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Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 
6.111 - Introductory Digital Systems Laboratory 

 
Problem Set  2 Solutions 

 
Issued: February 27, 2005 

 
Problem 1: Counters 
 
a) 74LS393 is an asynchronous 4-bit counter, implemented with 4 serial T-registers. 

The outputs of registers are connected to the inputs of the subsequent registers. Thus, 
MSBs change only after LSBs change. and clk-to-MSB delay is four times of clk-to-
q delay of each register. 74LS163, on the hand, is a synchronous 4-bit counter, 
implemented by 4 parallel J-K registers. All output bits change at the rising edge of 
clock and thus clk-to-MSB delay is similar to clk-to-q delay of individual register. 

 
b) Nth output of ripple counters has twice the time period of (N-1)th output, and thus Nth 

output of ripple counters are 2N slower than the input clock. Thus, to create a 
28.8kHz clock,  
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we must divide the input clock by two for six times, requiring two 74LS163. 
Cascade the two 4-bit counters as done in Lab 1 and probe at Qb of the second 
counter as shown below:  
 

 
<Figure 1: 74LS163 connections to provide a 28.8kHz clock> 
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c) 1843200 is not an exact multiple of twos and thus we cannot use the method used in 
part b). Instead, using 74LS163s, we count up to 1843200 and pulse the output then 
to generate 1Hz clock.  Since 220 < 1843200 < 221 and there are four bits per counter, 
we need 6 74LS163s to produce 1 Hz clock. 

 
d) Verilog Code for Counter Module: 
 
  `timescale 1ns/10ps 

 
module counter(clk, reset, enable); 
 
 input clk, reset; 
 output enable; 
 
 reg enable; 
 reg [20:0] cnt; 
 
 //1.8432MHz = 2^21 
 
 always @ (posedge clk) begin 
    if(reset == 1) begin 
         cnt <= 21'd0; 
        enable <= 1'b0; 

   end 
   
   else if(cnt == 21'd1843199) begin 
    // else if(cnt == 21'd1) begin //for faster simulation 
        enable <= 1'b1; 
        cnt <= 21'd0; 
    end 
 

   else begin 
        cnt <= cnt + 1; 
        enable <= 1'b0; 

   end //else 
end //always 
 

endmodule 
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Problem 2: Finite State Machines (FSM) 
 
a)  

 
 

<Figure 2: State transition diagram for Stata> 
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d) Verilog Code for stata_FSM module: 
 
  `timescale 1ns/10ps 

 
module stata_fsm(clk, fsmreset, fsminput, state); 
 
// System Clk for state transition 
input clk; 
 
// Global Reset signal 
input fsmreset; 
input fsminput; 
 
output[2:0] state; 
 
// internal sate 
reg [2:0] state; 
reg [2:0] nextstate; 
 
//State Declarations: 
parameter KILLIAN = 0; 
parameter KRESGE = 1; 
parameter ZCENTER= 2; 
parameter SYDPAC = 3; 
parameter STUDENTCENTER = 4; 
parameter BUILDING34 = 5; 
parameter LAB = 6; 
parameter STATACENTER = 7; 
 
always @ (posedge clk) begin 
   if (fsmreset) state <= KILLIAN; 
   else state <= nextstate; 
end 
 
always @ (state or fsminput) begin 
   nextstate = 3'b000; 
   case (state) 
     
  KILLIAN: if(fsminput) nextstate = KRESGE; 
    else nextstate = KILLIAN; 
 
   KRESGE: if(fsminput) nextstate = STUDENTCENTER; 
    else nextstate = ZCENTER; 
 
    ZCENTER: if(fsminput) nextstate = STUDENTCENTER; 
    else nextstate = SYDPAC; 
 
    SYDPAC: if(fsminput) nextstate = KILLIAN; 
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    else nextstate = SYDPAC; 
 
    STUDENTCENTER: if(fsminput) nextstate = BUILDING34; 
    else nextstate = STATACENTER; 
 
    BUILDING34: if(fsminput) nextstate = LAB; 
    else nextstate = SYDPAC; 
 
    STATACENTER: if(fsminput) nextstate = BUILDING34; 
    else nextstate = KRESGE; 
 
    LAB: if(fsminput) nextstate = LAB; 
    else nextstate = STATACENTER; 
 
  endcase //  

   end // 
endmodule  
 
 
Problem 3: Verilog Testbench 
 
Verilog Code for Top Module: 
 
`timescale 1ns/10ps 
 
module top(clk, reset, fsminput, fsmreset, state); 
  
 input clk, reset, fsminput, fsmreset; 
 output [2:0] state; 
 wire enable; 
  
 counter c1(clk, reset, enable); 
 stata_fsm s1(enable, fsmreset, fsminput, state); 
  
endmodule 
 
Verilog Code for Test Bench Module: 
 
`timescale 1us/1ps 
 
module testbench; 
//Now use 1Hz enable clock: 
 
 reg clk, reset, fsminput, fsmreset; 
 wire [2:0] fsm_state; 
 wire [2:0] fsm; 
 integer i; 
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 // Instantiate the top module: 
 top 
t1(.clk(clk), .reset(reset), .fsminput(fsminput), .fsmreset(fsmreset), .state(fsm_state)
); 
   
 // Specify clk to have 1.843 MHz: 
 always #0.271 clk = ~clk; 
  
 
 initial begin 
   
  //Initial signal: 
  clk =0; 
  reset =0; 
  fsminput = 0; 
  fsmreset =0; 
 
  // Reset counter first: 
  #0.541 
  reset = 1; 
   
  #0.541 
  reset = 0; 
   
  // Reset FSM: 
  #0.271 
  fsmreset = 1; 
   
  #0.271 
  fsminput = 1; 
  
  #0.271 
  fsmreset = 0; 
   
  // We know fsminput should be high for seven times 
  // Therefore, fsminput = 1 for clk_period * 7 = 1s*7 = 7s = 7000ms  
  // Thus, 7ms - 271ns  
   
  #7000000 
  // Is Stata staying in 6.111Lab for three clock cycles? 
   
  // Let's toggle between 0 and 1 for 8 clock cycles  
  // until Stata comes back to Killian completing a tour  
  // without visiting 6.111 Lab! 
  fsminput = 0; 
    
  for (i= 1; i<=4; i=i+1) begin 
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    #1000000 
    fsminput = 1; 
   
    #1000000 
    fsminput = 0; 
  end   
end  
endmodule 
 
 

 
<Figure 3a: (Fast Simulation) Testbench verifies that Stata goes from Killian -> Kresge -> Student 

Center -> Building 34 -> 6.111 Lab and gets stuck for three clock cycle. Then, Stata gets out 
completing a round tour without visiting 6.111 > 

 
 

 
 

<Figure 3b: (1Hz Simulation) Testbench verifies that Stata goes from Killian -> Kresge -> Student 
Center -> Building 34 -> 6.111 Lab and gets stuck for three clock cycle. Then, Stata gets out 

completing a round tour without visiting 6.111 > 
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Problem 4: Memory Tester 
 
a)  

____  __ __    

E1 E2 G W Mode Output Cycle 
H X X X N/S High-Z - 
X L X X N/S High-Z - 
L H H H Output 

Disabled 
High-Z - 

L H L H Read Dout Read Cycle 
L H L* L Write High-Z Write Cycle 
L H X L Write High-Z Write Cycle 

 
 * Mode is write and thus assume ~G goes low coincident with or after ~W goes low. 
 

b) 1 MHz clock has the time period of 1000ns and thus all the timing constraints 
specified in the data sheet (<20ns) should meet well within one clock period. 
However, if we used a clock faster than 50MHz (i.e. if the time period is smaller than 
20ns), we must use conservative methods, such as multi-cycle writes and reads shown 
in the Lecture 6.  

 
1) Writing Data 

 
As discussed in lecture 6, data is latched when Wbar or E1bar goes high. Thus, we can 
choose between Wbar controlled write (write cycle 1) or E1bar controlled write (write 
cycle 2). For this solution, we do Wbar controlled write such that we don’t have to 
disable the chip while writing. The timing constraints from datasheet are illustrated 
below: 
 

 
<Figure 4: Timing constraints for Wbar controlled writes> 

 
Having E1bar always low, the timing constraints to be met are the ones that start or 
end along the rising and falling edge of Wbar signal. i.e.  t_AVWH (20ns), t_WHAX(0ns), 
t_WLWH(20ns), t_AVWL (0ns), t_DVWH (12ns), and t_WHDX (0ns). Thus, the write pulse 
width must be greater than t_WLWH (20ns), your data must be valid for t_DVWH (12ns), 
and your address must be t_AVWH (20ns) before the rising edge of Wbar.  
 
Address setup time (t_AVWL) is 0ns but this time refers to the time between the valid 
address to the falling edge of Wbar. Thus, you address MUST be valid before the 



 9

falling edge of Wbar. Data hold time (t_WDHX) is also 0ns. But, to perform safe writes, 
we use the multi-cycle write as shown in the lecture; address are held valid for three 
clock cycle, where Wbar pulse takes place on the second clock cycle to ensure safe 
writes. Data-In must be valid at the rising edge of Wbar as well as shown below: 
 

 
<Figure 5: Control signals to write data safely with clock period of 1000ns> 
 
What you need to remember from this problem:  

1. Address must be valid before the falling edge of Wbar. 
2. Address must be valid during the entire write pulse. 
3. Only at the rising edge of Wbar, data-in gets written to address. 
 

For Grading: For Wbar controlled writes, your waveforms must show: 
1. E1bar  = 0, E2 = 1, Gbar  = 1. 
2. Wbar pulses down for every write. 
3. Address changes from 0000 -> 1111 incrementally. 
4. Meet the first two constraints specified in ‘What you need to remember 

from this problem’. 
 

2) Reading Data: 
 
Similar to the write cycle, there are two ways to read: Gbar and Address controlled. 
For this solution, we do address controlled write such that we can perform multiple 
reads without disabling chip. The timing constraints for address controlled write are 
illustrated below:  
 

 
<Figure 6: Timing constraints for address controlled read from Lecture 6 with added 

timing constraints from the datasheet> 

t_AVAV, min = 35ns

=t_GLQX = 0ns

= t_AXQX = 20ns 
 = t_AVQV = 35ns 

 = t_GHQZ, max = 10ns 
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The important constraint is t_AVQV, which tells you when you can start reading your 
data for the address you are accessing. For example, if you read data-out at 22ns 
after your address changes, your data-out is most likely invalid.  
 
To meet these constraints with our clock of 1000ns, we can simply increment address 
every clock period (1000ns >> t_AVAV) and read data at rising edge of clock as 
shown below: 
 

 
<Figure 7: Control signals to read data properly with clock period of 1000ns> 
 
For Grading: For address controlled reads, your waveforms must show: 

 
1. E1bar = 0, E2 = 1, Gbar = 0, and Wbar = 1 
2. Address changes from 0000 -> 1111 incrementally. 
3. Address must be hold for at least 35ns. 

 
 
3) Overall Control Signals: 
The overall control signals to write 16 times and read 16 times are shown below with 
its Verilog codes. 
 

 
 

<Figure 8: Control signals to write and read from 16 addresses> 
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module timing(clk, E1bar, E2, 
Wbar, Gbar, A, Data); 
 
input clk; 
output E1bar, E2, Wbar, Gbar; 
output [3:0] A, Data; 
integer i; 
reg E1bar, E2, Wbar, Gbar; 
 
reg [3:0]  A, Data; 
 
initial  begin 
  clk = 0; 
  A = 4'b0000; 
  i = 0; 
  Wbar = 1; 
  E1bar = 0; 
  E2 = 1; 
  Gbar = 1; 
 end 
 
 
always @ (posedge clk)  begin 
   if (i < 48) 
    begin 
     if (i % 3 == 0) 
         A = i/3; 
     else if (i % 3 == 1) 
        Wbar = 0; 
     else 
        Wbar = 1;      
    i = i + 1; 
    end //if    
    
    

   else if (i == 48)  begin 
      Gbar <= 0; 
      A <= 4'bZ; 
      Data <= 4'bZ; 
      i = i + 1; 
end  
 
else if (i < 65) begin 
         Gbar = 0; 
         #4 Data <= 4'bZ; 
         A <= i - 32 - 1; 
         i <= i + 1; 
         #20 Data <= A; 
end // else if 
 
else begin 
         A <= 4'bZ; 
         Data <= 4'bZ; 
         Wbar = 1; 
         Gbar = 1; 
         E1bar = 1; 
         E2 = 0; 
       end // else 
end // if 
  
always @ (Wbar) begin 
     if (i <49) 
     begin 
       if (Wbar) #100 Data = 4'bZ; 
       else #100 Data = A; 
     end //if (i < 48) 
end 
   

endmodule 

 
 
 
 


