
 1

Charles Hung
May 18, 2006

6.111 � Digital Systems Lab
Final Project

This Snake is Down Right Fierce

Abstract

 The purpose of this project is to implement a version of the classic game Snake

on the FPGA. The player controls the snake�s movement and the object of the game is

to make the snake grow by eating apples that appear at random locations on the screen.

The game ends whenever the snake collides with itself or the walls of the level. When

the snake reaches its maximum length, the game will go on to the next level; there will

be a total of three levels. There are three major design components to the project: a

system to display graphics, a system that handles game logic, and a system to handle

commands from the user. The display component is handled by using a VGA interface in

conjunction with sprites and dual ported block ROM. The game logic is encapsulated in

a major/minor FSM. The game state is handled by the major FSM while collision

detection is handled by the minor FSM. The player will be able to send commands to the

snake through a PS/2 keyboard. These commands are directly sent to a module that

updates the position of the snake.

 2

Table of Contents

I. Overview 3

II. Description 4

III. Testing and Debugging 8

IV. Conclusion 9

List of Figures

Figure 1. Picture of the levels 3

Figure 2. Overall system block diagram 4

Figure 3. PS/2, user command modules 5

Figure 4. Collision detection state transition diagram 7

Figure 5. Game state transition diagram 7

 3

I. Overview

 The game starts by drawing the snake and apple in a default position. The snake

starts moving when the player hits any direction on the keyboard. If the head of the

snake collides with either an obstacle in the level or any part of itself, the game will stop,

indicating the player has lost. Also, if the player inputs a direction opposite from the

snake�s current direction, the game will end. If the snake moves over the apple, the

snake will grow in length and a new apple will be drawn to a random position on the

screen. When the snake reaches its maximum length, the game will go on to the next

level (Figure 1) and redraw the snake and apple in their default positions.

Figure 1. Picture of the levels

 Figure 2 is a block diagram of the overall system. The flow of data starts with the

keyboard input from the player. The keyboard clock and data are sent to a PS/2 module

that outputs a hexadecimal number corresponding to the ASCII letter pressed. This

number is sent to a user command module that outputs a 4 bit movement vector

representing the direction. The snake register module takes the movement vector and

determines the next position of the snake, which will be drawn when the pixel and line

count return to 0. The new position is sent to the collision FSM, which will check for

collision with the obstacles, snake, and apple. In addition, it will also latch a new position

for the apple if the snake has eaten it. The collision FSM outputs a win or lose signal to

the game FSM. If a win signal is asserted, the game FSM will enable the appropriate

 4

block ROM corresponding to the next level. If a lose signal is asserted, the game FSM

goes into a game over state and disables further input from the keyboard. Otherwise, the

snake is still alive and the game continues.

Figure 2. Overall system block diagram

II. Description

PS/2 and User Command Module

Snake Register
 Module

head_x

head_y

up, down, left, right

x [10]

y [10]

index [4]

grow

grow_idx

Collision Detection
 FSM

win lose

Game FSM

en_lvl2en_lvl1 en_lvl3

Linear Feedback
 Shift Register

rand_x [10]

rand_y [10]

DATA_VALID

SINIT
CE 1

0

Display/ VGA Module

Apple_xApple_y

xpos [32], ypos [32]
Block ROM

ADDR A

OUT A

ADDR B

OUT B

PS/2 and User
 Command
 Module

movement [4]
bad_move

kbd_data

kbd_clk

Signals to all blocks

pixel clock (31.5 MHz)
reset_sync

RGB [24]

clock_27mhz

draw_en

 5

 The PS/2 module takes the keyboard clock and keyboard data and determines

which key was pressed. Each key has a corresponding hexadecimal code that the

keyboard sends to the module. This code is then decoded to its ASCII value and sent to

the user command module. The user command module turns the ASCII value into a 4 bit

vector representing the direction: 1000 for up, 0100 for down, 0010 for left, and 0001 for

right. If no key has been pressed yet, it outputs 0000. The output of the user command

module is also regulated by the lose signal from the collision FSM. If the lose signal is

high, further movement should be prohibited. We can achieve this by just having the

user command module output 0000 when the lose signal is asserted.

Figure 3. PS/2, user command modules

Snake Register Module

 The snake is drawn in 32 square segments (see display module) so the snake

register module has 64 registers, one register each for the x and y position of the

segment. On a reset, the snake is drawn in its default position: the first 27 segments (the

snake head) are drawn over each other (they have the same x and y position) and the

remaining 5 are drawn next to each other. A grow index register stores the index of the

register that is at the bottom of the stack of segments representing the head. The

snake�s position is updated when the current frame has finished being drawn (when the

pixel count is 639 and the line count is 479). The snake can either move or grow. If the

snake is simply moving, all the registers with an index less than or equal to the grow

 PS/2
Module

 User
 Cmd

ascii_ready

ascii [8]

kbd_data

Kbd_clk

clock_27mhz

movement [4]

 6

index are updated in the direction that this module gets from the user command module.

The remaining registers are shifted down (eg. R28 takes on value of R27). If the snake is

growing, it has collided with the apple. In that case we increment the stack of registers

that will represent the new head (index 0 to grow index - 1) and keep the rest of the

registers unchanged. The snake grows by incrementing the difference between positions

stored in adjacent registers. This is done in an orderly fashion each time, starting at the

register with grow index. Thus, at the end the grow index is decreased by one.

Collision Detection FSM

 The collision detection FSM checks for collisions with the level obstacles, snake,

and apple. To check for collisions with the level obstacles, it first takes the position of the

head of the snake and converts it to the corresponding address in the ROM. It gets the

RGB value of that pixel from the ROM. If the RGB value is 111 (white), then the snake

has hit an obstacle and we go into the game over state. Otherwise, there is no collision

with any obstacle. Next, it checks for collisions with the snake. It takes the position of the

head and checks to see if the head touches any segment of the snake, starting from the

tail of the snake. If so, the game ends. Otherwise, it proceeds to check for a collision

with the apple. If the snake has collided with the apple, a grow signal is asserted for the

snake register module. The collision detection FSM then finds a new position for the

apple. It does this by taking a random value from a linear feedback shift register and

checking to see if each corner of the apple collides with any obstacle. If not, then it

checks to see if it collides with any part of the snake. If the new apple position fails any

of these tests, a new random value is generated. If it passes, the value is latched as the

current apple position.

 7

Figure 4. Collision detection state transition diagram

Game FSM

 The game FSM keeps track of what level the player is on and whether or not the

game has ended. It receives a win and lose signal from the collision detection FSM. If

the win signal is asserted, it will enable the appropriate block ROM for the next level. If a

lose signal is asserted, it goes into a game over state. Otherwise, the FSM remains in

the current level state.

Figure 5. Game state transition diagram

RESET LVL 1* LVL 2
win

LVL 3
win

GAME
OVER

lose
lose

win | lose

RESET CHECK
 LVL 1

CHECK
 LVL 2

CHECK
SNAKE

CHECK
APPLE

 GEN
APPLE 1

 GEN
APPLE 2

 GEN
APPLE 3

 GEN
APPLE 4

 GEN
APPLE 5

GAME
OVER

*

lose
lose lose

~lose ~lose ~lose

apple_col
~apple_col

okok okok

 8

Level Block ROMs

 There are three dual ported block ROMs, one for each level. Each block ROM

has 640 * 480 addresses for each pixel on the screen and a width of 3 bits. The 3 bits

can either be the RGB value for white (111) or the RGB value for black (000). The

obstacles and walls of each level are white. The ROM receives addresses from the

display module to assign the right color for the background. It also receives addresses

from the collision FSM to check for collision with the obstacles. The ROMs also have an

enable signal so the game FSM can activate the appropriate ROM.

Display/VGA Module

 The display/VGA module uses the position of the snake segments, the position of

the apple, and the RGB values from the block ROM to draw each frame of the game.

The block ROM contains the RGB values of background, which are either black or white.

The snake and apple are drawn using sprites that output squares to the screen. To grow

the snake, we increase the relative positions between adjacent sprites. Otherwise, if we

are only moving, each segment takes on the value of the previous segment.

III. Testing and Debugging

 Testing and debugging was done in an incremental fashion. I first coded the

display/VGA module and configured the block ROMs to see if I could get the FPGA to

output a static background. To instantiate the block ROMs, I used Coregen. I had some

peculiar errors using Coregen. Somehow, the lengths of the addresses were being

changed around and I could not figure out why. To get around this, I deleted the block

ROM from the project and re-instantiated it. The next phase was to draw the snake and

see if it would move and grow. I debugged this function visually by drawing different

 9

segments of the snake different colors. That way I could tell how each segment was

actually being updated. I also had problems getting the snake segments to position

themselves correctly next to each other. For example, by default, I always had the last

five segments drawn next to each other with no overlap. I did this to give the snake

some initial fixed length. However, I found that this never occurred and that the

segments always overlapped. This is a problem that I am still currently fixing.

 I then checked to see if the apple would output in random locations. I did this by

assigning a button on the FPGA that would redraw the apple each time it was pressed.

Other than minor syntax errors, I did not have too many problems with this part of the

project. The majority of my bugs occurred when I connected the entire system together.

Specifically, the game would end prematurely. The snake would be allowed to move for

one frame and then the game would freeze. This meant the lose signal from the collision

detection FSM was being asserted incorrectly. Unfortunately, I did not have enough time

to examine this problem in depth. I suspect that the collision detection FSM is either

sending the wrong addresses to the block ROM or it is receiving erroneous values from

the block ROM.

IV. Conclusion

 Although I was not able to get my system fully functioning, the final project was a

still a challenging and rewarding experience. I thought that the implementation that me

and Jae came up with was pretty interesting, especially the use of a ROM to store the

background of each level. This made checking for collisions with the level, at the very

least, conceptually easy. I also liked the idea for building the snake, because it made

controlling and growing the snake relatively easy.

 During the course of the project, I had to drop several ideas from my original

implementation. Originally, I was going to have the player use a Logitech gamepad

 10

instead of the keyboard. However, finding the necessary calibration data to send to the

gamepad was difficult. I spent a good amount of my time in lab trying to get the

gamepad controller to work, and, in retrospect, I probably should�ve done that aspect of

the project last. I could have used the FPGA buttons temporarily and then try to interface

the gamepad.

 I felt that the biggest problem I ran into was allocating my time on the project. I

spent a lot of time trying to get each module to work perfectly before moving on to the

next one. As a result, I wasn�t able to get a working collision detection FSM. If I were

given another chance to do this, I would do my design in a different way. I would first

program a very simple game to make sure all the signals are synced properly. For

example, I could make a snake that does not grow and have the game end when the

snake collided with a wall. From there, I could build on the existing game and make it

more complicated.

