
MIT Course 6.111: Digital Electronics Lab

Fingerprint Identification

Kevin Amendt
David Friend

May 19, 2006

Abstract

Fingerprint readers are fast becoming commonplace as secure alternatives to text-based
authentication. We develop a programmable fingerprint identification system. The system can
store users’ fingerprints in a memory, and compare future inputs against this database. We use
a video camera for image capture.

Our matching algorithm is unique in that it compares the frequency content of two finger-
prints. A fast Fourier transform is performed along horizontal and vertical slices of the image.
These coefficients are compared against the coefficients of another print. If the error is below a
threshold, we determine the prints to be a match.

We implemented our design on a Xilinx FPGA, using the 6.111 labkit. The design is highly
modular: the matching algorithm can be easily changed without changing other parts of the
system. Likewise, the image capture can be replaced without major changes to the system.

1

Contents

1 Introduction 1

2 Theory of Matching Algorithm 1
2.1 Alternative Approach . 2
2.2 Setbacks and Further Simplification . 3

3 Operation 3
3.1 Adding Users to Database . 3
3.2 Identifying Users . 4
3.3 Setting the Threshold . 4

4 Implementation 4
4.1 Conventions . 5
4.2 Buffers, Image Buffers, and Double Buffers: David 6
4.3 Image Capture: David . 7
4.4 VGA Display: David . 7
4.5 LED Display: David . 7
4.6 Controller FSM: David . 8
4.7 Processing FSM: David . 8
4.8 Downsample Module: David . 9
4.9 Display Processed Image: David . 10
4.10 Gradient Module . 10
4.11 Find Center Module . 10
4.12 Row and Column Selector Module: Kevin . 10
4.13 Fourier Transform Module: Kevin . 11
4.14 Buffer Selection: Kevin . 12
4.15 Summed Squared Error: Kevin . 12
4.16 Validation Controller and Comparator: Kevin . 13

5 Conclusion 16

A Labkit Listing 18

B Controller Module 29

C Image Capture 32

D VGA Display 35

E LED Display 37
E.1 Display State . 37
E.2 Display Threshold . 40

i

F Memory Buffer Modules 40
F.1 Image Buffer . 40
F.2 Double Buffer . 43
F.3 Line Buffer . 47

G Processing 50
G.1 Processing Controller . 50
G.2 Downsample . 56
G.3 Display Processed Unit . 60
G.4 Row and Column Selector . 64
G.5 Fourier Transform . 66

G.5.1 FFT . 66
G.5.2 FFT FSM . 69
G.5.3 Squared Magnitude of Coefficients . 71

H Buffer Selector 72

I Validation Unit 76
I.1 Validation . 76
I.2 Comparator . 79
I.3 Summed Squared Error . 81

ii

List of Figures

1 Using feature extraction to match fingerprints . 1
2 Matching fingerprints in the frequency domain . 2
3 Ability of algorithm to discriminate different fingerprints 2
4 Algorithm Flow Chart . 3
5 FPGA User Interface . 4
6 Dataflow through the identification system . 5
7 Buffer Modules . 6
8 Block Diagram of LED Display Module . 8
9 Controller Module State Transition Diagram . 8
10 Processing Controller State Transition Diagram . 9
11 Downsample State Transition Diagram . 9
12 Display Processed Image State Transition Diagram 10
13 Finite State Diagram for the Row Column Selector Module 11
14 Finite State Diagram for the Fourier Transform Module 12
15 Finite State Diagram for the Buffer Selector Module 13
16 Finite State Diagram for the Sum Squared Error Module 14
17 Finite State Diagram for the Comparator Module . 14
18 Detailed Block Diagram of the System . 15

iii

1 Introduction

Biometric identification has enjoyed a surge of popularity in the last few years. Particularly, finger-
print authentication has become a mainstream product. A search on Amazon.com for “fingerprint
scanner” returns two dozen or so results, including products from companies like Microsoft and
Logitech. The scanners come in various packages: standalone, built into keyboards, and imbedded
in USB keys.

To see the advantages of biometric identification, consider that authentication schemes require
the user to prove his identity: he must possess unique knowledge or have a unique possession (or
some combination of these two). The two most common types of authentication are keys, such as
in the key to your house or car, and passwords. The obvious pitfall of keys and passwords is that
people tend to loose their keys and forget their passwords. More critically, these authentication
schemes are transferable, and therefore insecure. Biometric authentication, on the other hand,
cannot be lost nor transfered, making it an ideal method for user authentication.

Our focus is on fingerprint authentication. Traditionally, fingerprint matching algorithms are
implemented in software. As detailed in Section 2, programs extract certain features of the print.
The type, number, and location of these features is unique to each person. We explore whether it
is possible to accomplish the matching using a hardware implementation. Instead of performing
feature extraction, which is tedious even in software, we try to match in the frequency domain.

2 Theory of Matching Algorithm

A fingerprint differs from scan to scan by some combination of two dimensional translation, rotation,
and scaling; and a three dimensional ‘rolling’, which occurs when the user does not place his finger
at the same elevation from scan to scan. These variations, especially translation and rolling, make
matching a challenge.

Figure 1: Using feature extraction to match fingerprints

The usual fingerprint matching algorithms use feature extraction. These programs examine the
ridges to determine where they begin and end. Figure 1 illustrates this method. Shown are two
scans of the same fingerprint.[1] Two types of features are highlighted. Circled in red (solid lines)
are locations where ridges end. Circled in blue (dashed line) are locations where ridges split. It is
readily apparent that the print on the right is a translated and rotated copy of the left print.

1

2.1 Alternative Approach

While the traditional algorithms are easily implemented in software, it is another matter design
them in hardware. (Although it can be done: S. Patel demonstrated a MATLAB script to match
fingerprints, and MATLAB translates easily to hardware[2].) We required a simple method that
we could describe in hardware in a few weeks. Following the suggestion of M. Wennergren[3], we
focused on the frequency domain.

The frequency domain encodes some measure of the spacing of the ridges on the fingerprint.
Let us say that we can always identify two key points on every fingerprint. Then the Fourier
transform along the line connecting these two points should be an invariant. This method accounts
for translation, rotation, and scaling, and is quite sufficient for our purposes.

?

Figure 2: Matching fingerprints in the frequency domain

We used the center of the fingerprint as the first key point. We can easily find the center by
taking a pseudo-gradient in four corners and finding where at least two of the lines intersect. This
method is illustrated in Figure 2. The second point, however, is intractable. By the time you have
described an algorithm to pick out a second point, you might as well perform full blown feature
extraction.

We further simplified our problem to use only the center point. We then select the column and
row through the center and match the frequency content to the frequency content of the center
column and row on another fingerprint. This method preserves translational invariance, but does
not match rotated or scaled images.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

Discriminating Power of Frequency Content

vs. Number of Coefficients Used in Comparison

Number of Coefficients

S
u
m

 S
q
u
a
re

d
 E

rr
o
r

Figure 3: Ability of algorithm to discriminate different fingerprints

2

The comparison in frequency space is performed as a straight forward, summed-squared-error
calculation. A low error implies the prints match better. If the method works well, then we can
always find a threshold error, below which we say that the prints match. Figure 3 shows how well
this scheme works. The dashed lines represent the error between pairs of non-matching prints. The
blue and yellow (solid) lines show the error between pairs of matching prints.

The plots also show that the difference between the error associated with a match and the
error associated with a non-match flattens out around n = 16. There is no point in calculating the
remaining coefficients. When summing the error, we discard the constant component and look at
the first 16 coefficients. Conceptually, this cutoff removes the high frequency components, which
are likely to fluctuate wildly from scan to scan due to noise.

3. Find Center 4. FFT1. Acquire

Compare

2. Clean Img
Database

Figure 4: Algorithm Flow Chart

Figure 4 describes our final algorithm for matching fingerprints. Notice that we have “cleaned”
the image, which includes converting grayscale to black and white, and interpolating to reduce
noise. Details of these procedures are described in Section 4.

2.2 Setbacks and Further Simplification

We originally wanted to use a fingerprint sensor from Veridicom International. Unfortunately we
damaged it in the process of trying to attach wires to the surface mount, 0.5 mm pitch pins. This
setback forced us to look for other means of acquiring the fingerprint. It also meant that a good
week of work was wasted.

In order to complete the project in some form, we were forced to eliminate the find center step.
Unfortunately this simplification means that our project is no longer translational invariant. We
use constant coordinates for the center of the fingerprint. The user must position the fingerprint
the same way each scan, or our double-simplified algorithm will not work.

3 Operation

There are two modes of operation: a user can be added to the database and an unknown user
can be identified based on the entries in the database. The mode is controlled by switch 7. On
corresponds to add user, off corresponds to identify. Figure 5 shows the user interface.

3.1 Adding Users to Database

To add users to the database, turn switch 7 to the on position. The LED display will show
Add User 0. The number at the end of the display indicates the user ID associated with the
person. The user ID can be changed by toggling switches 0 through 2. The camera should be
positioned over the user’s fingerprint (use a 2D printout, not the finger itself). Then press the

3

Mode Select
ON - Add User
OFF - Identify

Start LED DisplayReset
User ID

Display
Threshold

Change
Threshold

Figure 5: FPGA User Interface

start button. The LED display briefly switches to Processing, and then displays the result of the
operation for a second.

As an example, let us add a user to entry number 3. Turn switch 7 on. Select user ID as 3 by
setting switch 2 off, switch 1 on, and switch 0 on (011). Position the camera and press the start
button. Processing flashes briefly, and the result is displayed for one second: Added User 3. The
system returns to idle mode and another operation can be performed.

The database can be cleared by pressing the reset button.

3.2 Identifying Users

To identify users, turn switch 7 to the off position. The LED display will show Identify. Position
the camera over the fingerprint (a 2D picture, not the finger itself), and press the start button.
The display will flash Processing and then display the result, either which entry it matched
(Matched 1) or no match (No Match). Obviously if there are no entries in the database, this
operation will always show no match.

3.3 Setting the Threshold

As described in Section 2.1, the matching algorithm requires a threshold. While this value is
initialized to what we believe to be a reasonable value, it can be changed. The current threshold
can be displayed by switching switch 5 to on. The hexadecimal representation of the threshold
displays in the LED display. The value can be adjusted by pressing the up and down buttons.
Not shown in Figure 5, a coarse adjustment is also available with the left and right buttons. The
threshold will return to its default value of 4E00 on reset.

4 Implementation

We implemented our design in Verilog and programmed it onto a Xilinx FPGA. The entire system
is controlled by the controller FSM. The overall system is shown in Figure 6. Arrows represent
the data flow. We have omitted control signals from this plot for clarity. Shaded blocks represent
buffers and are passive modules.

We capture the fingerprint with an NTSC compatible video camera. Frames are continuously
written into the scanned image buffer and also to a display buffer, which is displayed on the
monitor. When the user presses the enter button, the controller sends a start signal to the processing
controller and simultaneously stops the ‘NTSC to BRAM’ module from writing to the scanned image
buffer and display.

4

Display
2x128x128x8

NTSC Decoder
(Javier Castro)

Scanned Image
128x128x8

Validation Controller

Controller

Processed Image
to Display

Downsample
8 to 1 bits/pxl

Processing Buf
2x128x128x1

Row & Column
Selector

Fourier
Transform

(Row)

Fourier
Transform
(Column)

Processing Controller

Row Buffer
1x128x1

Column Buffer
1x128x1

Buffer Selector Buffer Selector

Row
Coeff A
1x16x32

Row
Coeff B
8x16x32

Col
Coeff A
1x16x32

Col
Coeff B
8x16x32

Sum Squared
Error

Sum Squared
Error

Compare to
Threshold

NTSC to BRAM

Figure 6: Dataflow through the identification system

The processing controller sends a start signal to the Downsample module, which reads the in
the scanned image at 8 bits per pixel of grayscale, and converts it to a black and white image (1
bit per pixel). The threshold, above which pixels are classified as white and below which they are
set to black, is the average brightness of the image.

When the downsample module has completed, the processing controller sends a start signal to
the row and column selector. This selects the appropriate row and column from the image and
stores them into row and column buffers. An FFT module calculates the first 17 coefficients of the
Fourier transform of the row and column.

There are two modes in the system. A fingerprint can be read in for identification (‘identify’),
or it can be read in to be added to the database of known fingerprints (‘add user’). The mode
is selected with switch 7 on the FPGA. When the switch is off, the system is in identify mode.
Conversely, when the switch is on, the system is in add user mode. An ID number in the range 0
to 7 can then be selected with switches 0-2.

If the system is in add user mode, the Fourier coefficients are stored in the B buffers. The B
buffers have space for eight sets of coefficients, corresponding to the eight different user ID’s. In
add user mode, after storing the coefficients to the appropriate entry in the database, the system
returns to idle mode.

If the system is in identify mode, the Fourier coefficients are stored in the A buffers. The
controller then sends a start signal to the validation unit. The validation reads in the coefficients
from the A buffer and compares them to each set of coefficients in the B buffer. The validation
unit determines if the A buffer entry matches any B entries, and if so, which entry in the B buffer
was matched.

This process takes about 2 ms. The result (i.e. ’Added User 6’, ’Matched 1’, or ’No Match’) is
displayed on the labkit’s led matrix for a second before the system returns to idle mode.

4.1 Conventions

We choose to use 128 by 128 pixels for our fingerprints.

5

4.2 Buffers, Image Buffers, and Double Buffers: David

Because we are storing minimal data, we are able to use block RAM for our entire project. We syn-
thesized a block RAM in Corgen which had 16384 8-bit addresses. We call this a buffer_128x128x8.
This storage unit is used in the VGA display’s double buffer, the original image storage, and in the
processing unit’s double buffer.

We also have three other sizes of buffers: a buffer_1x128x1 to store a single row or column, a
buffer_1x16x32 to store a single set of Fourier coefficients in the A buffers, and a buffer_8x16x32
to store 8 sets of Fourier coefficients in the B buffers.

Because we constant access the image sequentially (requesting each pixel in order, from 0,0 to
128,128), it was convenient to wrap the buffer with a sequential access interface. The img_buffer
module contains a pin to enable sequential access. When this input is high, the data are not
accessed through the address. The module accepts a reset_pxl_pos pulse, which returns the
internal counter to zero. Then a single pixel is read through the re (read enable) pin. Each time
re is high on the rising clock edge, the value of the pixel pointed to by the internal counter is put
on the data out line, and the internal counter is incremented.

Because the img_buffer registers its inputs, the read and write delays increase. The read delay,
between addr being valid at the rising clock edge, or, if sequential access is enabled, re being high
at the rising clock edge, to the data becoming valid is two clock cycles. The write delay is one clock
cycle.

buffer_128x128x8 en
we

din
dout
addr

img_buffer en
we

din
dout
addr

en_seq_access
rereset_pxl_pos

double_buffer

we
din

en_wr_seq_acs
rst_we_pxl_pos

dout
en_re_seq_acs
re

rst_re_pxl_pos
read_addr write_addr

2x

Figure 7: Buffer Modules

Finally, we have a third memory module, a double buffer. A double buffer is used both in the
processing unit and the display unit. A double buffer uses two 128x128x8 img_buffers. One buffer
is designated as a ‘read’ buffer, and the other is a ‘write’ buffer. In the processing unit, this is useful
when we want to clean the image. We can read in the current copy of the image from the ‘read’
buffer and write a modified copy to the ‘write’ buffer. When we are done, we simply switch the
buffer designations. The next processing step reads in the improved image, and the older version
is overwritten.

In the VGA display module, this double buffer structure is useful to seamlessly update the
display. The ‘read’ buffer is the one that is displayed to the user, while the camera writes to the
‘write’ buffer. When the camera has read an entire frame, the buffer switches the designations.
Now the new image is displayed and the older image is overwritten.

The double buffer module also implements sequential access. The read buffer and the write
buffer have separate sequential access enable pins. In this manner the read can be sequential, and
the write random access, if desired. The double buffer adds a one cycle read and write delay to the

6

image buffer due to its registering of the inputs. The read delay is three clock cycles and the write
delay is two.

4.3 Image Capture: David

We originally intended to use a commercial scanner from Veridicom International to capture the
fingerprint (model number FPS200). When we received the scanner, the pins were of a non-standard
pitch. Under the advice of Gim Hom, we tried to solder the connections directly. Unfortunately,
the scanner was damaged in the process and we were forced to abandon a week’s worth of effort
and quickly throw together and image capture from a NTSC compatible video camera.

We used Javier Castro’s NTSC decoder and his NTSC to ZBT ram modules to jump-start our
image capture. We modified his NTSC to ZBT module to write into our display buffer and into
our original image buffer. Our NTSC to BRAM module constantly presents data to the display
buffer and the original image buffer. The controller FSM lets the we signal pass when the system
is in ACQUIRE mode, and sets the we inputs to these two memories to low when the user presses
the start button.

While the system is in the AQUIRE mode, the display’s buffers are swapped at the end of every
frame, about 30Hz. This swapping gives the effect of video. Note that the NTSC to BRAM module
samples the incoming picture by taking only the top left 256x256 pixels. It then only writes the
odd lines and even columns, resulting in a 128x128 image.

4.4 VGA Display: David

The VGA display module determines the colors of the pixels to display on the screen. It consists
of two parts: a black background, and a 128x128 image displayed in the center. It reads the image
data from the ‘read’ buffer of the double buffer contained within the module. Other modules can
modify the displayed image by writing to the ‘write’ buffer, and then pulsing the cycle_disp,
input. The cycle_disp swaps the read and write buffer designations, presenting the new image to
the user and allowing other modules to write a new frame.

The read delay is three clock cycles, which has the effect of shifting the image over by three
columns. The columns wrap around, and the first three columns of the displayed image are actually
the last three columns of the image in the ‘read’ buffer. We fix this shift by delaying all the horizontal
and vertical sync by three clock cycles, while keeping the line and pixel count the same. The effect
is that the pixel and line count signals into the VGA display module are advanced by three clock
cycles, thus fixing the shift.

4.5 LED Display: David

The LED display shows the current operating mode of the system. The four main modes are
Identify, Add User, Processing, and displaying the result of the last operation. Additionally, the
LED display will switch to showing the current threshold level when switch 5 is turned on.

The implementation is straight forward use of the alpha_display module. We wrap 16 in-
stances of the alpha_display module into the display_state module, one for each character.
The controller FSM provides a three bit selector input, the display state, and the module displays
the current mode of the system.

7

display_state dots[639:0]
clockuser_id[2:0]

state[2:0]

display_thesholdthreshold[63:0] dots[639:0]
clock

alphanumeric_display
dots[639:0]

switch[5]

Figure 8: Block Diagram of LED Display Module

The threshold display is handled by the display_threshold module, which also has 16 instances
of the alpha_display module, one for every 4 bits of the threshold level. When switch 5 is off, the
dots signal into the alphanumeric_display module comes from display_state. When switch 5
is on, the dots signal comes from the display_threshold. The controller FSM has no knowledge
of the state of switch 5.

4.6 Controller FSM: David

The controller module is the big picture controller for the system. From the point of view of the
controller module, the system can be in one of four states: ACQUIRE, PROCESS, VALIDATE,
and DISPLAY RESULT. Also, the controller updates the LED display by changing its state input.

The ACQUIRE mode is the idle state. The system is constantly acquiring video frames and
updating the VGA display. In this mode the user can select either identify or add user, via switch
7. The system waits in this state until the the user presses the start button.

When the user presses the start button, the controller moves to the PROCESS state. Here it
pulses the start signal for the processing controller module and then moves to a WAIT state where
it remains for as long as the processing controller module asserts its busy signal.

ACQUIRE

SYS_RESET

PROCESS

 * reset

!(reset | start)

start WAIT VALIDATE

DISP_RESULT WAIT

 *

 *

 !add_user

add_user

 *

 (1s pause)

Figure 9: Controller Module State Transition Diagram

After the processing controller is done, the controller module makes a choice. If the the mode
was Add User, then it is done. It moves to the DISPLAY RESULT state and remains there for a
second so that the user can see the result of his action displayed on the LEDs. If the mode was
Identify, an additional validation step is required.

The controller module pulses the validation module’s start signal and then moves to a WAIT
state where it remains for as long as the validation controller module asserts its busy signal. After
the validation controller is done, the controller moves to the DISPLAY RESULT state to pause
and inform the user about the result of the identification.

4.7 Processing FSM: David

The processing FSM controls the processing steps of the system. These states are abstracted from
the main controller for modularity.

8

The processing controller begins on a start pulse from the controller. It sends a start signal to
the downsample module, which reads in the image from the scanned image buffer and writes it to
the processing unit’s double buffer.

IDLE

SYS_RESET

DOWN
SAMPLE

 * reset

!(reset | start)

start

WAIT

ROW COL
SELECT

FFT

WAIT WAIT

Figure 10: Processing Controller State Transition Diagram

Next the processing controller starts the row and column selector. When this process has
finished, the processing controller starts the Fourier transform. The buffer selectors start from a
reset signal from the FFT modules.

After all of these processes have finished, the processing controller sets its busy signal to low
and returns to the idle state.

4.8 Downsample Module: David

The downsample module converts an 8 bit per pixel image into a binary, 1 bit per pixel image.
It consists of two main steps. The first is to calculate the threshold value, equal to the average
value of all the pixels in the original sample. Thresholding dynamically, and not against a constant
value, ensures that we achieve the maximum contrast of the image. After computing the threshold
value, the module then reads the original image again, this time outputting the new binary image
by comparing each original pixel to the threshold.

Other than to binarize the image, the other main contribution of the downsample module is
to read the image from the scanner buffer into the processing buffer where the processing modules
can easily access and modify it.

IDLE

SYS_RESET

RESET

 * reset

!(reset | start)

start RST_PXL

INITREAD1

 *

 *

INITREAD2

 *

READSUM

 *

pxl_cnt < 16383

pxl_cnt = 16383

RST_PXL_2

INITREAD1_2

 *

INITREAD2_2

 *

READWRITE

 *

pxl_cnt < 16383

Figure 11: Downsample State Transition Diagram

9

4.9 Display Processed Image: David

For debugging purposes it was convenient to implement a module to display the processed image.
This module reads the modified image from the processing buffer into the display buffer.

IDLE

SYS_RESET

RESET

 * reset

!(reset | start)

start INITREAD1

INITREAD2

 *

 *

INITREAD3

 *

READWRITE

 *

pxl_cnt < 16383

pxl_cnt = 16383

Figure 12: Display Processed Image State Transition Diagram

4.10 Gradient Module

Due to time constraints realized when our original scanning method failed to work, we did not
implement this module in hardware. We did, however, code it in MATLAB using a coding style
that we hoped would easily translate into hardware. In brief, we found a pseudo-gradient by finding
a line that maximized the number of crossings.

4.11 Find Center Module

Due to time constraints realized when our original scanning method failed to work, we did not
implement this module in hardware. We did, however, code it in MATLAB using a coding style that
we hoped would easily translate into hardware. In brief, we described the center as an intersection
between at least two of the gradients that fell inside the bounds of the image.

4.12 Row and Column Selector Module: Kevin

The Row and Column selector module is responsible for one action. On a start command it reads
the captured fingerprint image out of the 2x128x128 binary processing buffer and writes a previously
specified row and column of the image into two 1x128x1 line buffers. There is a buffer for the row,
and one for the column. Since the image is 128x128 pixels, the first six bits of the memory address
correspond to the column of the image, and the last six bits correspond to the row of the image.
Data from the processing buffer are connected directly to both the row and column buffers. Data
are read out of the processing buffer sequentially, and also written into the line buffers sequentially.
Data are only 1 bit wide. Write enable signals to the column and row buffers are asserted only
when the needed pixel is read out of memory. Using this scheme it is easy to determine which
memory addresses correspond to which pixels, and also when to write the data.

10

SYS_RESET

WRITE
ROW

COL

IDLE

RESET
_PXL

*
~START

START

*

PXL_CNT != 16383

PXL_CNT = 16383

Figure 13: Finite State Diagram for the Row Column Selector Module

This functionality was implemented with a finite state machine. The finite state diagram is
shown in figure 13.

4.13 Fourier Transform Module: Kevin

The Fourier Transform module is responsible for interfacing with the Fast Fourier Transform (FFT)
Coregen unit and ensuring that the timing parameters are met. The Fourier Transform module
completely wraps the FFT unit, so any interface involving the FFT goes through the Fourier
Transform module. It also calculates the square of the magnitude of the coefficients.

There are two identical Fourier Transform modules. On a start signal from the processing
controller, it sends another start signal to the FFT (FFT start) and reads sequentially out of a line
buffer, either the row or column buffer, and supplies those values to the FFT module. The data
is delayed four clock cycles from the FFT start signal as required by the FFT unit. Each pixel is
streamed in every clock cycle, from pixel 0 to pixel 127. Data are read into the real input, and the
imaginary input is tied to ground. The module will then wait while the FFT unit calculates the
first 16 Fourier transform coefficients. These are sent, again in a streaming fashion from coefficient
0 to coefficient 15, through logic that calculates the square of the magnitude of the coefficients, to
the Buffer selection module with the proper write enable signals. The FFT outputs the real and
imaginary parts of the Fourier Transform and these are squared, then summed together to compute
the square of the magnitude. It is this 32 bit wide value that is streamed into the Buffer Select
module to be written to memory. Data emerging from the FFT is in twos complement, and must
be converted to unsigned notation before being summed and squared.

This functionality is implemented using a finite state machine. The finite state diagram is
shown in Figure 14.

11

SYS_RESET

WAIT

WRITE
_COEF

IDLE

READ_
VALUE

START
_FFT

START

~START
*

*

READ_COUNT = 128

READCOUNT != 128

WRITE_COUNT != 16

~FFT_DV

FFT_DV

WRITE_COUNT = 26

Figure 14: Finite State Diagram for the Fourier Transform Module

4.14 Buffer Selection: Kevin

The Buffer Selection module works in tandem with the Fourier Transform module to write Fourier
coefficients into memory. There are two modes the system can be in, add user, or identify. If the
system is in add user mode, data from the Fourier Transform module is written to the specified user
location in memory buffer B. If the system is in identify mode, data is written to buffer A. There are
two identical modules in the system, one for each Fourier Transform module. One corresponds to
the row, and one to the column. The data from the Fourier Transform module is connected to both
memories. When the Fourier Transform module begins a write (precipitated by the fft dv signal),
depending on its mode (identify or add user), the Buffer Select module will assert the write signal
for the proper memory buffer and calculate the correct starting address. Our algorithm actually
discards the constant coefficient. In coefficient0s place, zeros are written. As data is streamed in
every clock cycle, it will increment the memory address accordingly. Memory Buffer B is 8x16x32,
designed to hold up to 8 different images. The data coming in is 32 bits wide. The address lines
to both memory A and B are used by both the Sum Squared Error module as well as the Buffer
Selector module, so the module does not drive the address pins when not in use.

This functionality is implemented using a simple finite state machine. The finite state diagram
is shown in Figure 15.

4.15 Summed Squared Error: Kevin

The Sum Squared Error Module is responsible for computing the square of the error between the
magnitudes of different images Fourier coefficients. The module interfaces with Buffer A and B,
and sends its data to the comparator module. It takes in an image number from the comparator to
determine which image in memory B to begin addressing. On a start signal from the comparator
module, the Sum Square Error module reads the squared magnitude of the first coefficient, one

12

SYS_RESET

WRITE
_COEF

IDLE

START

*
~IN_RST

IN_RST

*

COEFF_CNT != 15

COEFF_CNT = 15

Figure 15: Finite State Diagram for the Buffer Selector Module

from memory A and one from memory B. It takes the absolute value of the difference of these two
numbers. This is the error. The error is squared. The module reads in the next squared magnitude,
calculates the squared error and adds to the first squared error. It continues this pattern until it
has summed up all squared errors. This value is sent to the Comparator module. Data entering the
module is 32 bits wide. Data leaving the module is 64 bits wide. A healthy bit width was used to
ensure no overflow occurred, which would be detrimental to the system. The address lines to both
memory A and B are used by both the Sum Squared Error module as well as the Buffer Selector
module, so the module does not drive the address pins when not in use.

This functionality is implemented using a finite state machine. The finite state diagram is
shown in Figure 16.

4.16 Validation Controller and Comparator: Kevin

The Comparator Module is responsible for controlling the two Sum Square Error modules as well
as making the comparison to determine a match. On a start signal from the Controller module, the
Comparator sends start signals to the Sum Square Error modules and waits for them to complete
their computation. Once done signals have returned the squared error for both column and row
are compared with a threshold value. If both are lower than the threshold value, it is a match, if
one is above the threshold, no match. The module specifies an image number for the square error
modules to calculate. This refers to the location of memory B to read from. The comparator will
run through every image that has been stored in memory. It skips any memory blocks that have
not been initialized with a fingerprint. The threshold value can be controlled by the user interface.
Once a match is made, it will output that a match occurred as well as the image number matched
until another request for comparison is made by the Controller.

This functionality is implemented using a finite state machine. The finite state diagram is
shown in Figure 17.

13

IDLE

FINISHED READ2

READ1

ERROR

READ0SET_SQ_ER
ROR

~START

START

*
*

*

*

~DONE

DONE

*

Figure 16: Finite State Diagram for the Sum Squared Error Module

NO_MATCH
_IDLE

START_
ERROR WAIT

SUM

TEST

MATCH
_IDLE

DONE_
CHECK

RESET
IMG
NUM

INC_IMG
_NUM

COMPARE

~COMPARE

IMG_NUM<8IMG_NUM !<8

* COMPARE

~COMPARE

*

DONE_ROW & DONE_COL

~(DONE_ROW & DONE_COL)

*SQ_ER<THRESH
SQ_ER!<THRESH

Figure 17: Finite State Diagram for the Comparator Module

14

Processing Buffer
2x128x128x1

Row and ColumnSelector

Row
Buffer

1x28x1

Column
Buffer

1x128x1

RE
_D

at
a_

In

RP
P

Da
ta

_O
ut

Row-Select

Column Select
6

6

Start

Busy

RPP Row
wr_row

data_out_row
wr_col

data_out_col

RPP col

Fourier Transform

da
ta

_i
n

re
_i

n

RP
P_

in

Fourier Transform

da
ta

_i
n

re
_i

n

RP
P_

in

start start

busy busy

we
_o

ut

fft
_d

v

sq
_m

ag

we
_i

n

in
_r

st

in
_d

at
a

Buffer Selector

32

32

we
_i

n

in
_r

st

in
_d

at
a

Buffer Selector

32

32
we

_o
ut

fft
_d

v

m
ag

_s
q

ro
w_

di
n_

A

we
_r

ow
A

we
_r

ow
_B

ro
w_

di
n_

B

co
l_

di
n_

A

we
_c

ol
A

we
_c

ol
_B

co
l_

di
n_

B

bu
fA

_d
at

a

Bu
fA

_w
e

Bu
fB

_d
at

a

Bu
fB

_w
e

Bu
fA

_a
dd

r

Bu
fB

_a
dd

r

ro
w_

ad
dr

_A

ro
w_

ad
dr

_B

Bu
fA

_a
dd

r

Bu
fB

_d
at

a

Bu
fA

_w
e

Bu
fB

_w
e

Bu
fB

_w
e

Bu
fB

_a
dd

r
ro

w_
ad

dr
_B

co
l_

ad
dr

_A

32 32

ro
w_

ad
dr

_A

ro
w_

A_
in

ro
w_

ad
dr

_B

ro
w_

B_
in

co
l_

ad
dr

_A

co
l_

A_
in

co
l_

B_
in

co
l_

ad
dr

_B

Square Error Square Error

col_done
col_sq_err

col_start

im
g_

nu
mrow_start

row_sq_err

row_done
Comparator

364 64

Matchstart
Busy

Figure 18: Detailed Block Diagram of the System

15

5 Conclusion

We have demonstrated a working fingerprint matching system. The current implementation is a
good first pass of the algorithm. With more time, we could refine it to be more tolerant of variant
scans.

The algorithm is unique in its comparison of frequency instead of feature extraction. This is
attractive both for the speed gain, as well as ease of implementation in digital hardware.

We are particularly proud that we were able to quickly implement a video capture of the image
in two days after our scanner did not work out.

16

References

[1] R. Guerrieri, “Unibo fingerprint capacitive sensor,” University of Bologna, Tech. Rep., 1997, fin-
gerprint database is available from http://www-micro.deis.unibo.it/∼tartagni//Finger/
FingerSensor.html.

[2] S. Patel, “Fingerprint verification system,” 2002-2004, available online from Sourceforge: http:
//fvs.sourceforge.net/.

[3] M. Wennergren, “Spectral fingerprint matching,” Master’s thesis, Lund University, Centre for
Mathematical Sciences, November 2004.

17

