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Abstract

A two-input polygraph was implemented on the Xilifktex2 FPGA. The system relied on
physiological data in the form of skin conductivigd pulse rate, and made a binary decision as
to whether or not the subject is lying. The projees divided into three portions. The first part
consisted of designing and implementing the phggichl sensors. The second part functioned
as the main digital control unit for the systemeTnal portion was the output display which
displayed both dynamic data as well as the T/Fsitmti Due to the modularity of the design,
each of the portions were designed and implememtdividually. Integrating the system,
therefore, posed few problems. Although the digi@it of the system functioned correctly, the
lie detector could not be tested very effectivalg do the poor quality of the sensor data.
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1.0 — Introduction and System Overview

In this project a two-input polygraph was implenaghtusing the Xilinx Virtex2 FPGA. The
physiological inputs used are pulse rate and s&imactivity. These signals were chosen because they
are fairly easy to measure and interpret. Duringe§ of emotional stress, such as when the sulgect i
made uncomfortable and forced to lie, the pulse natreases. Likewise, the subject is more likely t
sweat, which increases his or her skin conductivity

The project is divided into three portions: the lagasensors to measure skin conductivity and
pulse, the digital control unit, and the outpuipths.

The two sensors were implemented on a breadboand asalog circuitry. The schematics for
these circuits are shown in section 2. The ADC0&84 used to convert the analog signal into a digita
one, which was then stored in the main memory.

The Digital Control Unit forms the backbone of the detector by integrating the digital data
acquisition, data processing, and system contguass. It has three major roles in the overall exyst
First, it captures and registers user input signktés is implemented in a manner similar to thella
Register in the Traffic Light Controller lab. Sedpnt controls the sequence of reads and writethef
sensor data to the main memory. Since it is thg omdule which controls reading and writing, data
acquisition becomes easier and more straightforwlaadtly, the Digital Control Unit implements the
decision algorithms which output a binary T/F derisas to whether or not the subject is lying.

The video display portion of the project serves puoposes. First, it communicates the result of
the algorithm’s decision to the user. Secondlgisplays the data that is actually being colledigdhe
sensors. This allows an operator to make their d@gisions on whether or not the person is lying, ian
facilitates tuning of the overall system. The soreksplay consists of three main sections. Thst fir
section displays the current data from the sensorthat the operator can see how the subjectiently
responding. The second section displays screduorespof the fist, that can be stored and laterpaoed
against new data. Finally, there is a section diggilays the data from the output of the decisi@king
unit, either “true” or “false”.

A simplified block diagram of the overall systemshown in figure 1.1 on the following page.
(Note that the individual sections will be addresge greater detail in the following sections). geen,
the system portioning was chosen to exploit modylarhe there is minimal interaction between the
different parts of the system, meaning that all ulesl can be implemented and tested separately.
Furthermore, once all modules have been testesljrimting all parts of the entire system becomedyfai
straightforward

The polygraph presented an interesting challengeddo tackle as a final project. First of all, it
is an intriguing real-world application. Secondzdimbines many of the elements which we learnedtabo
in class such as analog interfacing with the sensognal processing, and output display. Thisaslb us
to carry the knowledge that we had acquired thusda higher level. Additionally, a “successfuié |
detector test is as much an art as a science,gasitinteresting for us to explore more biologiaatl
psychological issues of the project.
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Figure 1.1 — Block Diagram of the Overall Lie Detetor System
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2.0 — The Physiological Sensors

The device interface portion of this project canskearated into three major stages. The firsessdghe
biological sensors. This stage includes the skimdactivity sensor and the heart rate monitor. 3éeond
portion is the analog circuitry. This stage in@adhe circuitry used to clean up the biologicghals and
put them into the proper form for the analog tatdigconverters. The final stage is the actuadriisice with
the lab kit, which includes the modules writterMiarilog HDL to gather the real world data. This ta@t of
the report first presents the hardware descrifimhthe software implementation.

Stage 1 - Biological Stage 2 - Analog Stage 3 - Lab Kit
Sensors Circuitry Connections
ADCO0804
Heart Rate (A/D Converter) User I/O Pins
Monitor V| with Buffering 4 (Lab Kit #1)
Circuitry
Skin ADCO0804
Conductivit N (A/D Converter) \ User I/O Pins
X y with Buffering 4 (Lab Kit #1)
Monitor . .
Circuitry
Col;nhf)z::;tor User I/O Pins
Circuitry (Lab Kit #2)

Figure 2.1 — Hardware Block Diagram

To begin the hardware description, the first stageed to be the most difficult to implement. The
body, it appears, has a lot of noise (in termsletac voltage). Having never interfaced with Ibigical
sensors before, the amount of filtering requiradcfean signals proved to be a project unto ité&ettd more
in the analog realm). As a result, the biologiéghals were not very clean.

Monitoring the heart rate was done using Nicobgtpes attached to the inner elbows along with a
single patch attached to a point far away fromtéisé subject as a ground reference. These sigreatsthen
fed to a differential amplifier with a large commorode rejection ratio. A circuit was constructechggshe
circuit diagram as given in the figure on the faling page. This circuit was constructed on a single
breadboard for ease of switching components incandA distinct heart rate spike was detectablé doly
sporadically.

The skin conductivity monitor proved to be veryple to implement. This monitor gave out a
perfectly clear signal every time. The one difftgulvith this sensor was the time it took to notiae
significant change. However, this complication wasre of a theoretical one than an actual circuobfam
primarily due to the fact that the circuit did ettpovhat was expected. The schematic is shown en th
following page.
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Figure 2.3 — Skin Conductivity Detector

The second stage was to build the analog circtitryonvert the signal to something usable by the
analog to digital converters. This required thepteénuse a single gain stage for each input devitke
major difficulty while attempting to do this is kagiag the voltage in the range such that you ddhaotn the
ADC chips while putting data into them. Aside frgmotecting the chips, the gain stage must prozigay
to take a small variation and turn it into meanutgfata without amplifying noise.

The ADCs themselves were National SemiconductoCB8804s. These chips provided more than
enough time processing required for the 5-Hertnaigve expected from the heart rate signal. Tlie sk
conductivity did not present a timing issue priryadue to the fact that the output would not hawecm
variation. For our statistical analysis, the radoh of the ADC proved to be more than adequate.

To begin the software description, the ADC_modtdgesdesign has three divisions: the initial firing
sequence consists of INITIAL_ASSERT, INITIAL_WAITand INITIAL_DE_ASSERT, the IDLE state
which manages the converters when they are noiresljto read, and the remaining states which servic
data requests.
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Figure 2.4 — Analog-to-Digital State Transition Digram

The initial firing sequence is required for propgeration of the ADC0804. The specification sheet
states that for the chip to work properly there s an initial pulse on the write enable line éadter
referred to as "WE_bar"). This initial pulse mbstlong enough to register as a valid pulse thgsinag
the INITIAL_WAIT state.

The remaining states tailor to the timing requirataen the specification sheet depicted below. The
most important time constraint is that the readbsrmust be at least eight clock cycles after miteriupt
signal even if the interrupt pin does not signaltesttransition. This state transition design ojgsrahe
ADCO0804 in what the specification sheet refers gd'feee-running mode". In this mode, the user ties
chip select pin (active low) to ground then WE_laad the read enable line (hereafter referred to as
"RE_bar") together. Doing this allows a singleslstrobe to both collect data and send a new dgtaest at
the same time.

The RAM_interface module state transition diagraam two major components: the read and write
sequences. Both sequences are very straightforwdifte READ_ADDRESS state enters the address
requested to the block RAM's external input registe specified in the Coregen specification sh&étis
READ_DATA state triggers a wire inside the RAM_irisee module to latch the data on the output dasa b
of the Coregen RAM. The READ_VALID state indicatesthe algorithmic modules in the project that the
data on the RAM _interface bus is valid data. Haalsxg proved to be the most challenging aspethisf
module. In order to ensure proper handshaking émtvihe RAM_interface module and those requesting
data, the READ_VALID state was added. This stategyclear signaling that the RAM is done reading.
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Notes:1) There are no required delay states for the
RAM module

READ_
ADDRESS

READ_VALID

Figure 2.5 — RAM State Transition Diagram

Finally, the Recorder module simply combines taeick interface and memory storage into a single
package that can be called on to record data. mbidules exists so that modules doing data anatgsis
simply press a record button and be sure thatrtakog to digital converters will continuously rundagather
data as the tester desires. In this way, therteatesimply press a record button and the memoadyADCs
communicate with each other automatically. If ahyhe other modules are busy (indicated by a simgte
contained in each respective module), then the i®ecawill signal to the requester that it is cuthgn
waiting and stay in its current state. The statadition diagram for the Recorder module appeei®i

RESET_
ADDRESS

[ADC_busy_from_ADC\

[ADC_busy_from_ADC_2_reg

RAM_busy_from_RAM_reg

Figure 2.6 — Recorder State Transition Diagram

The last piece of the device interface is conngctd the lab kit through the user input/outputt@or
on the lab kit. To do this, eleven wires are camed directly to the kit and respective pins on the
breadboard. In order to receive inputs the dasaasunput, eight pins for each port reside in nghedance
so that data can be written to the bus withouteidn.

Debugging was done with the aide of the revisptiadumeric display code. This proved to be the
guickest tool for easy verification at low speeids. (Switch testing through the lab kit at veryslates). To
do further testing at actually processing speelis,logic analyzer proved invaluable. This made lquic
debugging on what was actually going on in theuiircOf course, the analog circuitry was debuggsitig
scope probes and waveform generators. If the haediwgplementation of this project were to be regiesd,
much more attention would have been given to makiagk up input devices in the event that (which was
the case) the desired devices did not provide adeqar accurate, data.
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3.0 — The Digital Control Unit

3.1 — Design Considerations

The Digital Control Unit (DCU) serves as the mdigital processing and control block for the
overall system. It can be divided into three méajlacks. The first block, referred to as the UsepitGee
block, is used to capture the three main contgnials input by the user: global reset, questioe,tynd
store data command. The second block, referred tthe Memory Module, controls the sequence of
reading and writing the sensor data to and from rtte@n memory (implemented using a Coregen
BRAM). The final block, referred to as the DigitBlecision-Making Unit (DDMU), implements the
decision-making algorithm which analyzed the sexsda and made a binary T/F decision.

The design and implementation of the DCU were stdpy two key considerations. The first,
and perhaps most important, was modularity. Raten using one large module for all the necessary
tasks, the functionality was partitioned into subeliles, each of which implements a basic task. Not
only did this facilitate debugging, but it helpedl prevent oversights, and made the design easier to
integrate with the reset of the system.

The theme of modularity runs throughout the DCWWr Example, the Memory Module and
Digital Decision-Making Unit are implemented as agte blocks which pass information to each other
using handshake signals. This allowed each blobletimplemented and debugged independently of each
other, and allows for greater flexibility if onerpaf system needs to be altered. A second exaimpihat
both the Memory Module and the DDMU consist of ajdd&SM and several Minor FSMs. The Major
FSM is used to control the data acquisition angfocessing sequence. The Minor FSMs, on the other
hand, are used to perform the actual computatiordesired functionality. The advantage of this
architecture is that each part can be implemenéstied, and modified more easily than if all fuoes
were combined into one large module. For exampheesthe actual T/F decision-making occurs in one
Minor FSM, if it is determined after calibratingetlsystem that another decision criterion shoulddasl,
then it is relatively simple to change.

The second consideration when designing the DCB tiva collection and storage of data. The
first issue to consider was the speed and effigi@fiche system. Since data acquisition would ¢esthe
order of minutes for each question analyzed, a-pomg memory structure was used to speed up tlae dat
processing. Under this ping-pong architecture tdt@ memory needed is divided into two block RAMs.
While one RAM is being filled with sensor data, thiner is being read and processed. This allowed
continuous data acquisition, meaning that a questiould be analyzed immediately following the
previous question.

Another challenge was devising a method to hatitefairly large volume of sensor data that
would be needed for an entire lie detector exansuAsng the exam lasts approximately 20 minutes and
that 16 bits total are needed to represent bottskite conductivity and pulse, at the specified 50 H
sampling rate, a potential 1 million bits neededb¢ostored for each exam. Although this may notnsee
very much, only a portion of the data is actualyeful (most of the data occurs during the dead time
between questions), and only the computed staisite really necessary to make the T/F decision.
Therefore, on-the-fly processing was implementes.data is read to the DDMU, it is processed and
analyzed as a stream. The resulting statistichdrahan the sensor data) are stored in a sepdaitde
register. The raw data in main memory is then oviélenm for the next question.

A simplified block diagram of the Digital Controlriit is shown in Figure 3.1 below. A more detailed
figure which includes wire names can be found eAlppendix
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3.2 — Module Descriptions

As stated above, the Digital Control Unit is dettlinto three separate blocks: the User Capture
block, the Memory Module, and the Digital Decisilaking Unit. The following sections describe each
of these three blocks as well as their internal uesl

Note: Please refer to the Appendix for the Verilogde
3.2.1 — The User Capture Block

The User Capture block takes care of the threeinpets for the DCUreset, question, andstore.
Thereset command initializes the system. Tsiere command causes the ADC data to be stored in the
main memory and the data processing to start irbf®IU. Thequestion input is a two-bit value which
indicates to the system how to treat the data baiadyzed. A value of 0 indicates an irrelevantstjoe
and is not analyzed at all. A value of 1 indicatesontrol question meaning the statistics are caeapu
and stored in the separate data register. A valu2 iadicates a relevant question meaning that the
statistics are computed and compared against prglyistored statistics for the control questions.

The User Capture will first debounce and synchmrize inputs. Oncetore is pressed, it will
hold the value oftore andquestion until the registers are reset. This module isr@atian on the Walk
Register which was implemented in the Traffic Ligiantroller lab.

3.2.2 — The Memory Module

The Memory Module controls the sequence of wrifesm the ADC to the main memory) and
reads (from the main memory to the DDMU). It useSl@or FSM and two identical Minor FSMs to
implement the ping-pong memory architecture.

The Major FSM — The Major FSM supervises the memory access. Itante with the DDMU using
handshake signals (two signals are used to indighaieh block the Memory Module is currently writing
and two signals are used to indicate which bloak EFDMU is currently reading). In addition, it is
responsible for resetting tlstore andquestion registers after data has been written to both miesycand
it sends start signals to the Minor FSMs to inadtcahen to perform a read and when to perform aewrit

The Minor FSM —The Memory Module uses two identical Minor FSMsedn control each block of
memory. The Minor FSM has three states: an idle searead state, and a write state. During a liead,
obtains data from the BRAM Interface sequentialigni each address in the corresponding memory.
During a write, it tells the BRAM Interface to waitsequentially to all addresses in the correspgndin
memory block.

The state transition diagram for the Major FSM l®wn in Figure 3.2 below. It shows the
sequence of reads and writes for the ping-pong menmaplementation. The outputs Read0, WriteO,
Readl, and Writel are control signals for the twmdvl FSMs. Due to space constraints, the state
transition diagram for the Minor FSM is omitted.
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~busy0 && ~blockl_DDMU Vritel =1
Read0 =1
Write0 = 1 /
SQ && ~blockd0_DDMU WRITEL

READO

Readl =1
Store_rst = 71/
Question_rst> ~busy0 && ~busyl &&
~busy0 && ~busyl ~blockl DDMU

Writel = 1
Read0 =1
Readl =1

SQ = store && TP READ1
. . Write0 =1
((question == 1) || (question == 2)) — ———{ WRITEO
SQ &&
~block0_DDMU

Figure 3.2 — State Transition Diagram for Major FSMin Memory Module

3.2.3 — The Digital Decision-Making Unit

One of the key elements of a lie detector testiliethe types of questions asked. Questions are
grouped into 3 categories. The first type is cabembntrol question. They are simple, easily-verifiable
questions that are interspersed within the tese. §étond type is calledralevant question. These are
personal, often embarrassing questions that aligraiesto provoke a physiological response. The last
type is called aelevant question. These are questions which are pertietfitet actual examination. The
T/F decision is based on the assumption that aesuhijith nothing to hide will react more strongtyd
control question, whereas a subject who is lyintj sgact more strongly to a relevant question. Tikis
the theory used when implementing the Digital Decisviaking Unit.

The Digital Decision-Making Unit is the largest amibst complicated part of the DCU. It
consists of a Major FSM, a Data Register, and fdimor FSMs (used to collect, process and store data
as well as make a binary T/F decision).

The Major FSM — The Major FSM again acts as the controlling modige data acquisition and
processing. It interacts with the Memory Modulengshandshake signals (to determine which unit is
reading or writing from each block). It also sermmlg start signal to each of the four Minor FSM'’s to
indicate that they should begin their computatidi®e state transition diagram is shown below. ¢iveh
the sequence of data acquisition, processing, adge/decision. Again, due to space constraihts, t
state transition diagrams for the Minor FSMs aretieah.
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start_collect=1
start proc =
~block0_RAM

proc_datal =1
last_address0O

SQ
start_store = 1 done_collect

done_store

ques?ion ==2)
start_decide =1

Figure 3.3 — State Transition Diagram for Major FSMin DDMU

The Minor FSM Collect —The MinorFSM_collect is responsible for obtainimg traw sensor data from
the Memory Module. Since the data is a concatemabiothe skin conductivity and pulse data, this
module separates the data and lowpass filterskihecenductivity data to remove high-frequency eois
Note: the pulse data was not filtered since it midgstroy the heartbeat information (which typigall
occurs as short, high-frequency pulses)

The FIR Lowpass Filter -A 42-tap lowpass filter was created to processsttie conductivity data. It
consists of 42 registers (to hold each of 42 delay@mples needed to compute the output). When
activated, the filter shifts all the register valugy one and stores the incoming value in the fagister.

It computes the output by multiplying all the datgisters by the appropriate coefficient and sungmin
the products. To avoid overflow problems, the nundfebits on the output was adjusted to account for
the maximum and minimum output values. The prinadyantage for building this module rather than
using the Coregen FIR module is that all the regisare cleared immediately upon reset, whereas the
Coregen module requires a long latency to clead#te registers.

The Minor FSM Process -This module computes the various statistics oniripat data sequences. It
uses 5 sub-modules, one to calculate each seatidtists, registers the computed output, and rdbets
sub-modules when the computation is complete. Thensodules are described in more detail below.

The FFT Module —This module computes a 2048-point FFT of the pdita and determines both the
index of the maximum frequency content (in termshaf transform magnitude) as well as the maximum
value at that index. It uses the Coregen FFT modut®mpute the transform. Since the Coregen module
requires that the data appear at the input exaatlpck cycles after the index,in order to meetttinéng
requirements, the pulse data is first collected atwded in an internal BRAM. The BRAM is then
accessed at the appropriate times to satisfy tiietifing. The Coregen module outputs the transform
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values and corresponding index in a stream. Thexefbe FFT Module searches for the maximum value
(other from DC) and returns the index at this maxmas well as the maximum output.

Other Processing Modules Fhe other processing modules follow the same patiéhen activated,
they search through the incoming data stream aeg@ kgdating an internal register which holds the

desired properties. This continues until the Mir&ivE collect signals the end of the data stream. The
modules are as follows:

* MinMax — Searches for the Minimum and Maximum skin cotigitg value

* MaxDeriv — Searches for the Maximum First Difference in $hken conductivity data (in terms
of magnitude)

* SumEnergy_cond — Returns the Sum and Energy (sum of absoluteesalof the skin
conductivity data

* SumEnergy pulse- Returns the Sum (also the Energy) of the pulse da

ThreshCount — Returns the number of heart beats in the sampitegvals

The Minor FSM Store —The MinorFSM_store is used to store the computetisits for control
guestions in the Data Register (Coregen BRAM).olaatenates all the statistics into a large 254-bit
vector and stores it in one row of memory. In additit will increment the memory address afterrgve
store operation so that the data is not overwritten

The Minor FSM Decide —The MinorFSM_decide is called when analyzing avahe question. The
current algorithm simply accesses the last rowoohuted statistics in the Data Register and congpare
them to the computed statistics for the currensgiae. It makes a binary T/F decision based on tiewv
two sets of values compare.

3.3 — Testing and Debugging

Since the group was given only 2 lab kits, moghefdebugging was done using ModelSim post-
place and route simulations. During the first tegtphase, each module was simulated individually to
ensure basic functionality. During the second mgspihase, the User Capture block, the Memory Module
and the DDMU were each put together and simuldtedmajor problems were encountered during this
phase. Most of the modifications were very minod aere usually the result of some small oversight.

The third testing phase did not begin until thie kit access was available. The modules were
hooked together and the code downloaded onto tAFFPhe Logic Analyzer was used to view internal
signals. Despite previous simulations, there wereal problems, the biggest being timing issugh wi
the hand-shake signals. It turned out that sinogesof the handshake signals were one-cycle pulses,
receiving module was not able to recognize and teatiem. This debugging phase took nearly twesday
of full-time lab work. The problem was finally sel# by using ModelSim to simulate the entire DCU and
by viewing the necessary signals.

In hindsight, more time should have spent simudptihe entire DCU, because there were a
number of unforeseen problems when the User Captleenory Module and DDMU were connected
together. Many of them were hard to debug on th&ARnd could have been avoided by proper
simulation. In addition, having access to the FP$8Aner would have greatly eased the stress durang t
last couple of days of the project because thentgstould have been completed earlier rather than
pushing it back to the final two days.
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4.0 — The Video Display

The video display consisted of one main module Wwisientained several smaller modules, rather
than just having several peer level modules. Tstesn takes inputs from the main labkit (such &s th
clock and debounced signals from user inputs) aridubs the necessary video control signals (such as
h_sync or v_sync).

A block diagram of the system is shown in figurg Below. A larger version is found in the appendix.

enable
{te all blecks)
=ync_h
Pulse Rom ync
button_0 N ¢ Divider pixel_court VGA h_sync
button_1 | Button iL_ . T Display =
button_2 N FSM Large Small ¥ _SYNC
Pulse Pulse
l} £ bkarik_k
‘_
‘_n_
woa_ted
Pulse Registers
. Pulse . ’ = ) VGA Color
FSM ] ] Lcrgic wia_green
color
wija_hlue
zkin ry
conductivit = ¥ color
Glitch y
. e color
Remover Skin Conductivity ik
Registers M Character VGA
reset i
{to all String Rectangle
reset _I‘Iocks DCM ?
pixel_clock
. 27 MHz to 66MHz o e Font Rom
converter r\- v clock
PolyVideo.v

Figure 4.1 — Block Diagram of the Video Display

The inputs were synchronized via either an FSMrothe case of the skin conductivity) a glitch
remover. The outputs were sent directly to the itablodule, to the appropriate VGA ports. The
individual blocks will be discussed in further deteelow. As most of the modules dealt with dagéniy
displayed on the screen, all testing (except fat df the FSMs) was done by synthesizing the code a
providing simulated inputs to the FPGA.

DCM
The most important element in a synchronized digitatem is the clock. The DCM module
takes in the 27 Mhz clock signal and outputs thdi&6clock used by the monitor. This faster clogk i

also used by all the modules in the video displalgere are two other signals which are used bwat(or
least sent to) every module in the system exceghiBbROMSs: those are tlmablesignal, which goes
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high when v_sync transitions (that is, when v_syoes from high to low, thus ensuring that changes t
the data happen offscreen) aedet which is an input to the system and globally tesdl the modules.

The output from the DCM is also inverted and serthe VGA system as the pixel clock. The
180° lag between the clocks ensres that the outpartsthe sync and color signals will be glitchefrigy
the time the monitor registers them.

Divider

The divider was a simple module which created aHerz enable signal and a two hertz enable
signal. It was used by the button FSMs for tinugposes.

Button FSM

The button FSMs were simple FSMs that served t
purposes: first, they synchronized the user infutBe system,
and second, they provided a mechanism to slow doser
inputs to a speed that was useful.

I button

The inputs to the button FSMs came from deboun
pushbuttons on the FPGA labkits. When the inpus \eav,
the system was in the IDLE state. Also, any tilme inputs
when low, the system would, regardless of its steirn to
the IDLE state.

When in the IDLE state, if the input went high, tf mnshie
FSM went to the FIRST_PRESS state, and the outag
high. It would remain in this state until teaable signal went ENABLED 1
high, at which point it went into the ENABLED_1 t&a
during this state, the output was low. Once theZzltimer
went high, the state changed to NEXT_PRESS. i
NEXT_PRESS, the output was again high until greable
signal was sent again. After this, the state wntthe
ENABLED 2 state, and would cycle back to tt
NEXT_PRESS state after every 2 Hz signal. Thismhézat
when the button was held down, the button wouldrseebe  =*=2!® ‘

Z H
pressed every half-second for the purposes of éke af the
modules, ensuring that holding the button down wonbt EMABLED 2
send a repeat faster than a human could react to.

Glitch Remover

=

This module existed to try to clean up noise whagistering the input to the skin conductivity
module. As the change in skin conductivity coutit he guaranteed to remain the same on the rising
edge of the clock, this module ensured that theasiggould be clean. It sampled the value on thilgi
edge of the clock, and compared that to the previao values. If any two of those matched, then it
would output that value; if all three were differéimen it would simply hold the last value it had.
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This took advantage of the fact that first, actkih conductivity changes have a frequency of
less than one-half of a Hertz, and also the faatttthe sampling rate of 66 MHz was more than twhes
of the input clock (27 MHz).

Pulse FSM

The pulse FSM acted slightly
differently than the button FSM. In this
case, | didn't know how many cycles the
pulse would go high for — whether it
would be for one or many. In addition, |
needed to sync it to trenablesignal, so
| decided to do that through an FSM.

When the pulse when high, the
FSM moved from its IDLE state to the
PULSE_HIGH state. It would hold that
state (and have a high output) until one
of two things happened: either the
enable signal would go high (in which
case it would go to the ENABLED_ 1
state, and the output would go low), or
the input would go low (in which case it
went into the PULSE_LOW _1 state, and
the output remained high). After this,
when whichever the other one occurred
(either enable when high or the input
went low) the system waited for a 4 Hz enable d®htreset to the IDLE state (this was to block out
noise; if a person’s pulse was over 4 Hz, they @it be in a situation to answer questions anyway)

ENABLED

Large PulseandSmall Pulse

These modules create the pulse waveforms. The lanise consists of a series of counters,
which are set when the pulse is high and decremaryenable The smaller one set the values of the
pulse edges from serial data sent in when the baten is pressed. They get their color data by
accessing the Pulse ROM, which stores the wavefioam for both pulses.

When the pixel_count or line_count changes, theeotipixel is compared with the location of

the nearest edge. If it's within the range of vehtire waveform should be, the difference between th
current pixel and the nearest edge is sent to @&l Rand the value of that pixel is returned.

Pulse Registers

This module takes in the pulse from the pulse FSbtyeenable It stores the data in a 340 bit
vector, which it exports serially to a small puteedule when a save button is pressed. It alsossend
start signal to the large pulse module when leoibleand pulse are high.

- |saac Rosmarin - 15



Skin Conductivity Registers

This was the largest module, both area-wise ané-vose, and as such was the hardest to test
and debug, and also was the most important to pteyliiches for the system. It consisted primadfy
four banks of 340 registers, one of which was séenwide, and the other three were six bits wide.

When the new conductivity data was read in, tha dathe largest register bank was shifted one
place (that is, data in register [i] went into s#gr [i + 1]) and the seven most significant bitew data
were read into the first register. When a savéobutvas pressed, the six most significant bithefdata
were saved into the corresponding register in gapriate small bank (that is, small [i][5:0] <arge

[i][6:1]).

To present this information on the screen, the dathto be pipelined several steps. First, the
index of the appropriate register to check had dosblected. To do this, for the small registee, th
difference between the edge of the area it occupiedcreen and the current pixel was subtracted fro
340; for the large area, the 1020 pixels acros® wlarided into 340 three-pixel blocks, and the kloc
number was subtracted from 340. The inversion (84®) occurred because while the screen’s x
increases from left to right, the data was measttoll from right to left.

After the register was determined, the appropriaggster was selected to produce its data. This
value (0-127 for the large register, 0-63 for theaht one) was added to the height of the curre. lilf
this value was higher than the bottom of the skinduictivity screen area, then the pixel was comeitle
“on”; if not, then it was “off".

Character String

For the character string, | just downloaded thélagfiles available on the web. Given a vector
of bits that is n*8 bits long (where n is the numbé characters) and a location, it creates a gtah
ASCII characters at that location on the screen.

VGA Rectangle

The VGA rectangle module was just the rectangle utedve used in lab 4. Originally, the
screen consisted of several background rectangids the data overlaid on top of them, but as |
implemented more and more of the modules, | usednibdules themselves to create the “empty”
background display. In the end, the only rectamgiehe screen was the one for the “true or fatieaé
from the DDMU. The rectangle changed color (grieertrue, red for false) to indicate whether or tia
person was lying.

VGA Display

The VGA Display module was basically a glorifieduater. It took in the clock signal and
produced a two-dimensional output — pixel_count &né_count. These values reflected the current
location being drawn on the screen.

There were also several bits that were output filisnmodule for synchronization purposes; they
let the monitor know where each pixel was (basethervalues of h_sync, v_sync, and blank_bar).s Thi
properly oriented each pixel on screen. It alsmipced arenablesignal on the falling edge of v_sync —
this let all the registers know when it was timaipalate.
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The data from this module was directly output te glorts which connected to the video display
in the labkit.

VGA Color Logic

This was a very simple module, which started owt gsry complicated one. Initially, there were
two modules; one for the foreground and one forbidiekground. However, as the background rectangles
disappeared, eventually there was only need fomoodule. It simply did a bitwise OR on the diffete
color outputs, and sent the result to the colopatuports.

Pulse RomandFont Rom

These ROMs stored the pixel data for the pulse feanes and the VGA ASCII characters,
repectively.

Implementing, Testing, and Debugging

This display, all told, took up about 30% of thbK#&. Most of which, as | mentioned before, was
in storing the skin conductivity data. In orderotimize this design, | did several things. Fiedl data
that could be compressed into a single module waseated a ROM for the pulse information, andtsen
data between modules serially to minimize the nundfewires needed. Also, | used only 6 bits to
convey color information rather than 24. This fyastit down on the amount of wiring | needed.

Since most of the data was changing at slower thatertz, and since the VGA clock was
running at over 60 MHz, checking the performanceheflarge pieces of this module in simulation was
not feasible. | tested all of the FSMs in simwatiand made sure that the values in the courtietk {n
the pulse module and the divider) worked propebiyt most of the modules had to be optimized by
synthesizing the data to the FPGA. | used theclagalyzer to ensure that the proper signals weirggb
output, and the LED display on the labkit as well.

All in all, the video module was a fun one to implent, and also rather instructive. Nothing
teaches you to remember that while verilog looks & programming language, it actually correspaads
physical components like spending hours tryingixoybur program only to find that you didn’t have
enough wires to route your signal.

In the end, hardware optimization is not just abepeed, power, or area, but also about

remembering that there is a finite number of irdarects available, and wiring up a VGA display
conveys that information well.
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5.0 — Connecting and Debugging the Entire System

Once the individual modules had been implementedl tasted, the system components were
connected. Due to the modularity in partitioning thesign, this phase went quite smoothly. The
interfacing took place in two stages. In the fattge, the ADC and memory interface were conndoted
the Digital Control Unit in one of the lab kits. the second stage, the output display (on the seledn
kit) was added into the system using jumper wiremfthe user I/O ports.

The most complex interfacing in this project wias obne between the ADC and memory interface
portion and the DCU. Although most of the read amde operations to and from memory functioned
properly, there were a few problems to debug scthe memory address not being reset properly, and
control signals not being asserted. The debuggimgHis stage of the project consisted primarily of
looking at signals on the logic analyzer and usiegalpha-numeric display (explained in section 2).

The second stage of interfacing simply involvedning wires to the output display. The output
display was able to receive dynamic data and tharpiT/F decision from the beginning, so there was
hardly any debugging.

Although the digital portion of the overall systéomctioned correctly, the sensor data was too
poor to calibrate and test the system. The pulseeiwam in particular was too noisy to give a solid
enough heartbeat that could be analyzed, and ihecekductivity waveform hardly changed from one
operating condition to another.

Overall, the project was a mixed success. Althaighsystem functioned as intended, it was not
possible to implement the complete lie detectorabee the sensors could not provide reliable data. |
hindsight, more care should have been given tgltysiological sensor implementation. For example, i
may have been better to use a piezoelectric pressmsor rather than an electrical signal for tieep
Another course of action may have been to purchesical sensors from an appropriate company rather
than try to construct them from scratch.

Regardless of the overall result, the project adgcational in its own right. It provided a lot of

insight into different design architectures andeddnt implementations. It also provided the opyaity
to expand one’s skills and to think on one’s fegtce the system had never before been implemented.
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