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Abstract

We present a functioning active sonar that leverages a novel signal processing ap-
proach to achieve rapid frame rates with low quality devices. By placing increased
burden on the processing, what normally requires dozens of transmissions may be per-
formed with only one.

Cheap ultrasonic transducers and receivers have been used in order to emphasize
device-independence. Furthermore, home-brewed 2-bit analog-to-digital converters are
used in lieu of more expensive options. The algorithm, by design, simply does not
require the level of detail afforded by higher resolution sampling systems.

On the digital front, the transmission, data gathering, processing, displaying, and
even serial link-up have been fully pipelined in order to maximize frame rate. While
only single object tracking is demonstrated reliably (due to the short range of the
transducers), there exists near-full support in both the algorithm and the system to
handle multiple objects. Display of these objects is possible from both top and frontal
views.

Various subtleties and optimizations - some highly nonintuitive, others virtually
necessary for proper operation - have been discovered as well. We describe these in
addition to the implementation.

CONTENTS 4
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1 Overview

SONAR - SOund Navigation And Ranging -
was a technology first developed in the early
20th century as a means to locate objects
beneath water. The willingness of sound
waves to significantly reflect off most surfaces
has contributed to its dominance today as a
means of localization in the seas.

There are largely two categories of sonar:
active and passive. Passive sonar is a “listen-
ing” system that simply attempts to localize
the source of any sounds it hears. In military
applications where stealth is a priority, this
is often the only option.

Active sonar, on the other hand, involves
a more active role on the part of the detec-
tor. A pulse of sound, or a “ping” is emit-
ted with a transmitter, and reflections of this
pulse are interpreted for the desired informa-
tion. To allow the project sufficient breadth,
it was decided that an active sonar would be
attempted.

Traditional active sonars utilize well
characterized devices and a procedure known
as “beamforming” to emit highly directional
pings. The time until the ping arrives back
at the receiver can be used to determine the
distance to the object. However, even under-
water (where sound travels roughly five times
as fast) these delays are rather large - on the
order of tens of milliseconds. Having to try
all the different angles to paint a full picture
only multiplies this delay. Eventually, this
translates over to slow update rate.

Our goal was to attempt to take care
of this problem by reversing the scenario.
Rather than sending out directional pulses,
send out a omnidirectional ping (lessening
stress on devices as well). Then, have an ar-
ray of receivers instead of transmitters and
piece together the distances to each angle -
all from a single transmission. In this way,
frame rates can increase by orders of magni-
tude. See the theory section for more on this
rather watered down explanation.

A system was designed to fully exploit
this approach and display it in a highly intu-
itive manner. Various processing and control
modules fit into a fully pipelined system that
determines where an object is in the field of
view. A display unit (also pipelined) then
takes this information and shows the object
in a simplified frontal 3D view, or in a more
traditional top view.

2 Processing - Theory

One has a very high degree of freedom when
it comes to design of an active sonar system,
when compared with passive sonar. The first
decision that must be made is the one that
distinguishes this design from most sonar
systems: the use of multiple receivers instead
of multiple transmitters.

2.1 Multiple Transmitters

Traditionally, multiple transmitters are
placed in a linear array, not unlike that
shown in Figure 1. If the transmitters are
placed close enough to one another (half
wavelength or less) one can send out highly
directional pulses by properly choosing the
phases going into each transmitter (see Fig-
ure 2 for an example angular distribution).
This process is given the colorful name of
“beamforming.”

Since sound travels at a measurable speed
and bounces off most objects fairly well, one
can immediately formulate an algorithm for
mapping the environment using beamform-
ing. A sine wave pulse is sent at one direc-
tion - say 0 degrees - and one measures the
time until a reflection is heard. This time
is proportional to the distance to the closest
object at that angle. After hearing this re-
flection, another sine pulse may be emitted
in another direction, and the process may be
repeated until all angles are covered.

Unfortunately, above ground sound trav-
els at 340 m/s, giving a time lag of 6ms per

5
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Figure 1: Linearly Phased Array for Input or Output

Figure 2: Sample Beamforming Distribution

2.1 Multiple Transmitters 6
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meter per angle. If the closest object is 4
meters away, the minimum time for a full
scan is 24ms times the number of trial angles.
One cannot expect a frame rate faster than
about a frame per second for any reasonable
resolution. Not only is this extremely slow
(the human eye detects flicker at 24fps) but
unreliable (if objects move further away, the
system can slow down significantly).

Additionally, the constriction of plac-
ing extremely well characterized transmit-
ters within half a wavelength distance, raises
the system cost. Rather than attempting to
build a traditional system with these limita-
tions, Project Tunafish decided it would be
more interesting to address these difficulties
by shifting responsibility to DSP and clever
manipulation of receiver spacing.

2.2 Multiple Receivers

What if, instead of sending out a seperate
transmission in each direction, one sent them
all out at once in an omnidirectional trans-
mission? With the use of multiple receivers,
one could theoretically still extract the direc-
tional information from the signals.

Assume there are two objects at different
distances and angles. If one sends an omni-
directional ping, seperate reflections will be
heard for the two different objects on each
of the microphones. If the ping is short
enough in time, each microphone will show
two seperate pulses (one for each object). For
each of these pulses, there is a distinct lag be-
tween arrival time to the different mikes. See
Figure 1 - which applies to both transmis-
sion and reception - again for an illustration
of these time delays (dcosθ).

So, if these pulses are kept short and the
objects do not overlap significantly distance
wise, one can deduce the angle for either of
the pulses after calculating its lagging be-
tween microphones. The distance is then
obtained easily in the same way as in the
multiple transmitter case (total delay since

transmission).
How to calculate the lags that will give

us the angles though? The answer lies in the
magic of correlations. Say one has two sine
waves over several periods at some phase to
one another. If he shifts one relative to the
other, multiplies the two, and integrates the
function that results, this is called a cross-
correlation. As it turns out, this function
turns out a maximum value when the shift
operation puts the sine waves in phase with
one another.

A similar principle holds with our pulses.
If one correlates the pulses between the mi-
crophones with one another, a maximum will
occur at the shift that reverses their inher-
ent phase shift (dcosθ). So one simply has
to search for the maximum in these correla-
tions between the different microphones, and
she can trace back to the angles from there,
right? Not entirely. There is a very impor-
tant subtlety regarding this that actually has
much broader impact on the process of beam-
forming in general. In the next section, we
discuss both this problem and an elegant so-
lution that was discovered in the course of
the implementation.

2.3 Nonlinear Spacing

We observed before that for sine waves,
correlation maxima occur at the phase-
correcting lags. As it turns out, for signals
that are finite length, this can be generalized
using the fact that a signal’s autocorrelation
observes a maximum at zero lag. Assum-
ing the pulsed sine waves observed at each of
the microphones are simply shifted versions
of one another (a seemingly reasonable as-
sumption), the maximum of the correlation
will occur not only when their sines are in
phase, but also when the modulating pulses
are made to line up exactly. So, we should
be able to uniquely identify any sized lag be-
tween the receivers.

Only our reasonable assumption is not

2.2 Multiple Receivers 7
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at all reasonable for cheaper quality devices,
like the ones we wished our system to work
on, especially when one considers quanti-
zation noise. Large amplitude differences
between the microphones are in fact quite
present even for the most steady of objects.
As it turns out, this completely destroys the
possibility for detecting lags greater than the
period of the sine wave in question - stuck at
40KHz by the resonant ultrasonic transduc-
ers. Given the centimeter diameter of the
receivers we deal with, the maximum angu-
lar range possible is limited to 40 degrees.
Not very much.

Amazingly, this is an identical problem
to that faced by beamforming transmitters
(see the multiple transmitter section). The
requirement that the spacing between trans-
mitters be less than half a wavelength is the
exact mathematical restriction we face, and
for the same reasons. If transmitters are
spaced more than this distance apart, mul-
tiple lobes are created (similarly to how one
set of lags can be repeated for multiple angles
taken by an object in our case). A funda-
mental limit to angular range? Not so fast,
buddy. We’re from MIT, after all.

Thus far, everything we have mentioned
can be done with 2 transmitters or 2 re-
ceivers. The extra devices have been used
essentially for added noise protection. Why
not use them to combat this problem? As is
often the case, the answer is sometimes more
apparent when one looks at the problem in
a different light.

We recall that the lags are given by dcosθ.
Plotting this over the angular range we are
interested in, we have a cosine from 0 to
π
2 . Remembering however that we can only
count on detecting phase differences and not
the total lags, we recognize that lags off by 25
µs (the period of a 40 KHz wave) will yield
identical phase differences. So let’s say that
angles A and B give the same lags for mics 1
and 2.

Now, suppose that mics 2 and 3 are
spaced slightly further apart than 1 and 2.
While it is true that more angles will now
overlap (as the maximum lags have increased
while the period is the same) we now have
an interesting situation. Assuming that the
2-3 spacing is not a simple integral multi-
ple of the 1-2 spacing, the angles that give
the same 1-2 phase differences are guaran-
teed to give different 2-3 phase differences.
The proof of this statement is left as an ex-
ercise for the reader. In short, we have de-
coupled the two sets of receiver’s lags so as
to widen the range.

The fact has been verified experimen-
tally: in the original equally spaced setup,
observers standing out of the central angular
range “wrapped” around to the center screen
- exactly what one would expect (verification
is another exercise for the reader). In the sec-
ond setup - decided upon after this analysis -
the entire range of the transmitters (almost
180 degrees) was represented with no such
wrapping. See Figure 3 for a picture of the
final layout used. Notice the irregular spac-
ing.

A similar exploitation may be performed
in beamforming systems with many trans-
mitters. If one spaces them greater than
half a wavelength - one will certainly have
multiple lobes. However, one can guarantee
that only one of these lobes overlaps between
all the transmitters by making them nonlin-
early spaced. If there are enough transmit-
ters, this essentially duplicates a “properly”
beamformed signal without the need for a
carefully fabricated array.

It should be emphasized that while other
solutions exist to this problem - most no-
tably the use of superior transducers and/or
analog-digital converters - none can compete
in terms of elegance, simplicity, and cost.

2.3 Nonlinear Spacing 8
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Figure 3: Receiver Array

3 Analog Interfacing

Before jumping into the implementation of
the processor, it is important to understand
the analog-digital hybrid aspects of the de-
sign. Several novel techniques were explored
here as well, most notably non-linear time-
variant reduction of the receiver’s resonance
quality by means of the FPGA. See Figure
4 for a schematic of the final circuitry for a
single mic (we had 5).

3.1 Hardware Interface

The hardware part of our project is mostly
responsible for collecting data from our five
microphones. This data starts out as a 40
kHz waveform with an amplitude of about 10
mV. We amplify the signal about 200 times,
and then convert it to digital data. Our algo-
rithm works as well with sinusoids as it does
with square waves, so using an 8 bit ADC
would be wasteful since 2 bits would suffice.
The quantization noise that is introduced by
this reduction in resolution proved a severe
problem early on, but was addressed by the
nonlinearly spaced array.

It is also important for us to have a high
sampling rate (about 1 MHz), so whatever
ADC we used would have to be very high per-
formance. We decided that the easiest way
to meet these specifications with minimal
waste would be to make our own ADC out of
two comparators (for each microphone). The
comparators would normally both output 0.
One of them would output a 1 when the sig-
nal went above a certain threshold, and the
other would output a 1 when the signal went
below a certain threshold. The FPGA read
the sensor data directly from the output of
the comparators. We found that our custom

ADC worked extremely well, and that the 2
bit data was simple to gather, store and pro-
cess.

3.2 Non-linear Time-variant Q Re-
duction

In addition to working on the digital aspects
of our project, we also invested time in im-
proving the quality of our analog sensors.
One of the largest problems was that a very
short transmission pulse would result in a
long response on our receivers. Specifically,
our transmission lasts only for 6 cycles of 40
kHz, but a reflection from an object could
cause more than 40 cycles of oscillation on
the ultrasonic sensors. We believe that this
extended response was caused by the high Q
of our receivers (the Q was about 40 accord-
ing to the datasheet).

The Q is a problem because it makes the
pulse associated with a single echo (object)
extremely long. This means that a second
object would most likely have an overlap-
ping pulse. Pulses from objects are much
more difficult to process when they overlap,
and since we ultimately did not solve the
high Q problem, our system is limited to
single object tracking. Ideally, the echoes on
our receivers would be extremely short, thus
making it unlikely that there would be pulse
interference.

We attempted to solve the overlap prob-
lem by lowering the Q of our sensors. How-
ever, simply lowering the Q by putting a
small resistor in parallel with a sensor causes
several problems. Most noticeably, it de-
creases the amplitude of the receiver’s re-
sponse. A lower Q also implies a larger

9
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Figure 4: Analog Circuitry for 1 Mic

bandwidth, meaning that our ”ultrasonic”
microphone would become sensitive to lower
frequency sound, thus increasing the noise in
our system. To avoid some of these issues,
we tried a non-linear approach.

Our method involves using the FPGA
to count the number of oscillations on the
receiver. Once the oscillation count reaches
a critical number (after which more data
would not help with signal processing), the
FPGA sends a signal that causes a switch
to close, effectively shorting the sensor out-
put to ground for a brief time. The goal is
to cause the ultrasonic resonator to lose all
its energy, and go back to the normal, non-
oscillating state. Thus, after a brief period
of ringing, the microphone would be ready to
accept new echoes without interference from
the previous one.

Although the concept seems simple,
building a switch that can cause a reso-
nant tank circuit to stop oscillating without

injecting some energy back in is fairly dif-
ficult. A typical discrete MOSFET switch
stores enough energy in overlay capacitance
1 to restart oscillations once the switch is
open again. We could have experimented
more with smaller JFET devices (less capac-
itance), but we ran out of time.

1Thanks to Harry Lee for pointing this out

3.2 Non-linear Time-variant Q Reduction 10
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4 Processing - Implementa-
tion

The processing conveniently breaks up into
three portions, tellingly named the pre-
processer, the processor, and the post-
processor. A few details about the system
need mentioning however.

First of all, every portion of the system
except for the post-processor is fully capable
of tracking multiple objects. However, given
analog difficulties with multipath elongation
of pulses (see above), such a feature would
only be reliable if the objects were more than
half a meter apart. Considering the limited
range of the system, it was decided that the
post-processor would work with only one ob-
ject at a time for reliability’s sake.

Thanks to efficient implementation of the
processor, as it turned out the transmission
and reception (25ms) was typically the bot-
tleneck in our system speed. Not a big prob-
lem however, since 40fps is well beyond the
flicker fusion rate of the human eye, 24fps.

4.1 Pre-Processing

The pre-processor works in real time as data
is collected. For the most part, its purpose
is to seperate out pulses from different ob-
jects, and to identify whether these pulses
are “valid” for processing. For instance, if
the pulse from one microphone ends too close
to the start of the same pulse in another mi-
crophone, the processor will spit out garbage
if asked to process this region of the signals.
Hence, each pulse is given a start time, end
time, and five valid bits that identify which
of the five microphones’ signals are valid for
that pulse. This information is written to a
pipelined BRAM for use by the processor on
the next state cycle.

4.2 Processing

Processing is the heart of the system. Given
a start and end time for a series of pulses,
it finds the pulse most likely to be corre-
sponding to the object that is being tracked,
and proceeds to find its angle. This is done
by use of smaller lag-finding and correlation
modules that are streamlined to perform the
computations of interest. The max-lags re-
ceived from the lag-finder module are there-
after passed to the post-processor for inter-
pretation.

4.3 Post-Processing

Post processing serves two purposes. First
of all, it converts the max-lags given it by
the processor into distances and angles that
the display module reads from memory. In
doing so however, it also implements basic
noise margins against sudden fluctuations.

While the distance measurements were
usually quite reliable, two distinct methods
were attempted at converting from the max-
lags into angles. The first of these took the
more intuitive look up table approach. Es-
sentially, if the lags fell into a 4-space “box”
(one range for each of the 4 lags) defined for
an angle, the object was said to exist at that
angle. If multiple angles claimed responsibil-
ity, the data was thrown away. The ranges of
these 4-space boxes were determined through
an efficient calibration procedure.

The second angle finding method found
the “distance” to the characteristic lags as-
sociated with several different angles. The
minimum of these was declared the angle of
the object provided distance was below some
noise threshold. We found the latter method
to be far less reliable.

Finally, the user was given some ability
to trade off speed for noise resistance. Es-
sentially, an angle was forced to repeat itself
a threshold number of times (as defined by
the user) before it was declared as the ob-

11
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ject’s new angle. It was found that this sim-
ply slowed down the system, which normally
converged quite fast to the correct location
of an object that had just finished moving.

4.3 Post-Processing 12
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5 Module Summary

See Figure 6 for a block diagram of the non-
display elements of the system, and Figure 5
for a block diagram of the memory control
elements.

5.1 Double Buffering

The sonar architecture places a number of re-
quirements on the way memory is organized.
Most apparent is the fact that multiple in-
dependent modules need to access the same
memories. For example, the data gathering
module must write to the data memory, and
processing module must read from it. In or-
der to make this possible without introduc-
ing complexity into every module that uses
BRAMs, we use a wrapper module that con-
trols which module is currently ”controlling”
which memory. As a result, the data gather-
ing block can be designed without consider-
ing the fact that the processor also needs to
access the data memory.

The various modules in the sonar project
have a very sequential nature, meaning that
information naturally flows from one block
to the next. However, sequential process-
ing is unfavorable since each block must wait
for the previous block to finish before it can
start. For example, the processor cannot be-
gin work until the data gatherer has finished
collecting information. To avoid this waiting
and thus improve the speed of our system,
we chose a more parallel approach.

To achieve parallelism, there are two
copies of every memory. So while the data
gatherer is writing data to memory A, the
processor is performing computation on the
contents of memory B. When both are done,
they switch memories. The control FSM de-
cides when this switching takes place, mak-
ing sure it happens only when all the blocks
in the pipeline are done.

In order to make the design of each mod-
ule in the pipeline simpler, the switching of

memories is handled externally. As far as the
module knows, it is always working with one
BRAM. The details involved in both reading
and writing to multiple memories must be
hidden.

When a module thinks it is writing to
memory, it is actually changing wires belong-
ing to two BRAM wrappers. These changes
only take effect if the block has ”control” of
that BRAM. The control FSM sets these con-
trol signals appropriately. For example, it
makes sure that the data gatherer and the
processor are never working with the same
memory.

The control FSM also decides what hap-
pens when a module reads from memory with
the help of a multiplexer. The mux makes
sure that if a block is given control of a given
memory, then it will read the output data
from that memory.

Together, these memory control systems
allow modules to share memories and switch
between them without any special consider-
ation. As a result, the entire system’s speed
is improved and design is simplified.

5.2 Controller

The controller orchestrates when every mod-
ule in the sonar begins its work. The only
inputs it requires are the done signals from
each of the modules it controls. It must also
carefully decide which module controls which
memory, so that parallelism is possible with-
out conflict.

5.3 Transmitter

The transmitter creates a 40 kHz signal,
which is the resonant frequency of our ul-
trasonic transmitters. The 3.3v square wave
output is passed to an amplifier, and raised
to 20v, so that the transmitter’s will have as
long a range as possible.

13
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Figure 5: The Block RAM Wrapper

Figure 6: Main Block Diagram

5.3 Transmitter 14
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5.4 Data Gatherer

This module samples data at a rate of 1 MHz,
grabbing all the 2-bit sensors values at the
same time. The data is written to mem-
ory, and also passed immediately to the pre-
processor.

5.5 Mic FSM

There is one Mic FSM for each ultrasonic
sensor. It examines the data from its micro-
phone and finds out when a ”pulse” starts
and ends, where a pulse is a portion of the
signal that is non-zero. The information
about a start and end are passed to the pre-
processor.

5.6 Pre-processor

The pre-processor’s goal is to isolate an area
of interest in the long stream of bits coming
from the sensors. It does this operation while
data is being gathered. By using information
from the Mic FSMs, the pre-processor finds
areas of the signals where as many of the
sensors are active as possible (the most reli-
able data), and records the location of these
areas in memory. Each of these ”pulses” cor-
responds to one object in the environment.

5.7 Processor

The processor takes the data from the data
gatherer, and the pulse information from the
pre-processor and determines the location of
an object in the field. The start location of
a pulse determines the distance of the ob-
ject. The processor performs a cross correla-
tion and uses a lookup table like structure to
determine the object’s angle. The final an-
gle/distance pairs are writen to memory for
the display to use.

5.8 Max Lag Finder

This module makes the correlator module
find the correlation for each possible lag. It
keeps track of the correlation with the high-
est degree of overlap (lag sum), and returns
the corresponding lag to the processor.

5.9 Correlator

The correlator actually performs the cross
correlation for a given lag on the data mem-
ory. It does all five correlations in parallel,
using dual ported memory to read two values
of the data at the same time. Thus, it can si-
multaneously do the multiply accumulate re-
quired for the cross correlation between sen-
sor 1 and 2, 2 and 3, and so on.

5.10 Angle Extractor

Given the maximum lags, this module finds
the most likely corresponding angle. It com-
pares the lag values to those hard coded into
a number of angle checking modules. If there
is one match, the processor knows the ob-
ject’s angle. Multiple matches signify that
the data is probably invalid.

5.11 Angle Checker

This module performs a simple check to see
if the given lags fall within a certain range.
The range is hard coded for every angle, with
the values found empirically.

5.12 Dumper

This module takes data and sends it through
the serial port using the RS-232 protocol.
This entire part exists only for debugging;
we use it to see what data is recorded from
the sensors and what values our signal pro-
cessing modules come up with. Thus, the
module sends out the contents of various
memories and also the values of a few regis-
ters. The dumper is activated by a button,
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and normal operation is temporally stopped
while it is sending information.

5.13 BRAM Wrapper

This module makes double buffering and
memory sharing completely transparent to
the other modules that use BRAMs.

5.14 Top, Front Conversion

The converters take the angle/distance in-
formation from the processor and convert it
to pixel information using sine and cosine
lookup tables.

5.15 Display

The display reads the pixel information and
puts it onto the screen.

6 Testing and Debugging

The key to testing and debugging our sys-
tem was the RS-232 module. In the first
stage of our development, we used this mod-
ule to send sensor data from the BRAM’s
on our lab kit to a computer. We developed
an algorithm for locating objects from this
real data. Had we tried to implement an
algorithm without checking that the sensors
behaved as we expected, the project would
have never worked. Later on, as the signal
processing core was coming together, we sent
the intermediate results of our calculations
to a computer along with the data being
processed. In this way, we verified that the
FPGA was producing the same results as
our MATLAB code for the given set of data.

It was very easy to test bench certain
modules, especially those that performed
calculations. We simply put numbers in and
made sure the right numbers came out. The
memory wrapper was the only module that

was difficult to test because it involved so
many different pieces working together. In
order to sort through the dozens of relevant
signals, we made extensive use of the $dis-
play keyword to print out what values were
being read from which memory. Since it
took a long time for certain bugs to appear,
it was much easier to examine a few printed
statements than scrolling through many of
long signals.

We found that the logic analyzer was un-
necessary for testing and debugging in our
case. The signals worked exactly as pre-
dicted by ModelSim.

5.13 BRAM Wrapper 16
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7 Display Block

See Figure for a block diagram of the display
unit.

7.1 Display Module

The display module reads 6-bit RGB val-
ues from a display RAM and converts them
to 24-bit values ready to be used by the
VGA. To cut down on the amount of mem-
ory needed, the RAM contains RGB data for
every pixel of a 320x240 display even though
the actual display is 640x480 pixels. There-
fore, the main challenges in implementing the
display module were making sure the RAM
was read appropriately to display a 640x480
screen and reading the next address while
converting data from the current one.

To get a 640x480 display from data meant
for a 320x240, each pixel of the smaller dis-
play needs to be read four times. That is,
one pixel of the smaller display becomes four
pixels in the larger one. The RGB data for
each pixel is stored in the RAM in the or-
der the pixels are drawn on the screen-left
to right, top to bottom-so the pixel cnt and
line cnt signals from the VGA controller can
be used to address the display RAM. If the
LSB of each of those signals is not used, then
the VGA controller will draw each row and
each column of the smaller display twice on
the larger display.

The data for a particular pixel in the
320x240 display is at the address that is the
pixel’s row number multiplied by the total
number of columns plus the pixel’s column
number. For example, the address for the
fifth pixel in the fourth row (which means the
row number is 3 and the column number is 4
since the counts start at 0) is 3*320 + 4. To
solve the problem of reading the next address
of the RAM while displaying data at the cur-
rent one, the address that is sent to the RAM
is calculated using one more than the current
value of pixel cnt. When pixel cnt becomes

greater than the number of the last column
on the screen, the address is held at that of
the first pixel of the next line so that the
RGB data for the first pixel of the next line
is ready when pixel cnt rolls over to zero.

The conversion of the 6-bit RGB value
in the display RAM to a full 24-bit RGB
value depends on the mode of display (front-
view or top-view), which is selected by two
switches on the lab kit. For the top view,
all objects on the screen are the same color,
so the nonzero RGB values in the RAM are
all the same and are just concatenated with
eighteen trailing zeros to form the VGA-
ready RGB output. For the front view,
the six bits in the display RAM become
the two MSBs for the R, G, and B sec-
tions, and zeros are concatenated to fill
in the rest of the 24 bits. For example,
the value 6’b001001 stored in the display
RAM would become the 24-bit RGB value
24’b000000001000000001000000.

7.2 Data Correction For Front-
View Module

The t d conv front.v module reads data from
the theta-distance pairs RAM (written by
the Control Module) and converts it to RGB
data for the front-view display that is written
to another RAM, which is later read by the
Display Module. Each address in the theta-
distance pairs RAM has a 16-bit value; the
first 8 bits represent an angle, and the lower
order 8 bits represent the distance at that
angle. In the front view display, each ob-
ject is represented by a vertical bar on the
screen. The closer an object is to the trans-
mitter/receiver array, the longer and wider
its bar is, and the lighter its color is.

The front view conversion module is im-
plemented as an FSM because of the multiple
read and write operations needed to do the
data conversion. A state transition diagram
for this module can be found in Figure 8 .
The FSM is idle (in the frconv START state,
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which sets all outputs to zero) until an enable
signal, called start fwrite, from the control
module signals the FSM to begin convert-
ing data. Before the front view conversion
module can write new data to the display
RAM, all of the previous RGB data must be
cleared (i.e. set to zero). The FSM switches
between the blank mem state, which has a
counter that addresses all locations of the
display RAM one at a time and outputs a
value of 0 to be written to all addresses, and
the blank mem write state, which sets the
write enable signal to the display RAM high.
The write enable signal is only high when the
FSM is in the blank mem write state to en-
sure that the address and data have settled
before an attempt is made to write to the
display RAM.

When all addresses in the display RAM
have been cleared, the front view conver-
sion FSM moves to the read tdpair state,
which outputs an address to be read from
the theta-distance pairs RAM. If the last ad-
dress in this RAM has been read, the FSM
sends a done signal to the control module
and becomes idle again (i.e. returns to the
frconv START state) on the next rising clock
edge. If the last address has not been read,
then the next theta-distance pair is ready on
the next rising clock edge, when the state be-
comes trig lookup. This state takes the top 8
bits of the theta-distance pair (which repre-
sent an angle) and sends them to the cosine
lookup table. On the next rising clock edge,
the FSM goes to the find xcoord state, which
calculates the x-coordinate of the object rep-
resented by the current theta-distance pair
using the cosine data from the lookup table.

Usually, the conversion of polar coordi-
nates (an angle and a distance) to a rectan-
gular x-coordinate is done by simply multi-
plying the distance by the cosine of the an-
gle. However, in binary, the conversion be-
comes more complicated because of the prob-
lem of how to represent non-integer values.

In the cosine lookup table, values of the co-
sine function between -1 and 1 are mapped to
8-bit values between -64 and 64. This 8-bit
value is first multiplied with its correspond-
ing distance, which is represented by the 8
LSBs of the theta-distance pair data from the
RAM. The resulting signal, called dcostheta,
is an absolute value, so if the incoming cosine
value (which is a two’s complement number)
is negative, it is converted to its magnitude
(by flipping all bits and adding one) before
being multiplied by the distance.

The display needs to render objects less
than 90 (which have a positive cosine value)
relative to the transmitter/receiver array on
the right side of the screen, and objects
greater than 90 (and less than 180, which
have a negative cosine value) relative to the
array on the left side of the screen. An object
at 90 relative to the array (that is, directly
in front of it) will be displayed in the middle
of the screen. In a 320x240 display, the mid-
dle of the screen has an x-coordinate (column
number) of 159, so the value of dcostheta is
added to 159 if the cosine is positive, and
subtracted from 159 if the cosine is negative.
Only bits 13 through 7 of dcostheta are used
in the calculation of the x-coordinate because
all bits except the MSB of the cosine value
are like the numbers after the decimal point
of a floating-point number, and by leaving
out these lower order bits we are essentially
truncating dcostheta to get a whole number
that can be represented appropriately in bi-
nary. We only take up to bit 13 of dcos-
theta because we do not want to add a num-
ber to 159 that will make the sum greater
than 319 (the maximum column number of
the small screen) or less than zero (the min-
imum column number); therefore we restrict
the added or subtracted number to be seven
bits.

After the x-coordinate is calculated, the
FSM moves on to the prep pixdata state,
which determines the 6-bit RGB value to
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Figure 8: Front View FSM
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be written to the display RAM based on
the distance of the object from the transmit-
ter/receiver array. As mentioned before, the
closer an object is to the array, the darker
the color of the bar that represents the ob-
ject on the display. The length of the bar
representing the object is also determined in
this state.

The next state, prep width, determines
the width of the bar representing the ob-
ject. Then the init cntrs state sets to zero
the values of the counters that will be keep-
ing track of what address is sent to the dis-
play RAM for writing the RGB data for each
pixel. Finally, the write pixdata state writes
RGB values to the appropriate addresses in
the display RAM and returns to the FSM
to the read tdpair state when the necessary
data has been stored. The FSM will continue
its conversions or return to the idle state de-
pending on if there are more theta-distance
pairs to be read.

7.3 Data Conversion for Top View
Module

The t d conv top.v module reads data from
the theta-distance pairs RAM and converts it
to RGB data for the top-view display. In the
top view display, each object is represented
by a small square on the screen. The closer
an object is to the transmitter/receiver array,
the closer the square that represents it is to
the bottom of the display screen. Objects at
an angle less than 90 relative to the trans-
mitter/receiver array are drawn on the right
side of the screen, and objects at an angle
greater than 90 (and less than 180) relative
to the array are drawn on the left side of the
screen. An object at 90 relative to the ar-
ray (that is, directly in front of it) will be
displayed in the middle of the screen.

The front view conversion module is also
implemented as an FSM, and it is essen-
tially the same as the FSM for the front view
conversion through the trig lookup state. A

state transition diagram for this module can
be found in Figure 9. In the prep pixdata
state for the top view conversion FSM, both
the x- and y-coordinates of the object must
be calculated. The x-coordinate is calculated
the same way as it was in the front view con-
version module. The y-coordinate calcula-
tion begins similarly. The angle of the object
(represented by the eight MSBs of the theta-
distance pair read from the RAM) is sent to
a sine lookup table, and the 8-bit value that
is returned is multiplied by the distance of
the object to get the value of dsintheta. The
dsintheta value is truncated like the dcos-
theta value was and then subtracted from
230 (since we want the closest objects to be
near the bottom of the screen) to obtain the
y-coordinate.

When the x- and y-coordinates have
been calculated, the FSM transitions to the
write pixdata states, each of which writes
RGB data into the display RAM for one
pixel of the 3x3 square (in the 320x240 dis-
play; this gets blown up to a 6x6 square in
the 640x480 display) that represents the ob-
ject on the screen. After the last write state
(write pixdata9), the FSM transitions to the
read tdpair state, which will continue con-
versions or send the FSM back to its idle
state, depending on if there are more theta-
distance pairs to be read.
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Figure 9: Top FSM
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8 Summary

An original approach to active acoustic lo-
calization has been both proposed and im-
plemented. The improvements to traditional
sonar include multiple order-of-magnitude
speedup, and lack of reliance on device qual-
ity. A technique in beamforming that allows
the use of large devices and roughly placed
phase arrays was also discovered along the
way.

By means of a fully pipelined architec-
ture that “never rests,” the speed improve-
ment lent by the algorithm was exploited
completely, making the pulse delay the lim-
iting factor in speed.

A display module reads data provided
it by the processing and data gathering el-

ements (pipelined) and displays its view of
the field from a top view and a front view.
The latter demonstrates perspective, chang-
ing the size and width of the object as it
moves closer and further away.

The system works well within a short dis-
tance range, after which point limitations of
the transmitters attenuate the signal to be-
low the noise floor.

Post-processing intentionally limited the
system to single object tracking to deal with
noise issues stemming from multiple path-
ways of reflection.

Mathematical and implementation de-
tails have intentionally been left out of this
paper for the sake of succinctness. The au-
thors may be reached at tunafish@mit.edu
for any comments, suggestions, or questions.
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