
 1

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.111 - Introductory Digital Systems Laboratory

Problem Set 2 Solutions

Issued: February 27, 2005

Problem 1: Counters

a) 74LS393 is an asynchronous 4-bit counter, implemented with 4 serial T-registers.

The outputs of registers are connected to the inputs of the subsequent registers. Thus,
MSBs change only after LSBs change. and clk-to-MSB delay is four times of clk-to-
q delay of each register. 74LS163, on the hand, is a synchronous 4-bit counter,
implemented by 4 parallel J-K registers. All output bits change at the rising edge of
clock and thus clk-to-MSB delay is similar to clk-to-q delay of individual register.

b) Nth output of ripple counters has twice the time period of (N-1)th output, and thus Nth

output of ripple counters are 2N slower than the input clock. Thus, to create a
28.8kHz clock,

6264
8.28

8432.1
==

kHz
MHz

we must divide the input clock by two for six times, requiring two 74LS163.
Cascade the two 4-bit counters as done in Lab 1 and probe at Qb of the second
counter as shown below:

<Figure 1: 74LS163 connections to provide a 28.8kHz clock>

Oscillator
@ 1.8432 MHz

74LS163

CLR

CLK

ENT

GND

VDD

RCO

Qa

Qb

Qc

Qd

ENP

LD

74LS163

CLR

CLK

ENT

GND

VDD

RCO

Qa

Qb

Qc

Qd

ENP

LD

Oscillator
@ 1.8432 MHz

28.8 kHz

 2

c) 1843200 is not an exact multiple of twos and thus we cannot use the method used in
part b). Instead, using 74LS163s, we count up to 1843200 and pulse the output then
to generate 1Hz clock. Since 220 < 1843200 < 221 and there are four bits per counter,
we need 6 74LS163s to produce 1 Hz clock.

d) Verilog Code for Counter Module:

 `timescale 1ns/10ps

module counter(clk, reset, enable);

 input clk, reset;
 output enable;

 reg enable;
 reg [20:0] cnt;

 //1.8432MHz = 2^21

 always @ (posedge clk) begin
 if(reset == 1) begin
 cnt <= 21'd0;
 enable <= 1'b0;

 end

 else if(cnt == 21'd1843199) begin
 // else if(cnt == 21'd1) begin //for faster simulation
 enable <= 1'b1;
 cnt <= 21'd0;
 end

 else begin
 cnt <= cnt + 1;
 enable <= 1'b0;

 end //else
end //always

endmodule

 3

Problem 2: Finite State Machines (FSM)

a)

<Figure 2: State transition diagram for Stata>

b) 6.111 Lab

c) 6.111 Lab

Syd Pac

Bldg 34

Student
Center

Z-Center Stata

Kresge

Killian

6.111
Lab

0

1

0

1

0

0

1

1

1

0

1

0

0

1

1

0

 4

d) Verilog Code for stata_FSM module:

 `timescale 1ns/10ps

module stata_fsm(clk, fsmreset, fsminput, state);

// System Clk for state transition
input clk;

// Global Reset signal
input fsmreset;
input fsminput;

output[2:0] state;

// internal sate
reg [2:0] state;
reg [2:0] nextstate;

//State Declarations:
parameter KILLIAN = 0;
parameter KRESGE = 1;
parameter ZCENTER= 2;
parameter SYDPAC = 3;
parameter STUDENTCENTER = 4;
parameter BUILDING34 = 5;
parameter LAB = 6;
parameter STATACENTER = 7;

always @ (posedge clk) begin
 if (fsmreset) state <= KILLIAN;
 else state <= nextstate;
end

always @ (state or fsminput) begin
 nextstate = 3'b000;
 case (state)

 KILLIAN: if(fsminput) nextstate = KRESGE;
 else nextstate = KILLIAN;

 KRESGE: if(fsminput) nextstate = STUDENTCENTER;
 else nextstate = ZCENTER;

 ZCENTER: if(fsminput) nextstate = STUDENTCENTER;
 else nextstate = SYDPAC;

 SYDPAC: if(fsminput) nextstate = KILLIAN;

 5

 else nextstate = SYDPAC;

 STUDENTCENTER: if(fsminput) nextstate = BUILDING34;
 else nextstate = STATACENTER;

 BUILDING34: if(fsminput) nextstate = LAB;
 else nextstate = SYDPAC;

 STATACENTER: if(fsminput) nextstate = BUILDING34;
 else nextstate = KRESGE;

 LAB: if(fsminput) nextstate = LAB;
 else nextstate = STATACENTER;

 endcase //

 end //
endmodule

Problem 3: Verilog Testbench

Verilog Code for Top Module:

`timescale 1ns/10ps

module top(clk, reset, fsminput, fsmreset, state);

 input clk, reset, fsminput, fsmreset;
 output [2:0] state;
 wire enable;

 counter c1(clk, reset, enable);
 stata_fsm s1(enable, fsmreset, fsminput, state);

endmodule

Verilog Code for Test Bench Module:

`timescale 1us/1ps

module testbench;
//Now use 1Hz enable clock:

 reg clk, reset, fsminput, fsmreset;
 wire [2:0] fsm_state;
 wire [2:0] fsm;
 integer i;

 6

 // Instantiate the top module:
 top
t1(.clk(clk), .reset(reset), .fsminput(fsminput), .fsmreset(fsmreset), .state(fsm_state)
);

 // Specify clk to have 1.843 MHz:
 always #0.271 clk = ~clk;

 initial begin

 //Initial signal:
 clk =0;
 reset =0;
 fsminput = 0;
 fsmreset =0;

 // Reset counter first:
 #0.541
 reset = 1;

 #0.541
 reset = 0;

 // Reset FSM:
 #0.271
 fsmreset = 1;

 #0.271
 fsminput = 1;

 #0.271
 fsmreset = 0;

 // We know fsminput should be high for seven times
 // Therefore, fsminput = 1 for clk_period * 7 = 1s*7 = 7s = 7000ms
 // Thus, 7ms - 271ns

 #7000000
 // Is Stata staying in 6.111Lab for three clock cycles?

 // Let's toggle between 0 and 1 for 8 clock cycles
 // until Stata comes back to Killian completing a tour
 // without visiting 6.111 Lab!
 fsminput = 0;

 for (i= 1; i<=4; i=i+1) begin

 7

 #1000000
 fsminput = 1;

 #1000000
 fsminput = 0;
 end
end
endmodule

<Figure 3a: (Fast Simulation) Testbench verifies that Stata goes from Killian -> Kresge -> Student

Center -> Building 34 -> 6.111 Lab and gets stuck for three clock cycle. Then, Stata gets out
completing a round tour without visiting 6.111 >

<Figure 3b: (1Hz Simulation) Testbench verifies that Stata goes from Killian -> Kresge -> Student
Center -> Building 34 -> 6.111 Lab and gets stuck for three clock cycle. Then, Stata gets out

completing a round tour without visiting 6.111 >

 8

Problem 4: Memory Tester

a)

____ __ __

E1 E2 G W Mode Output Cycle
H X X X N/S High-Z -
X L X X N/S High-Z -
L H H H Output

Disabled
High-Z -

L H L H Read Dout Read Cycle
L H L* L Write High-Z Write Cycle
L H X L Write High-Z Write Cycle

 * Mode is write and thus assume ~G goes low coincident with or after ~W goes low.

b) 1 MHz clock has the time period of 1000ns and thus all the timing constraints
specified in the data sheet (<20ns) should meet well within one clock period.
However, if we used a clock faster than 50MHz (i.e. if the time period is smaller than
20ns), we must use conservative methods, such as multi-cycle writes and reads shown
in the Lecture 6.

1) Writing Data

As discussed in lecture 6, data is latched when Wbar or E1bar goes high. Thus, we can
choose between Wbar controlled write (write cycle 1) or E1bar controlled write (write
cycle 2). For this solution, we do Wbar controlled write such that we don’t have to
disable the chip while writing. The timing constraints from datasheet are illustrated
below:

<Figure 4: Timing constraints for Wbar controlled writes>

Having E1bar always low, the timing constraints to be met are the ones that start or
end along the rising and falling edge of Wbar signal. i.e. t_AVWH (20ns), t_WHAX(0ns),
t_WLWH(20ns), t_AVWL (0ns), t_DVWH (12ns), and t_WHDX (0ns). Thus, the write pulse
width must be greater than t_WLWH (20ns), your data must be valid for t_DVWH (12ns),
and your address must be t_AVWH (20ns) before the rising edge of Wbar.

Address setup time (t_AVWL) is 0ns but this time refers to the time between the valid
address to the falling edge of Wbar. Thus, you address MUST be valid before the

 9

falling edge of Wbar. Data hold time (t_WDHX) is also 0ns. But, to perform safe writes,
we use the multi-cycle write as shown in the lecture; address are held valid for three
clock cycle, where Wbar pulse takes place on the second clock cycle to ensure safe
writes. Data-In must be valid at the rising edge of Wbar as well as shown below:

<Figure 5: Control signals to write data safely with clock period of 1000ns>

What you need to remember from this problem:

1. Address must be valid before the falling edge of Wbar.
2. Address must be valid during the entire write pulse.
3. Only at the rising edge of Wbar, data-in gets written to address.

For Grading: For Wbar controlled writes, your waveforms must show:
1. E1bar = 0, E2 = 1, Gbar = 1.
2. Wbar pulses down for every write.
3. Address changes from 0000 -> 1111 incrementally.
4. Meet the first two constraints specified in ‘What you need to remember

from this problem’.

2) Reading Data:

Similar to the write cycle, there are two ways to read: Gbar and Address controlled.
For this solution, we do address controlled write such that we can perform multiple
reads without disabling chip. The timing constraints for address controlled write are
illustrated below:

<Figure 6: Timing constraints for address controlled read from Lecture 6 with added

timing constraints from the datasheet>

t_AVAV, min = 35ns

=t_GLQX = 0ns

= t_AXQX = 20ns
 = t_AVQV = 35ns

 = t_GHQZ, max = 10ns

 10

The important constraint is t_AVQV, which tells you when you can start reading your
data for the address you are accessing. For example, if you read data-out at 22ns
after your address changes, your data-out is most likely invalid.

To meet these constraints with our clock of 1000ns, we can simply increment address
every clock period (1000ns >> t_AVAV) and read data at rising edge of clock as
shown below:

<Figure 7: Control signals to read data properly with clock period of 1000ns>

For Grading: For address controlled reads, your waveforms must show:

1. E1bar = 0, E2 = 1, Gbar = 0, and Wbar = 1
2. Address changes from 0000 -> 1111 incrementally.
3. Address must be hold for at least 35ns.

3) Overall Control Signals:
The overall control signals to write 16 times and read 16 times are shown below with
its Verilog codes.

<Figure 8: Control signals to write and read from 16 addresses>

 11

module timing(clk, E1bar, E2,
Wbar, Gbar, A, Data);

input clk;
output E1bar, E2, Wbar, Gbar;
output [3:0] A, Data;
integer i;
reg E1bar, E2, Wbar, Gbar;

reg [3:0] A, Data;

initial begin
 clk = 0;
 A = 4'b0000;
 i = 0;
 Wbar = 1;
 E1bar = 0;
 E2 = 1;
 Gbar = 1;
 end

always @ (posedge clk) begin
 if (i < 48)
 begin
 if (i % 3 == 0)
 A = i/3;
 else if (i % 3 == 1)
 Wbar = 0;
 else
 Wbar = 1;
 i = i + 1;
 end //if

 else if (i == 48) begin
 Gbar <= 0;
 A <= 4'bZ;
 Data <= 4'bZ;
 i = i + 1;
end

else if (i < 65) begin
 Gbar = 0;
 #4 Data <= 4'bZ;
 A <= i - 32 - 1;
 i <= i + 1;
 #20 Data <= A;
end // else if

else begin
 A <= 4'bZ;
 Data <= 4'bZ;
 Wbar = 1;
 Gbar = 1;
 E1bar = 1;
 E2 = 0;
 end // else
end // if

always @ (Wbar) begin
 if (i <49)
 begin
 if (Wbar) #100 Data = 4'bZ;
 else #100 Data = A;
 end //if (i < 48)
end

endmodule

