

MUSIC COMPOSITION
FOR DUMMIES

6.111 FINAL PROJECT REPORT

By Wu, Yun

and
Seow, Shi Ling

6.111 (Spring 2005) – Introductory Digital Systems Laboratory

TA: Kehoe, Charlie
Date: May 12, 2005

Abstract

For those who enjoy singing, but cannot read or write music, or for those who wish to
compose more efficiently, this system allows a person to play or sing a simple tune and
obtain a corresponding piece of sheet music on a video output. The system is made of

two main parts: a pitch-detecting module and a video output module. The pitch detector
determines the note being played based on the frequency of the input, which allows the

video component to correctly draw the note being played onto a staff display. This proof-
of-concept apparatus allows frequency detection of input sound waves, musical note

determination, and display of notes onto a staff.

6.111: Music Composition for Dummies

1

1. Design Overview
Our project “Music Composition for Dummies” allows amateurs to create a
“masterpiece” by simply singing into a microphone. The microphone is inputted into a
system that has two main parts: a pitch detector and a video display. The pitch detector
retrieves audio data bits from an audio codec, performs a 1024-point Fast Fourier
Transform, and determines the frequency and the note value of the input sound. This
note value is fed into the video display module, which displays the note onto a staff on
the video screen. Figure 1 shows the block diagram of the overall system.

Figure 1: Block diagram of overall system

The project not only demonstrates how to extract audio data, how to use FFT for
frequency detection, and how to implement a video display, but also incorporates many
important aspects of large-scale digital systems design and integration. The entire system
requires utilizing existing Xilinx audio, video, and labkit modules as well as developing
finite state machines to correctly time and send control signals to the existing modules.
The project is interesting because besides coding, it also allows us to build analog
circuitry, use external peripherals, and employ our creativity while developing a product
that is very practical for musicians and dummies alike. Our project demonstrates a proof-
of-concept that the frequency of sound waves can be detected and displayed as musical
notes. On a more robust level, our device could potentially allow anyone to easily
compose music by singing, as well as play an existing song on a CD and obtain the
corresponding score.

2. Design Description

2.1 Pitch Detector (Yun Wu)
The main purpose of the pitch detector is to transform audio data bits from the codec into
a corresponding note value by performing a Fast Fourier Transform of the input data and
determining the peak of the frequency domain audio spectrum. Figure 2 shows a block
diagram of the pitch detector.

Input audio
data from
codec

Notes on
staff

Note
values Pitch

Detector
Video

Display

6.111: Music Composition for Dummies

2

Figure 2: Block diagram of pitch detector

The external input signals of the pitch detector include a reset from the labkit module, as
well as the bit-clock from the ac97 module that interfaces with the audio codec. In
addition, the two crucial input signals are the “ready” signal and the 16-bit
“right_in_data” . “Ready” signals that audio data is valid, and the most significant 16 of
20 bits in the audio data “right_in_data” are stored into the RAM_dp whenever the
RAM_controller detects a rising or falling edge in the “ready” signal. The RAM_dp
stores 2048 lines of data, and is addressed with 11 bits. In general, the xfft1024 module
will process 1024 lines of data, so it will index through half of the data in the RAM_dp,
while the newly inputted audio data is stored in the other half. Since the rate of FFT
computation is much higher than the rate of input data storage, the xfft1024 module must
wait until a rising or falling edge transition of the most significant bit of the waddress
indicating that 1024 lines of data have been stored, before it can begin computation again.
The following Figure 3 shows a state transition diagram of the FFT_controller module
that sends control signals to the xfft1024 module.

6.111: Music Composition for Dummies

3

Figure 3: State Transition Diagram of FFT controller

Upon a global reset signal, the FFT controller enters into the IDLE state. On the next
clock cycle, it enters the setDefaults state where parameters are sent to the Xilinx
xfft1024 module telling it the size of the transform to be computed (nfft), a scaling
schedule (scale_sch), whether to perform a forward or inverse transform (fwd_inv), etc.
These parameters are registered into the xfft1024 module by the FFT controller’s pulsing
of the respective write enable signals. Next, the FFT enters the pulseStart state, where it
commands the xfft1024 to begin computing the transform. The FFT controller waits for
the RAM controller to finish writing 1024 data lines to the RAM_dp in the
waitforRAMcontroller state before returning to the pulseStart state, and repeating the
transform operation.

After the xfft1024 module computes the 1024-point transform of the input data, the
respective imaginary and real frequency output points (xk_im) and (xk_re) that are
indexed by xk_index are sent to a multiply/accumulate unit. In the multiply accumulate
unit, the squared magnitude of each point in the transform is computed. Next,
xk_mag_sqd for each point along with the corresponding index that ranges from 0 to
1023 (rd_addr) is sent to the comparator unit. The comparator determines the peak of the
frequency spectrum, and sends the index of the peak to a lookup table called notesROM.
The lookup table matches the index of the peak (max_index) to a corresponding 5-bit
note value representing the note to be drawn. In this project, the output notes are limited
to one octave between middle C and high G on the treble clef, and all other note
frequencies are considered out of range and are displayed with either a quarter rest or an
empty bar respectively depending on whether the out of range note is too low or too high.

2.2 Video Display (Shi Ling Seow)
The video component is implemented on a VGA display with a resolution of 1024 x 768
and a screen refresh rate of 61.74 Hz. The timing values are listed in Table 1 below. This
component consists of three modules as shown in Figure 4: the BRAIN module, WRITE1
module and the VIDEO DAC. The CORE Generator™ tool is used to generate a built-in
RAM that can store 786432 one-bit data and a ROM that can store 45056 one-bit data.
The display is divided into 384 32 x 64 blocks where each block is an image of a single
note as shown in Figure 6.

“ Ram_waddr_msb” equal to
“ prev_ram_waddr_msb”

 “Ram_waddr_msb” not equal to
“prev_ram_waddr_msb”

IDLE

setDefaults
pulseStart

waitforRAM
controller

Start

6.111: Music Composition for Dummies

4

Table 1: Timing values for video display

Horizontal (in Pixels) Vertical (in Lines)
Format

Pixel
Clock
(MHz) Active

Video
Front
Porch

Sync
Pulse

Back
Porch

Active
Video

Front
Porch

Sync
Pulse

Back
Porch

1024x768,
61.74Hz

64.8 1024 16 96 176 768 1 3 28

Figure 4: Block diagram of the video component

BRAIN module
Since the output rate of the pitch detector is only approximately 3 Hz while the video has
a much higher screen refresh rate (61.74 Hz), a separate module is needed to regulate the
data flow between these two components to prevent the video from displaying the same
note consecutively and filling up the screen too fast. The BRAIN module runs on a 64.8
MHz clock and takes in a reset signal, a 5-bit data (note_in) which indicates the note that
has been detected by the pitch detection component, and a done signal from the WRITE
module. Then BRAIN outputs a 5-bit data (note_now) which selects the note to be
displayed and a start signal to indicate that the WRITE module should display the new
note on the screen. BRAIN has four states as shown in Figure 5. When the reset button is
pressed, the state will return to IDLE and the start signal is reset to zero. During the
IDLE and RESTART state, the data that is received from the pitch detector, note_in, is
stored in a variable called note_temp. Note_now is set to be the same as note_temp for all
the states. The DECIDE state will loop back to itself until the pitch detector outputs a
new note that is different from the previous one. Then the start signal is set high and the
state transitions to WAIT where start is kept high until a done signal is received from the
WRITE module. Then the state transitions back to RESTART and the steps are repeated.

BRAIN reset

value 5

WRITE

pixel_clock

note_now 5

start_video

done_video

27mhz_clock

reset

B G R
8 8 8 vga_out

VIDEO DAC

2 color_sel

6.111: Music Composition for Dummies

5

Figure 5: State transition diagram of the BRAIN module

WRITE module
The WRITE module consists of three main sections: DCM module, internal signals
generator, and a finite state machine. The DCM module generates a 64.8 MHz pixel_clock
using a 27 MHz clock. The internal signal generator takes in a 64.8 MHz clock and
generates a hsync and a vsync signal for the video display timing. The finite state machine
consists of a read section and a write section. There is also a section which initializes the
RAM with data from the ROM to display an empty bar when the reset signal is pressed.
This method of initializing the RAM is used because initializing from a .coe file would
take too long to simulate due to the size of the RAM. The RAM is used to keep a one-bit
data for all the pixels on the display, with a zero to represent the background and a one to
represent the foreground. The ROM stores 22 32 x 64 bitmaps of the displayed notes,
each bit representing a pixel on the screen as shown in Figure 6.

This design is simple and does not require too many pointers and counters as the data for
the video display is obtained directly from the RAM. No doubt this would require the
RAM to be extremely large to be able to store all the pixels but since our display only
shows two colors, the RAM only has to store one-bit data for each pixel. The write_count
variable keeps track of the next writing point on the RAM and the read_count variable
keeps track of the next reading point on the RAM. Pointer points to the next block of data
that needs to be written. Rom_count is used to point to the ROM address where the data
to be written into RAM in obtained from.

When the reset signal is high, the state transitions to IDLE. Then the SET state loops
back to itself until two cycles before the blanking period begins. The ROM address is
first set to point to the block where the image of an empty bar is stored before the state is
transitioned to SETRAM where the ROM address is incremented and write_count is set
to the pointer value. Then both the ROM address and the RAM address are incremented
and the write enable signal is set to high in state SETROM. The WRITE state then loops
back to itself and continues to increment both the ROM and the RAM addresses until it

RESTART

start = 0
note_temp = note_in

note_now = note_temp

note_temp≠ note_in
start = 1

DECIDE

note_now = note_temp

start = 0

done = 1
start = 0

WAIT

start = 1

note_now = note_temp

IDLE
reset

start = 0
note_temp = note_in

note_now = note_temp

6.111: Music Composition for Dummies

6

reaches the end of the RAM buffer. Now the write enable signal is set back to low and
write_count is reset back to address zero. The WAIT state loops until one cycle before
the blanking period is over. Then it transitions to state READ the RAM address is
incremented and the data from RAM is read at every pixel_clock cycle until the one cycle
before the horizontal blank period. READ then transitions to READWAIT which loops
until one cycle before the end of the horizontal blank period. Then the state transitions
back to the READ state to continue displaying on the screen. This back and forth
transitioning between READ and READWAIT state continues until the end of the RAM
address. If the start signal from the BRAIN module is low, READWAIT transitions to
WAIT. But if the start signal is high and if the pointer is pointing at the first block right
after the edge of the screen, (see Figure 6) READWAIT transitions to TREBLERAM
where the ROM address is incremented and write_count is set to the pointer value. The
ROM at this point is pointing to the bitmap of a treble clef so that a new treble clef would
be written at the beginning of the bar. Then both the ROM address and the RAM address
are incremented and the write enable signal is set to high in state TREBLEROM. The
TREBLEWRITE state then loops back to itself and continues to increment both the ROM
and the RAM addresses until a block of data has been written into RAM. Now the write
enable signal is set back to low and write_count is set to pointer which is pointing to the
next block where the next note will be written. Then the state transitions to WRITERAM,
WRITEROM, and WRITING where all the procedures in TREBLERAM,
TREBLEROM, and TREBLEWRITE are repeated but with the ROM address set to the
note_now value that was outputted by the BRAIN module. If the pointer is not pointing at
the first block right after the edge of the screen and the start signal is high, READWAIT
transitions to WRITERAM instead and skips the step of writing the treble clef. At the end
of the WRITING state, the done signal is set to high and the state transitions to WAIT.
Figure 7 shows the state transition diagram for the WRITE module.

Figure 6: The VGA display is divided into 32 x 12 blocks. Each block contains a bitmap
of size 32 x 64 pixels which is stored in the RAM.

64 pixels

32 pixels

768 pixels
(32 blocks)

1024 pixels
(12 blocks) VGA DISPLAY

Edge of screen

6.111: Music Composition for Dummies

7

Figure 7: State transition diagram of the WRITE module

Finally, each bit is assigned a 24-bit value to represent the vga_out_blue, vga_out_red,
vga_out_green that has 8-bit each to be outputted to the video DAC and displayed.
Color_sel is a synchronized 2-bit input that can be controlled by two switches to changes
the combination of the foreground and background color.

3. Design Methodology and Design Trade Offs

3.1 Pitch Detector (Yun Wu)
We explored several methods of pitch detection including time domain methods such as
counting zero crossings and using autocorrelation, but eventually decided on using the
Fast Fourier Transform to produce a frequency spectrum of the sound wave, and finding
the peak. Although the mathematics behind the FFT seemed extremely complicated at
first, we were able bypass most of the details by implementing our project using an
existing Xilinx Corgen module.

IDLE
reset

SET
rom_count = 21 * 2048

2 cycles
before vblank

SETRAM SETROM

WRITE

write_count = pointer
rom_count ++

end of ram

write_count ++
rom_count ++

INITIALIZE RAM

width_count ++
rom_count ++
write_count ++

TREBLERAM
write_count = pointer

rom_count ++

WRITERAM

WRITEROM

WRITING

write_count = pointer
rom_count ++

width_count ++
rom_count ++
write_count ++

TREBLERAM
width_count ++
rom_count ++
write_count ++

TREBLEWRITE

write_count ++
rom_count ++

write_count ++
rom_count ++

end of block

start = 0

READS

WAIT
rom_count = 0

READ
1 cycle

before read
cycle starts

read_count ++ READWAIT

1 cycle
before hblank

1 cycle
before end of

hblank

en
d

of
 s

cr
ee

n
ro

m
_c

ou
nt

 =
 2

0
*

20
48

no
t e

nd
 o

f
sc

re
en

end of block

WRITES

6.111: Music Composition for Dummies

8

The sampling rate turned out to be a crucial decision of the pitch detecting module.
Although the input audio data entered at a frequency of 48kHz, I decided to decrease the
input RAM storage rate by a factor of 16 to 3kHz, so that the frequency spectrum
produced by the FFT module would have a higher resolution. With a sampling rate of
3kHz, the1024 point transform allowed each bin to have roughly a 3-Hz resolution.
Since the frequencies corresponding to the notes on the treble clef display ranged from
261 Hz (Middle C) to 784 Hz (High G), the sampling rate of 3kHz allowed
approximately 20% of the points in the transform (between point 86 and point 278) to be
matched to notes. If the frequency were determined to be out of range, meaning that the
maximum point was below point 86 or above point 278, then the pitch detector would
instruct the video display to output a rest or an empty bar respectively.

The relatively slow sampling rate allowed for higher probability of hitting a note value
when singing, but compromised the number of notes that could be captured. We
discovered that when an input midi file contained notes that changed too quickly, the
pitch detector could only produce one of every few notes.

3.2 Video Display (Shi Ling Seow)
There are various ways to implement a video component and each has its own strengths
and weaknesses. The main objective of my design is to minimize the number of pointers
used to reduce complexity. The design is relatively simple and straightforward as it does
not require too many pointers and counters since the data for the video display is obtained
directly from the RAM. No doubt this design would require a large RAM to store data for
all the pixels but since our display only shows two colors, the RAM only has to store a
one-bit data for each pixel.

I also chose to not initialize the RAM with a .coe file because simulation would take too
long due to the size of the RAM. Therefore, I wrote a simple three state FSM to initialize
the RAM whenever the system is reset. The video display will miss the first read cycle
but since the refresh rate is so high, the human eye will not be able to detect this latency.

Since the output rate of the pitch detector is only approximately 3 Hz while the video has
a much higher screen refresh rate (61.74 Hz), a separate module is needed to regulate the
data flow between these two components to prevent the video from displaying the same
note consecutively and filling up the screen too fast.

All the reads and writes are implemented on a single FSM instead of using a major and
minor FSM. I chose to do it this way because the video already has very complicated
timing constraints and splitting the controls into several modules would just add more
timing and synchronization issues to the video component.

4. Testing and Debugging

4.1 Pitch Detector (Yun Wu)
Debugging the pitch detector was extremely cumbersome mostly because of the xfft1024
module. As it turned out, there was not an easy way to simulate the Corgen FFT block,

6.111: Music Composition for Dummies

9

so most of the debugging was done by sending signals out to a logic analyzer.
Everything after the FFT module as well as the fft_controller and ram_controller were
simulated using Max+plusII and ModelSim. The following Figures 8, 9, and 10 show the
ram_controller, fft_controller, and everything after the FFT module in simulation.

Figure 8: Ram_controller in simulation

Figure 9: FFT_controller in simulation

Figure 10: Everything after the FFT module in simulation.

6.111: Music Composition for Dummies

10

4.2 Video Display (Shi Ling Seow)
I coded and tested my design one layer at a time as the video component has very
complicated timing issues. By doing so, I could detect errors easily and mistakes can be
detected earlier before the code becomes too complex. First, I tried displaying data from a
RAM by just reading directly from RAM without any write procedures. The next step
was harder as I tried to write from ROM to RAM and then read from the RAM. At this
point I wasn’t writing in blocks and was merely writing sequentially to familiarize myself
with the READ and WRITE timings. Once I have managed to do that, I went on to write
in blocks. This part took up the bulk of my time as it was difficult to keep track of so
many pointers in my code. But after that was done, polishing the details was relatively
simple.

For the purpose of testing and debugging, besides displaying the data on the video screen,
I also simulated all my codes using Max+PlusII for simple codes that did not require the
use of RAM and ROM such as the BRAIN module and used ModelSim for simulating
other modules as it ModelSim is linked directly from Xillinx. The DCM module could
not be simulated in ModelSim so a different clock was generated for the purpose of
simulation. Also, because the timing specification of the video is very long, certain
timing constants were reduced for faster simulation. Figure 11 shows the simulation for
the write timing and Figure 12 shows the simulation for the read timing. Figure 13 shows
the simulation for the BRAIN .

Figure 11: Simulation of write timing for video. The ROM address is provided one cycle
before write enable is set high so that the data from that ROM would be available on the

next cycle to be written into RAM address zero.

start write

6.111: Music Composition for Dummies

11

Figure 12: Simulation of read timing for video. The first RAM address to be read is
provided one cycle before the beginning of the read cycle so that the data from RAM

would be available when the read cycle begins.

Figure 13: Simulation of the BRAIN module

5. Conclusion
Our system demonstrates that input audio data can be processed by an FFT module, and
the corresponding note can be determined by detecting the peak of the input frequency
spectrum. The notes can be directly fed into the video display module, which outputs the
notes one at a time onto a staff. The system is reliable for determining and displaying the
frequency of preset sinusoidal signals by a signal generator, as well as determining the
corresponding note values to be displayed. Our system is mainly limited by its input
sampling rate of 3kHz, as we sometimes missed a few notes when the music changed
quickly or when the notes included harmonics out of our range. Future additions could
include a larger note range, as well as detecting the duration of notes, displaying different
types of notes depending on duration, scrolling screen and filtering input from the
microphone so that pitch detection can be performed from a note sung into the
microphone.

start signal goes high when previous
note is different from the current note

beginning of read cycle

6.111: Music Composition for Dummies

12

Acknowledgements
The authors would like to express their sincere gratitude and appreciation to several
people, without whom this project would not be possible. First we would like to thank
Nathan Ickes for the wonderful new lab kit and all of the technical expertise he provided.
Next, we would like to thank Keith Kowal for his video expertise, as well as the rest of
the friendly lab support staff for lending us microphones, speakers, and various
peripherals. Finally, we would like to thank our TAs: Charlie Kehoe, Jenny Lee, and
Chris Forker for countless hours of patience, support, encouragement and help, and Prof.
Anantha Chandrakasan for his kindness, time and effort in making 6.111 a truly
memorable class.

References

[1] “Fast Fourier Transform v3.0” Product Specification. Xilinx Logicare. 5/21/2004.

[2] Ickes, Nathan “Audio Input and Output”
<http://www-mtl.mit.edu/Courses/6.111/labkit/audio.shtml>

[3] Ickes, Nathan. “Methods for Programming the Labkit”
<http://www-mtl.mit.edu/Courses/6.111/labkit/configuration.shtml>

[4] “LM4550 AC ’97 Rev 2.1 Multi-Channel Audio Codec with Stereo Headphone
Amplifier, Sample Rate Conversion and National 3D Sound” National Semiconductor.
8/2003.

[5] Chuan, Ching-Hua and Zhu, Kevin “Guitar Scores Interpretation: Transforming
Audio into Guitar Tab Scores” < http://www-scf.usc.edu/~chinghuc/ise599.html >

