
 
Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 
6.111 – Introductory Digital Systems Laboratory 

 
Problem Set 3 

 
Problem Set Issued: February 25, 2005 

Problem Set Due: March 11, 2005 
 
 
Problem 1: Twos Complement Multiplier 
 
In Lecture #8 a 4x4 Twos Complement Multiplier was presented. In this problem, you will design 
an 8x8 Twos Complement Multiplier in Verilog, and validate your design using a testbench. 
 
Your multiplier should take as input the two’s complement numbers X [7:0] and Y [7:0], and give 
as output a twos complement number Z. How many bits will Z have? 
 
Code the multiplier you designed above in Verilog and validate it using a testbench. 
 
For this problem, turn in Verilog code for your multiplier and testbench. We also ask that you 
submit a screen capture of your simulation. 
 
 
Problem 2: Critical Path Timing Analysis 
 
The Figure below is the 16-bit Carry-Bypass Adder from Lecture 8 (see notes for a clear block 
diagram). 
 

 
Figure 1: Carry-bypass adder 

 
Assume the following delay for each gate: 

 
Producing Pi, Gi from Ai, Bi: 1 unit 
Pi, Gi, Ci to Co or Sum for a FA: 1 unit 
2:1 mux delay: 1 delay unit 
BP: It takes 1 delay unit to generate BP from the propagate signals. 
 
 

What is the worst case propagation delay for the 16-bit adder? 



 2

Problem 3: Introduction to Video 
 
In this problem you will build part of a video controller, and use ModelSim to verify its correct 
operation. To get you started, a brief overview of VGA video generation follows. For additional 
guidance, refer to the URL: 
 
http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml 
 
To maintain a stable image on a monitor, a video controller must repeatedly output the entire 
contents of the screen, one pixel at a time, at the desired screen refresh rate (usually 60Hz or 
above). Usually this is accomplished by filling a memory with the desired screen image, and 
reading from the memory in a cyclic fashion. 
 
The screen is redrawn one pixel row at a time, from left to right. Rows are drawn from top to 
bottom to form a complete image. To specify how quickly the image should be redrawn, displays 
require horizontal and vertical sync signals that pulse once per row and one per screen redraw, 
respectively. Thus, on the 800x600 display you will be using, the horizontal sync pulses 
(approximately) 600 times per vertical sync, and the vertical sync pulses (approximately) 72 
times per second to specify a screen refresh rate of 72Hz. The horizontal and vertical sync are 
active low; their default state is a 1, and their periodic pulse is a 0. 
 
In this video mode, one pixel is drawn every 20ns. This is another way of saying that our pixel 
clock is running at 50 MHz. After the 800 pixels in one row, we wait 56 more clock cycles before 
pulling the horizontal sync signal low. This pulse stays low for 120 clock cycles, and after setting 
it high again, we wait another 64 cycles before starting to draw the next line. The delays before 
and after the sync pulse are called the (horizontal) front porch and back porch, respectively. 
Together with the sync pulse itself, they form the horizontal blanking period. 
 
After the back porch following the final row, the vertical blanking period begins. This begins 
with 37 blank lines, 1040 clock cycles each, which form the (vertical) front porch. The vertical 
sync signal is then brought low for 6 lines, and the 23 lines after it is reset to high, but before we 
start drawing the next frame, form the (vertical) back porch. With a 50 MHz clock, this leads to 
an approximate refresh rate of 72Hz. 
 
Part (a) Using the timing specifications given above for 800x600 VGA video at 72Hz, write a 
verilog module that produces horizontal and vertical sync signals. As in Lab 2, you may find it 
useful to couple an FSM with one or more counters. If you take this approach, make sure your 
states change after exactly the right number of clock cycles; off-by-one errors will cause trouble. 
To facilitate this, you may wish to have your counters count upwards. 
 
Also, use parameter statements to specify all of the constants in your code (porch lengths, 
screen dimensions, etc.). This will make it easy to test and adapt to different screen modes. 
 
Your generator should input a reset signal and a 50 MHz pixel clock, and should output the two 
sync signals. On reset, both outputs should be set high. After reset, the generator should 
periodically pulse the sync signals according to the pixel clock. 
 
Part (b) Write a testbench for your generator, and use it to verify that its behavior is correct. Be 
sure to set the reset signal a few times to verify the reset behavior. As mentioned above, you 
will find it useful to change the timing constants to something much smaller for simulation. Turn 
in screenshots of your simulation, and your final code listings. 


