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Abstract 

 
For those who enjoy singing, but cannot read or write music, or for those who wish to 
compose more efficiently, this system allows a person to play or sing a simple tune and 
obtain a corresponding piece of sheet music on a video output.  The system is made of 

two main parts: a pitch-detecting module and a video output module.  The pitch detector 
determines the note being played based on the frequency of the input, which allows the 

video component to correctly draw the note being played onto a staff display.  This proof-
of-concept apparatus allows frequency detection of input sound waves, musical note 

determination, and display of notes onto a staff. 
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1. Design Overview 
Our project “Music Composition for Dummies”  allows amateurs to create a 
“masterpiece”  by simply singing into a microphone.  The microphone is inputted into a 
system that has two main parts: a pitch detector and a video display.  The pitch detector 
retrieves audio data bits from an audio codec, performs a 1024-point Fast Fourier 
Transform, and determines the frequency and the note value of the input sound.  This 
note value is fed into the video display module, which displays the note onto a staff on 
the video screen.  Figure 1 shows the block diagram of the overall system. 
 

 
Figure 1: Block diagram of overall system 

 
The project not only demonstrates how to extract audio data, how to use FFT for 
frequency detection, and how to implement a video display, but also incorporates many 
important aspects of large-scale digital systems design and integration.  The entire system 
requires utilizing existing Xilinx audio, video, and labkit modules as well as developing 
finite state machines to correctly time and send control signals to the existing modules.  
The project is interesting because besides coding, it also allows us to build analog 
circuitry, use external peripherals, and employ our creativity while developing a product 
that is very practical for musicians and dummies alike.  Our project demonstrates a proof-
of-concept that the frequency of sound waves can be detected and displayed as musical 
notes.  On a more robust level, our device could potentially allow anyone to easily 
compose music by singing, as well as play an existing song on a CD and obtain the 
corresponding score. 
 
2. Design Description 
 
2.1 Pitch Detector (Yun Wu) 
The main purpose of the pitch detector is to transform audio data bits from the codec into 
a corresponding note value by performing a Fast Fourier Transform of the input data and 
determining the peak of the frequency domain audio spectrum.  Figure 2 shows a block 
diagram of the pitch detector. 
 

Input audio 
data from 
codec 

Notes on 
staff 

Note 
values Pitch 

Detector 
Video 

Display 



6.111: Music Composition for Dummies 
 

2 

 
Figure 2: Block diagram of pitch detector 

 
The external input signals of the pitch detector include a reset from the labkit module, as 
well as the bit-clock from the ac97 module that interfaces with the audio codec.  In 
addition, the two crucial input signals are the “ready”  signal and the 16-bit 
“right_in_data” .  “Ready”  signals that audio data is valid, and the most significant 16 of 
20 bits in the audio data “right_in_data”  are stored into the RAM_dp whenever the 
RAM_controller detects a rising or falling edge in the “ready”  signal.  The RAM_dp 
stores 2048 lines of data, and is addressed with 11 bits.  In general, the xfft1024 module 
will process 1024 lines of data, so it will index through half of the data in the RAM_dp, 
while the newly inputted audio data is stored in the other half.  Since the rate of FFT 
computation is much higher than the rate of input data storage, the xfft1024 module must 
wait until a rising or falling edge transition of the most significant bit of the waddress 
indicating that 1024 lines of data have been stored, before it can begin computation again. 
The following Figure 3 shows a state transition diagram of the FFT_controller module 
that sends control signals to the xfft1024 module. 
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Figure 3: State Transition Diagram of FFT controller 

 
Upon a global reset signal, the FFT controller enters into the IDLE state.  On the next 
clock cycle, it enters the setDefaults state where parameters are sent to the Xilinx 
xfft1024 module telling it the size of the transform to be computed (nfft), a scaling 
schedule (scale_sch), whether to perform a forward or inverse transform (fwd_inv), etc.  
These parameters are registered into the xfft1024 module by the FFT controller’s pulsing 
of the respective write enable signals.  Next, the FFT enters the pulseStart state, where it 
commands the xfft1024 to begin computing the transform.  The FFT controller waits for 
the RAM controller to finish writing 1024 data lines to the RAM_dp in the 
waitforRAMcontroller state before returning to the pulseStart state, and repeating the 
transform operation. 
 
After the xfft1024 module computes the 1024-point transform of the input data, the 
respective imaginary and real frequency output points (xk_im) and (xk_re) that are 
indexed by xk_index are sent to a multiply/accumulate unit.  In the multiply accumulate 
unit, the squared magnitude of each point in the transform is computed.  Next, 
xk_mag_sqd for each point along with the corresponding index that ranges from 0 to 
1023 (rd_addr) is sent to the comparator unit.  The comparator determines the peak of the 
frequency spectrum, and sends the index of the peak to a lookup table called notesROM.  
The lookup table matches the index of the peak (max_index) to a corresponding 5-bit 
note value representing the note to be drawn.  In this project, the output notes are limited 
to one octave between middle C and high G on the treble clef, and all other note 
frequencies are considered out of range and are displayed with either a quarter rest or an 
empty bar respectively depending on whether the out of range note is too low or too high. 
 
2.2 Video Display (Shi Ling Seow) 
The video component is implemented on a VGA display with a resolution of 1024 x 768 
and a screen refresh rate of 61.74 Hz. The timing values are listed in Table 1 below. This 
component consists of three modules as shown in Figure 4: the BRAIN module, WRITE1 
module and the VIDEO DAC. The CORE Generator™ tool is used to generate a built-in 
RAM that can store 786432 one-bit data and a ROM that can store 45056 one-bit data. 
The display is divided into 384 32 x 64 blocks where each block is an image of a single 
note as shown in Figure 6. 
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Table 1: Timing values for video display 
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Figure 4: Block diagram of the video component 
 
BRAIN module 
Since the output rate of the pitch detector is only approximately 3 Hz while the video has 
a much higher screen refresh rate (61.74 Hz), a separate module is needed to regulate the 
data flow between these two components to prevent the video from displaying the same 
note consecutively and filling up the screen too fast. The BRAIN module runs on a 64.8 
MHz clock and takes in a reset signal, a 5-bit data (note_in) which indicates the note that 
has been detected by the pitch detection component, and a done signal from the WRITE 
module. Then BRAIN outputs a 5-bit data (note_now) which selects the note to be 
displayed and a start signal to indicate that the WRITE module should display the new 
note on the screen. BRAIN has four states as shown in Figure 5. When the reset button is 
pressed, the state will return to IDLE and the start signal is reset to zero. During the 
IDLE and RESTART state, the data that is received from the pitch detector, note_in, is 
stored in a variable called note_temp. Note_now is set to be the same as note_temp for all 
the states. The DECIDE state will loop back to itself until the pitch detector outputs a 
new note that is different from the previous one. Then the start signal is set high and the 
state transitions to WAIT where start is kept high until a done signal is received from the 
WRITE module. Then the state transitions back to RESTART and the steps are repeated. 
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Figure 5: State transition diagram of the BRAIN module 
 

WRITE module 
The WRITE module consists of three main sections: DCM module, internal signals 
generator, and a finite state machine. The DCM module generates a 64.8 MHz pixel_clock 
using a 27 MHz clock. The internal signal generator takes in a 64.8 MHz clock and 
generates a hsync and a vsync signal for the video display timing. The finite state machine 
consists of a read section and a write section. There is also a section which initializes the 
RAM with data from the ROM to display an empty bar when the reset signal is pressed. 
This method of initializing the RAM is used because initializing from a .coe file would 
take too long to simulate due to the size of the RAM. The RAM is used to keep a one-bit 
data for all the pixels on the display, with a zero to represent the background and a one to 
represent the foreground. The ROM stores 22 32 x 64 bitmaps of the displayed notes, 
each bit representing a pixel on the screen as shown in Figure 6. 
 
This design is simple and does not require too many pointers and counters as the data for 
the video display is obtained directly from the RAM. No doubt this would require the 
RAM to be extremely large to be able to store all the pixels but since our display only 
shows two colors, the RAM only has to store one-bit data for each pixel. The write_count 
variable keeps track of the next writing point on the RAM and the read_count variable 
keeps track of the next reading point on the RAM. Pointer points to the next block of data 
that needs to be written. Rom_count is used to point to the ROM address where the data 
to be written into RAM in obtained from.  
 
When the reset signal is high, the state transitions to IDLE. Then the SET state loops 
back to itself until two cycles before the blanking period begins. The ROM address is 
first set to point to the block where the image of an empty bar is stored before the state is 
transitioned to SETRAM where the ROM address is incremented and write_count is set 
to the pointer value. Then both the ROM address and the RAM address are incremented 
and the write enable signal is set to high in state SETROM. The WRITE state then loops 
back to itself and continues to increment both the ROM and the RAM addresses until it 
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reaches the end of the RAM buffer. Now the write enable signal is set back to low and 
write_count is reset back to address zero. The WAIT state loops until one cycle before 
the blanking period is over. Then it transitions to state READ the RAM address is 
incremented and the data from RAM is read at every pixel_clock cycle until the one cycle 
before the horizontal blank period. READ then transitions to READWAIT which loops 
until one cycle before the end of the horizontal blank period. Then the state transitions 
back to the READ state to continue displaying on the screen. This back and forth 
transitioning between READ and READWAIT state continues until the end of the RAM 
address. If the start signal from the BRAIN module is low, READWAIT transitions to 
WAIT. But if the start signal is high and if the pointer is pointing at the first block right 
after the edge of the screen, (see Figure 6) READWAIT transitions to TREBLERAM 
where the ROM address is incremented and write_count is set to the pointer value. The 
ROM at this point is pointing to the bitmap of a treble clef so that a new treble clef would 
be written at the beginning of the bar. Then both the ROM address and the RAM address 
are incremented and the write enable signal is set to high in state TREBLEROM. The 
TREBLEWRITE state then loops back to itself and continues to increment both the ROM 
and the RAM addresses until a block of data has been written into RAM. Now the write 
enable signal is set back to low and write_count is set to pointer which is pointing to the 
next block where the next note will be written. Then the state transitions to WRITERAM, 
WRITEROM, and WRITING where all the procedures in TREBLERAM, 
TREBLEROM, and TREBLEWRITE are repeated but with the ROM address set to the 
note_now value that was outputted by the BRAIN module. If the pointer is not pointing at 
the first block right after the edge of the screen and the start signal is high, READWAIT 
transitions to WRITERAM instead and skips the step of writing the treble clef. At the end 
of the WRITING state, the done signal is set to high and the state transitions to WAIT. 
Figure 7 shows the state transition diagram for the WRITE module. 
 

 
 
 
 
 

                              
 

Figure 6: The VGA display is divided into 32 x 12 blocks. Each block contains a bitmap 
of size 32 x 64 pixels which is stored in the RAM. 
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Figure 7: State transition diagram of the WRITE module 
 
Finally, each bit is assigned a 24-bit value to represent the vga_out_blue, vga_out_red, 
vga_out_green that has 8-bit each to be outputted to the video DAC and displayed. 
Color_sel is a synchronized 2-bit input that can be controlled by two switches to changes 
the combination of the foreground and background color. 
 
3. Design Methodology and Design Trade Offs 
 
3.1 Pitch Detector (Yun Wu) 
We explored several methods of pitch detection including time domain methods such as 
counting zero crossings and using autocorrelation, but eventually decided on using the 
Fast Fourier Transform to produce a frequency spectrum of the sound wave, and finding 
the peak.  Although the mathematics behind the FFT seemed extremely complicated at 
first, we were able bypass most of the details by implementing our project using an 
existing Xilinx Corgen module. 
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The sampling rate turned out to be a crucial decision of the pitch detecting module.  
Although the input audio data entered at a frequency of 48kHz, I decided to decrease the 
input RAM storage rate by a factor of 16 to 3kHz, so that the frequency spectrum 
produced by the FFT module would have a higher resolution.  With a sampling rate of 
3kHz, the1024 point transform allowed each bin to have roughly a 3-Hz resolution.  
Since the frequencies corresponding to the notes on the treble clef display ranged from 
261 Hz (Middle C) to 784 Hz (High G), the sampling rate of 3kHz allowed 
approximately 20% of the points in the transform (between point 86 and point 278) to be 
matched to notes.  If the frequency were determined to be out of range, meaning that the 
maximum point was below point 86 or above point 278, then the pitch detector would 
instruct the video display to output a rest or an empty bar respectively. 
 
The relatively slow sampling rate allowed for higher probability of hitting a note value 
when singing, but compromised the number of notes that could be captured.  We 
discovered that when an input midi file contained notes that changed too quickly, the 
pitch detector could only produce one of every few notes. 
 
3.2 Video Display (Shi Ling Seow) 
There are various ways to implement a video component and each has its own strengths 
and weaknesses. The main objective of my design is to minimize the number of pointers 
used to reduce complexity. The design is relatively simple and straightforward as it does 
not require too many pointers and counters since the data for the video display is obtained 
directly from the RAM. No doubt this design would require a large RAM to store data for 
all the pixels but since our display only shows two colors, the RAM only has to store a 
one-bit data for each pixel.  
 
I also chose to not initialize the RAM with a .coe file because simulation would take too 
long due to the size of the RAM. Therefore, I wrote a simple three state FSM to initialize 
the RAM whenever the system is reset. The video display will miss the first read cycle 
but since the refresh rate is so high, the human eye will not be able to detect this latency.  
 
Since the output rate of the pitch detector is only approximately 3 Hz while the video has 
a much higher screen refresh rate (61.74 Hz), a separate module is needed to regulate the 
data flow between these two components to prevent the video from displaying the same 
note consecutively and filling up the screen too fast. 
 
All the reads and writes are implemented on a single FSM instead of using a major and 
minor FSM. I chose to do it this way because the video already has very complicated 
timing constraints and splitting the controls into several modules would just add more 
timing and synchronization issues to the video component. 
 
4. Testing and Debugging 
 
4.1 Pitch Detector (Yun Wu) 
Debugging the pitch detector was extremely cumbersome mostly because of the xfft1024 
module.  As it turned out, there was not an easy way to simulate the Corgen FFT block, 
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so most of the debugging was done by sending signals out to a logic analyzer.  
Everything after the FFT module as well as the fft_controller and ram_controller were 
simulated using Max+plusII and ModelSim.  The following Figures 8, 9, and 10 show the 
ram_controller, fft_controller, and everything after the FFT module in simulation. 
 
 

 
Figure 8: Ram_controller in simulation 

 
 

 
Figure 9: FFT_controller in simulation 

 
 

 
Figure 10: Everything after the FFT module in simulation. 
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4.2 Video Display (Shi Ling Seow) 
I coded and tested my design one layer at a time as the video component has very 
complicated timing issues. By doing so, I could detect errors easily and mistakes can be 
detected earlier before the code becomes too complex. First, I tried displaying data from a 
RAM by just reading directly from RAM without any write procedures. The next step 
was harder as I tried to write from ROM to RAM and then read from the RAM. At this 
point I wasn’t writing in blocks and was merely writing sequentially to familiarize myself 
with the READ and WRITE timings. Once I have managed to do that, I went on to write 
in blocks. This part took up the bulk of my time as it was difficult to keep track of so 
many pointers in my code. But after that was done, polishing the details was relatively 
simple.  
 
For the purpose of testing and debugging, besides displaying the data on the video screen, 
I also simulated all my codes using Max+PlusII for simple codes that did not require the 
use of RAM and ROM such as the BRAIN module and used ModelSim for simulating 
other modules as it ModelSim is linked directly from Xillinx. The DCM module could 
not be simulated in ModelSim so a different clock was generated for the purpose of 
simulation. Also, because the timing specification of the video is very long, certain 
timing constants were reduced for faster simulation. Figure 11 shows the simulation for 
the write timing and Figure 12 shows the simulation for the read timing. Figure 13 shows 
the simulation for the BRAIN . 
 

 
 

Figure 11: Simulation of write timing for video. The ROM address is provided one cycle 
before write enable is set high so that the data from that ROM would be available on the 

next cycle to be written into RAM address zero. 
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Figure 12: Simulation of read timing for video. The first RAM address to be read is 
provided one cycle before the beginning of the read cycle so that the data from RAM 

would be available when the read cycle begins.  
 

 
 
 
 

Figure 13: Simulation of the BRAIN module 
 

5. Conclusion 
Our system demonstrates that input audio data can be processed by an FFT module, and 
the corresponding note can be determined by detecting the peak of the input frequency 
spectrum.  The notes can be directly fed into the video display module, which outputs the 
notes one at a time onto a staff.  The system is reliable for determining and displaying the 
frequency of preset sinusoidal signals by a signal generator, as well as determining the 
corresponding note values to be displayed.  Our system is mainly limited by its input 
sampling rate of 3kHz, as we sometimes missed a few notes when the music changed 
quickly or when the notes included harmonics out of our range.  Future additions could 
include a larger note range, as well as detecting the duration of notes, displaying different 
types of notes depending on duration, scrolling screen and filtering input from the 
microphone so that pitch detection can be performed from a note sung into the 
microphone. 
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