.  It output all four of the delta times to the alarm module.  It also
output an alarm function number and a single delta time for that alarm function to the
displaymsg module.  The displaymsg module instantiated at this level outputs the large
dots variable sent to the display module, also at this level.  It uses the set alarm, set
clock, and set feature switches from the labkit and the menu module to know which time
to display.  The alarm module containing the control signals is instantiated as well.  It
ouputs separate start and stop signals to the four alarm functions, each of which has a
module at the labkit level.  The clock module makes available both the current time and
a 1Hz clock.  These modules are described in more depth below.

CLOCK EF

The clock module uses the internal labkit signal at 27MHz to create a 1Hz signal.  It also
outputs an 18 bit clock time comprised of 1 unused bit (MSB) which is reserved for a
future implementation of a military vs standard clock indicator, 5 bits for hours, 6 bits for
minutes, and 6 bits for seconds (LSB).  A toggle switch on the labkit allows changing the
current clock time.  Pushing the up or down buttons will create a single pulse in the
D_pad variable.  If the setclock switch is on, the clocktimefsm module instantiated with
the clock module will adjust the clock time up (later) or down (earlier).  A state diagram
for this module is included at the end as Figure 3.

Since we decided to represent time in hours, minutes, and seconds, current_time +
1second is not necessarily equal to the binary representation of current_time +
00000000000000001.  Jon wrote a time_alu which allows the addition of two time
values.  This was particularly useful with the controlling alarm module, but was also
used in the clock module to add 1 second to the current time every one second.

The user has an interface to this module that changes the speed of the clock.  In
student mode, the speed switch pushes the clock faster.  In professor mode, time
passes at one second per second, because professors have a much better grasp of



3

reality than students for whom time passes all too quickly. (Seniors EF and JS are still
quite happy to be finished!)  A functional diagram is included at the end as Figure 2.

ALARM MODULE JS

The alarm module handles two main tasks: keeping track of a programmable alarm time
and starting the four alarm functions at the correct time offsets from the main alarm
time.  The alarm module is broken down into a time submodule, main alarm submodule,
and four function activation submodules that start or stop the buzzer, light, music, and
voice memo alarm functions.  A functional diagram is included at the end as Figure 4.

Alarm Time Submodule

The alarm time submodule consists of one simple state machine.  On each positive
clock edge, it checks to see if the 'alarm set' input is high.  If not, the alarm time stays
constant.  If so, the submodule checks the D-pad input.  If it detects that the up or down
push button has been pressed (i.e. the corresponding D-pad bit is high), it changes the
alarm to one minute later or sooner, respectively.

Alarm Main Submodule

The alarm main submodule takes as inputs the clock time, main alarm time, alarm on/off
status, and the time offsets for each alarm function.  If the alarm status is 'off', the alarm
main module stays idle.  If the alarm status is 'on', the submodule monitors the clock
time and compares it to the main alarm time.  As shown in the state diagram of Figure
5, when the clock time is less than the alarm time, the submodule enters a trigger wait
state.  Once the clock time is within half an hour (and still less than) the main alarm
time, the main submodule starts the four function activation submodules.  It also
provides each function activation submodule with it's specific function alarm time
calculated by adding the respective time offset to the main alarm time.  Once each of
these submodules indicate that they have been started (by raising a busy signal), the
alarm main submodule waits for either the alarm to be turned off or for all four function
activation submodules to end on their own (indicated by the busy signal going down).
Finally, the main submodule waits for the clock to increase above the main alarm time
before reentering a state where it waits for the clock time to return to being below and
within a half hour of the main alarm time.

Alarm Function Activation Submodules

The alarm function activation submodules work similarly to the main submodule.  Each
of the function activation submodules stays idle until started by the main submodule.
Once started, they confirm to the main submodule that they have been started, monitor
the clock time, and compare it to their respective function alarm time, which is also
provided by the main submodule.  When the clock time is greater than a function alarm
time, the function activation submodule starts its respective function module by raising a
'start' signal.  Once the function module indicates that it has started, and then finished,
the function activation submodule indicates to the main alarm module that it is done.  If
the main submodule stops the function activation submodules while their function
modules are busy, they will stop their function modules by raising a 'stop' signal.
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In addition to start and stop signals, the light function activation submodule also
provides the light module with two signals to control the light intensity.  One signal is the
main alarm time plus five minutes minus the light function alarm time.  The second
signal is the current clock time minus the light function alarm time.  Both signals are six
bit signals corresponding to the minutes of the resulting time arithmetic operations.  The
first six bit signal will be larger than the second so long as the clock time is less than five
minutes past the main alarm time.  Once this condition no longer holds, the light
function activation submodule sets both signals to be equal.

MENU EF

The main goal of the menu module is keep track of the four delta times for the four
alarm functions.  Additionally, the menu module sends some information directly to the
displaymsg module.  The menu module instantiates its submodules and contains a case
statement.  There are no state machines at the menu level.  Four identical, parallel
FSMs are instantiated in the smallmenufsms which control the editing of the four times.
The user indicates he wants to change an alarm function time by selecting one of 4
switches on the labkit.  Each statemachine can be hard-programmed with a maximum
and minimum value for the time that that function will activate.  If more than one switch
is selected, the internal module menuchoose will make the choice for the user so that
only one delta time is adjusted by any push of the D_pad buttons.  Both the alarm
function number and the delta time being adjusted are sent to the displaymsg module.

The delta times are in sign magnitude format to ease both display functionality and the
adding and subtracting within the alarm module.  Figure 6 and figure 7 are the block
diagram of the menu module and the state diagram of the FSM.

DISPLAY EF

The display consists of two instantiated modules at the top level.  The module display.v
was written by Nathan Ickes to control the hexadecimal display on the new labkit.  Its
input is a 640 bit number that includes a bit for each diode on the display.  Our module
displaymsg3.v creates this 640bit number.  Normally, the display shows CURRENT
and then the time in hours, minutes and seconds.  If the set alarm switch is up, then the
display shows “ALARM” and then the alarm time in hours, minutes and seconds.  If one
of the alarm functions is being adjusted, then the name of that function and its delta time
will be displayed.  The delta time is a 6 bit number in sign magnitude format that
indicates the relative time from the alarm time that that alarm function event occurs.  To
aid in reading, the displaymsg module, I wrote a submodule that takes in a six bit
number and outputs the forty bits for a tens digit and the forty bits for a ones digit of that
number in decimal notation for the display.  This module is instantiated several times to
find the tens and ones digits of the 3 clock and alarm times (hr, min, sec) and to find the
tens and ones digit of the selected function’s delta time (min).  Since the alarm functions
are often activated before the alarm time, a minus sign is displayed so that the user
knows that, for example, the music will start at alarm_time - 10 minutes.  If the TA mode
is selected by pushing button 1, HACK THE PLANET is displayed (credit suggestion by
Nathan Ackerman).  A yet undiscovered bug requires the 640 bits sent to display.v to be
used somewhere else or the display would not light up correctly, so 2 bits were output to
the labkit’s LEDs.  The decision tree for what to display is shown in Figure 8.
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FUNCTIONS
LIGHT MODULE  JS

The light module is responsible for turning on a light upon activation by the alarm
module, gradually increasing the light intensity from zero to max intensity over the time
period starting at the light alarm time and ending five minutes after the main alarm time.
The light module gradually increases the light intensity using a duty-ratio controlled
square wave (changing logic levels).  The duty ratio is set using a counter.  The counter
counts from zero up and is reset to zero each time it reaches a six bit max count
provided by the alarm module and equal to the main alarm time plus five minutes minus
the light alarm time, in minutes.  On each clock cycle, the current count is incremented
and compared to another six bit input from the alarm module equal to the current clock
time minus the light alarm time.  If the count is greater than this six bit input, than the
square wave is low, otherwise it is high.  In this way, the duty ratio, and thus the light
intensity, will increase from zero to max as the clock time increases from the light alarm
time to five minutes past the main alarm time.

MUSIC MODULE  JS

The music module is responsible for playing mp3 files upon activation by the alarm
module.  The music module accomplishes mp3 playback via an ST Microelectronics
mp3 decoder chip, model STA013.  This chip is configured using the I2C protocol.  It
takes in mp3 file data serially and provides serial digital audio output.  The chip is
capable of automatically detecting mp3 bit rate and sampling information, and it can
automatically distinguish between mp3 file metadata and actual song data.  It is also
capable of independently controlling a DAC, but we have chosen to integrate the
combine the digital audio output with the buzzer and voice memo audio signals.  Once
started, the music module performs two sequential operations.  First, it initializes the
mp3 decoder by writing to various chip addresses with data from a ROM instantiated in
the FPGA.  This initialization data configures a variety of decoder chip parameters such
as PLL settings and the output oversampling rate.  Second, after proper configuration,
the music module begins sending mp3 file data until either the file ends or the module is
stopped by the alarm module.  Luckily, the I2C signals are seperate from the mp3 data
input signals, allowing the mp3 decoder communications to be modularized.

Music Initialization Submodule

The initialization submodule actually consists of a heirarchy of three submodules in
order to simplify the complexity of the I2C protocol.  The lowest layer submodule in this
heirarchy handles the I2C transaction primitives for 'start', 'stop', 'send a byte', and
'receive a byte'.  This submodule performs one of these primitives when provided with a
start signal and, if appropriate, the byte to be sent from the next higher submodule.  The
primitives submodule will also leave a received byte for the next higher module if the
primitive being performed is a receive.  All primitives are performed using a two bit bus,
one bit being used to set a data value and the other signal being used to clock that data
value into either the decoder chip or the controller.  The controller always maintains
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control of the clock signal, but the two share control of the data signal.  When a data bit
is to be sent, it is simply placed on the data signal while the clock signal is low and then
'clocked in'.  The only time the data signal falls or rises while the clock signal is high is
during a start or stop operation, respectively.
The next higher module in the hierarchy handles the atomic operations of reading or
writing a byte to a given address.  This submodule performs on of these operations
when provided with a start signal, an decoder chip address, and a write byte if the
operation is a write.  A read operation will leave a read byte for the next higher module.
A read operation consists of the following sequence of I2C primitives: a start, a sent byte
indicating that the following primitive will be a send, a sent byte equal to the chip
address to be read from, a stop, a second start, a sent byte indicating that the following
primitive will be a receive, a received byte stored in the chip at the given address, and a
final stop.  A write operation consists of the following sequence of I2C primitives: a start,
a sent byte indicating that the following primitive will be a send, a sent byte equal to the
chip address that will be written to, a sent byte with the data to be written at the given
address, and a final stop.  This read/write submodule is started by the top initialization
submodule.
The top initialization submodule first checks for chip presence by reading from a read-
only chip address and verifying a known data value stored there.  The submodule then
pulls some 2000+ address-data pairs from a ROM and writes the data to the decoder
chip using the read/write submodule.  Finally, the top initialization submodule writes a
start value to a defined 'chip start' address, after which point the mp3 decoder chip
raises a data request signal indicating that it is ready to start receiving mp3 data on the
mp3 data signals.  The top initialization submodule checks for this data request signal
and, when received, drops its busy signal indicating to the music module that
initialization is complete.

Music Data Submodule

The music data submodule handles sending mp3 file data serially to the mp3 decoder
chip.  The communications protocol used to send the mp3 data is quite simple relative
to the I2C protocol.  The mp3 data bus consists of three one-way signals: a data request
signal controlled by the decoder chip and two signals for data and clock provided by the
controller, the FPGA in this case.  When the mp3 decoder chip is ready for a data bit, it
raises the data request line.  Music data submodule then puts a bit on the data signal
taken from a ROM instantiated in the FPGA, raises and then lowers the clock signal to
latch the mp3 data bit into the decoder chip, and then waits for the next positive going
data request signal.

BUZZER EF

The buzzer module uses a simple counter to generate an eight bit saw-tooth audio
signal.  It is implemented using an FSM that exits the IDLE state once it receives a start
command from the alarm module.  A saw-tooth signal was chosen for its irritating quality
and the fundamental frequency was chosen to be about 440Hz since I knew for sure
that this would be within an audio range.  The 8 bit buzzer sound is sent to an audio
module which is a simple FSM that adds the inputs to send to a DAC.  This is shown in
Figures 9 and 10.
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VOICE MEMO EF

The voice module is an FSM with two major paths.  The state is normally IDLE, but
heads down the record path when it gets the signal to start recording (button 2).  An
internal SRAM is built, based on the 6.111 labkit website, from a very large register.  On
the record path, the address is incremented for about 7 seconds.  The data stored
during this time comes from an A/D converter that looks at the amplified signal from an
unpowered microphone.  The state machine for this module is shown in Figure 11.

Audio Module

The file audio.v added the signals from the buzzer and the voice memo together as
shown in Figure 12.  It also controlled the D/A converter.  The D/A conversion of the
voice signal did not accurately reflect the recorded analog signal at the time of this
report, however, some sound was output on top of the buzzer sound, so portions of this
module did work

DESIGN METHODOLOGY / DECISIONS / TRADE OFFS JS

Overall, our system functionality lent itself to a very modular design, and we focused on
following this natural modularity at all levels of our design rather than try to force
independent functionalities into the same module or state machine.  This modularity had
many benefits and few detractors.  Major benefits included easier debugging, easier
division of labor, and easier system changes due to the fact that the internal workings of
a module could often be changed without affecting other modules so long as the module
interface remained constant.  The detractors included the additional code overhead
from accomplishing the same functionality with more modules and the extra time
involved in planning out robust module interfaces in the early design stages.

We decided to implement a 24 hour clock and our own time ALU to be used with a
sectioned 18 bit time value format.  The method was chosen over others such as having
to deal with AM/PM or conversions between absolute seconds and a suitable display
format.  Overall, we had no problems with this design decision and found it to be of
greater convenience in almost all implementation instances.

Initially, we had planned to implement the gradually increasing light functionality via a
floating point division operation, but using a simple varied counting system proved to be
surprisingly elegant and completely successful given our requirements.

Early on, the decision was made to rely on an mp3 decoder chip for mp3 playback
rather than try to learn the mp3 decoding algorithm for FPGA implementation.  It was
assumed that this would provide a significant system simplification both in terms of
implementation time and complexity.  In the end, the I2C protocol proved to be very
complicated to implement, and, even after implementing it properly, we were unable to
get the decoder chip to begin requesting mp3 data following the configuration phase.
Without sufficient knowledge of the mp3 encoding complexity, it is difficult to say
whether this option would have proved successful, but I think we would take a closer
look at it if we had to start back at the beginning.
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TESTING / SIMULATIONS

Most modules and submodules were simulated with testbenches in either ModelSim or
Icarus Verilog prior to implementation.  Exceptions to this generality included some tests
involving hardware external to the FPGA, such as the mp3 decoder chip and DACs, due
to the fact that extensive software simulation would have involved the possibly difficult
task of simulating the response of the external hardware.  Overall, however, the
extensive software simulations that were performed contributed significantly to the lack
of major bugs once the various modules were integrated together.

The mp3 decoder chip debugging was facilitated primarily using a logic analyzer.  In the
end, this tool proved essential to getting the I2C communications functioning properly.
Initially, however, the analyzer caused additional confusion because it was acting as a
pull down on signals being monitored which were tri-stated at times.

The display functionality was mostly tested by Xilinx compilation and our observing the
results.  Fixing the elusive bug by sending two bits to the LEDs was an unusual find, but
it worked.

CONCLUSION EF

We built an alarm clock prototype for the pleasant waking experience envisioned in
beds across the world.  An accurate clock keeps track of the current time and a display
shows this information or other relevant information, like the time of the alarm and the
times for each of the alarm functions.  All six of these times can be adjusted separately.
The alarm module accurately signals each function when to start.  A light LED increases
slowing to full power and an annoying buzzer sounds until the alarm is turned off.
Significant steps were taken towards the full implementation of an MP3 player and a
voice memo system.  Most importantly, we learned so much that the professor and TAs
gave us a great grade on the project.
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Figure 1: General Block Diagram

Figure 2: Clock Module, Block Diagram
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Figure 3: Clock Time Change, State Diagram

Figure 4: Block Diagram of Alarm Module
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Figure 5: Main Alarm Submodule FSM, State Diagram

Figure 6: Block Diagram of Menu Module
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Figure 7: Small Menu FSM, State Diagram illustration for Light instantiation

Figure 8: Display Decision Tree
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Figure 9: Buzzer Module FSM

Figure 10: Buzzer and Audio modules
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Figure 11: Voice Module FSM

Figure 12: Audio FSM, State Diagram
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