L7: Memory Basics and Timing

Acknowledgements:

- Nathan Ickes, Rex Min, Yun Wu

Memory Classification & Metrics

Key Design Metrics:
1. Memory Density (number of bits/µm²) and Size
2. Access Time (time to read or write) and Throughput
3. Power Dissipation

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory (ROM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td>EPROM, E²PROM</td>
</tr>
<tr>
<td>SRAM</td>
<td>FIFO</td>
<td>FLASH</td>
</tr>
<tr>
<td>DRAM</td>
<td>LIFO</td>
<td>Mask-Programmed</td>
</tr>
</tbody>
</table>
Memory Array Architecture

2^{L-K} row by $M \times 2^K$ column cell array

Row Decode

Word Line

Storage Cell

Bit Line

Column Decode

Amplify swing to rail-to-rail amplitude

Selects appropriate word (i.e., multiplexor)

Input-Output (M bits)
Latch and Register Based Memory

Positive Latch Negative Latch

- Works fine for small memory blocks (e.g., small register files)
- Inefficient in area for large memories – density is the key metric in large memory circuits

How do we minimize cell size?
Static RAM (SRAM) Cell (The 6-T Cell)

- State held by cross-coupled inverters (M1-M4)
- Static Memory - retains state as long as power supply turned on
- Feedback must be overdriven to write into the memory

Write: set BL and \overline{BL} to 0 and V_{DD} or V_{DD} and 0 and then enable WL (i.e., set to V_{DD})

Read: Charge BL and \overline{BL} to V_{DD} and then enable WL (i.e., set to V_{DD}).
Sense a small change in BL or BL
Interacting with a Memory Device

- **Address pins** drive row and column decoders
- **Data pins** are bidirectional and shared by reads and writes

- **Output Enable** gates the chip’s tristate driver
- **Write Enable** sets the memory’s read/write mode
- **Chip Enable/Chip Select** acts as a “master switch”
MCM6264C 8k x 8 Static RAM

On the outside:
- Address
- Chip Enables E1 and E2
- Write Enable W
- Output Enable G

On the inside:
- Memory matrix 256 rows 32 Column
- Sense Amps/Drivers
- Column Decoder

Pinout

- Sane (bidirectional) data bus used for reading and writing
- Chip Enables (E1 and E2)
 - E1 must be low and E2 must be high to enable the chip
- Write Enable (W)
 - When low (and chip is enabled), the values on the data bus are written to the location selected by the address bus
- Output Enable (G)
 - When low (and chip is enabled with W=0), the data bus is driven with the value of the selected memory location

- Address
- Data DQ[7:0]
- E1
- E2
- W
- G
Reading an Asynchronous SRAM

- Read cycle begins when all enable signals ($\overline{E_1}$, E_2, \overline{G}) are active.
- Data is valid after read access time.
 - Access time is indicated by full part number: MCM6264CP-12 → 12ns
- Data bus is tristated shortly after \overline{G} or $\overline{E_1}$ goes high.

Key time points:
- Address Valid
- Access time (from address valid)
- Access time (from enable low)
- Bus enable time
- Bus tristate time
- Data Valid

E2 assumed high (enabled), $\overline{W} = 1$ (read mode)
Address Controlled Reads

- Can perform multiple reads without disabling chip
- Data bus follows address bus, after some delay
Writing to Asynchronous SRAM

Data latched when \overline{W} or E_1 goes high (or E_2 goes low)
- Data must be stable at this time
- Address must be stable before \overline{W} goes low

Write waveforms are more important than read waveforms
- Glitches to address can cause writes to random addresses!
Drive data bus only when clock is low
- Ensures address are stable for writes
- Prevents bus contention
- Minimum clock period is twice memory access time

Write occurs here, when \(E1 \) goes high
Data can be latched here
Multi-Cycle Read/Write
(less aggressive, recommended timing)

Control
(write, read, reset)

FSM

SRAM

Data[7:0]
Address[12:0]

write states 1-3
write completes
read states 1-3
read, address is stable

Data latched into FPGA
address/data stable

Now: 6000 ns

<table>
<thead>
<tr>
<th>Signal</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>0</td>
</tr>
<tr>
<td>reset</td>
<td>0</td>
</tr>
<tr>
<td>write</td>
<td>0</td>
</tr>
<tr>
<td>read</td>
<td>0</td>
</tr>
<tr>
<td>W_b</td>
<td>1</td>
</tr>
<tr>
<td>G_b</td>
<td>1</td>
</tr>
<tr>
<td>address[3:0]</td>
<td>14</td>
</tr>
<tr>
<td>ext_address</td>
<td>6</td>
</tr>
<tr>
<td>write_data[3:0]</td>
<td>14</td>
</tr>
<tr>
<td>data_oen</td>
<td>0</td>
</tr>
<tr>
<td>ext_data[3:0]</td>
<td>0</td>
</tr>
<tr>
<td>read_data[3:0]</td>
<td>0</td>
</tr>
<tr>
<td>state[2:0]</td>
<td>0</td>
</tr>
<tr>
<td>data_sample</td>
<td>0</td>
</tr>
<tr>
<td>address_load</td>
<td>0</td>
</tr>
</tbody>
</table>

L7: 6.111 Spring 2007
Introductory Digital Systems Laboratory
Simulation from Previous Slide

write completes

read, address is stable

Data latched into FPGA

address/data stable

write states 1-3

read states 1-3
module memtest (clk, reset, G_b, W_b, address,
 ext_address, write_data, read_data, ext_data, read,
 write, state, data_oen, address_load, data_sample);

input clk, reset, read, write;
output G_b, W_b;
output [12:0] ext_address;
reg [12:0] ext_address;
input [12:0] address;
input [7:0] write_data;
output [7:0] read_data;
reg [7:0] read_data;
inout [7:0] ext_data;
reg [7:0] int_data;
output [2:0] state;
reg [2:0] state, next;
output data_oen, address_load, data_sample;
reg G_b, W_b, G_b_int, W_b_int, address_load,
data_oen, data_oen_int, data_sample;

wire [7:0] ext_data;

assign ext_data = data_oen ? int_data : 8'hz;

// Sequential always block for state assignment
always @ (posedge clk)
begin
 if (!reset) state <= IDLE;
 else state <= next;
 G_b <= G_b_int;
 W_b <= W_b_int;
data_oen <= data_oen_int;
 if (address_load) ext_address <= address;
 if (data_sample) read_data <= ext_data;
 if (address_load) int_data <= write_data;
end

// note that address_load and data_sample are not
// registered signals
// Combinational always block for next-state computation
always @ (state or read or write) begin
 W_b_int = 1;
 G_b_int = 1;
 address_load = 0;
 data_oen_int = 0;
 data_sample = 0;
 case (state)
 IDLE: if (write) begin
 next = write1;
 address_load = 1;
 data_oen_int = 1;
 end
 else if (read) begin
 next = read1;
 address_load = 1;
 G_b_int = 0;
 end
 else next = IDLE;
 write1: begin
 next = write2;
 W_b_int = 0;
 data_oen_int = 1;
 end
 endcase
endmodule

// Setup the Default values
write2: begin
 next = write3;
 data_oen_int = 1;
end
write3: begin
 next = IDLE;
 data_oen_int = 0;
end
read1: begin
 next = read2;
 G_b_int = 0;
 data_sample = 1;
end
read2: begin
 next = read3;
end
read3: begin
 next = IDLE;
end
default: next = IDLE;
endcase
Testing Memories

- Common device problems
 - Bad locations: rare for individual locations to be bad
 - Slow (out-of-spec) timing(s): access incorrect data or violates setup/hold
 - Catastrophic device failure: e.g., ESD
 - Missing wire-bonds/devices (!): possible with automated assembly
 - Transient Failures: Alpha particles, power supply glitch

- Common board problems
 - Stuck-at-Faults: a pin shorted to \(V_D \) or GND
 - Open Circuit Fault: connections unintentionally left out
 - Open or shorted address wires: causes data to be written to incorrect locations
 - Open or shorted control wires: generally renders memory completely inoperable

- Approach
 - Device problems generally affect the entire chip, almost any test will detect them
 - Writing (and reading back) many different data patterns can detect data bus problems
 - Writing unique data to every location and then reading it back can detect address bus problems
- An idea that almost works
 1. Write 0 to location 0
 2. Read location 0, compare value read with 0
 3. Write 1 to location 1
 4. Read location 1, compare value read with 1
 5. …

- What is the problem?
 - Suppose the memory was missing (or output enable was disconnected)

<table>
<thead>
<tr>
<th>Address</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Control</td>
<td>Write</td>
<td>Read</td>
<td>Write</td>
<td>Read</td>
</tr>
</tbody>
</table>

Data bus is undriven but wire capacitance briefly maintains the bus state: memory appears to be ok!
A Simple Memory Tester

- Write to all locations, then read back all locations
 - Separates read/write to the same location with reads/writes of different data to different locations
 - (both data and address busses are changed between read and write to same location)

To normal memory interface

SRAM

- Write 0 to address 0
- Write 1 to address 1
- ...
- Write \((n \text{ mod } 256)\) to address \(n\)
- Read address 0, compare with 0
- Read address 1, compare with 1
- ...
- Read address \(n\), compare with \((n \text{ mod } 256)\)

Comparator

Counter

Enable memory test

• Write 8-LSB’s of address \(<\text{counter}>\) to location specified by address \(<\text{counter}>\)
• Increment counter

• Reset counter

• Read address \(<\text{counter}>\)

• Compare data read with 8-LSB’s of \(<\text{counter}>\)
• Increment counter

• Does not match?

• Matched?

• \(<\text{counter}>\) = last address?

• \(<\text{counter}>\) = last address?

• Report success

• Report failure
Clocking provides input synchronization and encourages more reliable operation at high speeds.

Clocking differences between read and write timings create wasted cycles ("wait states").

Long "flow-through" combinational path creates high CLK-Q delay.
The wait state occurs because:
- On a read, data is available \textit{after} the clock edge
- On a write, data is set up \textit{before} the clock edge

ZBT ("zero bus turnaround") memories change the rules for writes
- On a write, data is set up \textit{after} the clock edge (so that it is read on the following edge)
- Result: no wait states, higher memory throughput

![Diagram showing timing and address/data signals for ZBT memories]
Pipelining Allows Faster CLK

Pipeline the memory by registering its output

- Good: Greatly reduces CLK-Q delay, allows higher clock (more throughput)
- Bad: Introduces an extra cycle before data is available (more latency)

As an example, see the CY7C147X ZBT Synchronous SRAM
The Floating Gate Transistor

Avalanche injection

Removing programming voltage leaves charge trapped

Programming results in higher V_T.

This is a non-volatile memory (retains state when supply turned off)

 Courtesy Intel
Interacting with Flash and (E)EPROM

- Reading from flash or (E)EPROM is the same as reading from SRAM
- Vpp: input for programming voltage (12V)
 - EPROM: Vpp is supplied by programming machine
 - Modern flash/EEPROM devices generate 12V using an on-chip charge pump
- EPROM lacks a write enable
 - Not in-system programmable (must use a special programming machine)
- For flash and EEPROM, write sequence is controlled by an internal FSM
 - Writes to device are used to send signals to the FSM
 - Although the same signals are used, one can’t write to flash/EEPROM in the same manner as SRAM

Flash/EEPROM block diagram

- Address
- Data
- Chip Enable
- Output Enable
- Write Enable
- FSM
- Charge pump
- Vcc (5V)
- Programming voltage (12V)
- EPROM omits FSM, charge pump, and write enable
Dynamic RAM (DRAM) Cell

To Write: set Bit Line (BL) to 0 or V_{DD} & enable Word Line (WL) (i.e., set to V_{DD})

To Read: set Bit Line (BL) to $V_{DD}/2$ & enable Word Line (i.e., set it to V_{DD})

- DRAM relies on charge stored in a capacitor to hold state
- Found in all high density memories (one bit/transistor)
- Must be “refreshed” or state will be lost – high overhead

[Image of DRAM cell diagram]

[Image of DRAM uses Special Capacitor Structures]

[Rabaey03]
Asynchronous DRAM Operation

- Clever manipulation of RAS and CAS after reads/writes provide more efficient modes: early-write, read-write, hidden-refresh, etc. (See datasheets for details)
Addressing with Memory Maps

- ‘138 is a 3-to-8 decoder
 - Maps 16-bit address space to 8, 13-bit segments
 - Upper 3-bits of address determine which chip is enabled
- SRAM-like interface is often used for peripherals
 - Referred to as “memory mapped” peripherals

Memory Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFFFF</td>
<td>EPROM</td>
</tr>
<tr>
<td>0xE000</td>
<td>SRAM 2</td>
</tr>
<tr>
<td>0xDFFF</td>
<td></td>
</tr>
<tr>
<td>0xC000</td>
<td>SRAM 1</td>
</tr>
<tr>
<td>0xBF00</td>
<td></td>
</tr>
<tr>
<td>0xA000</td>
<td></td>
</tr>
<tr>
<td>0x9FFF</td>
<td></td>
</tr>
<tr>
<td>0x2000</td>
<td></td>
</tr>
<tr>
<td>0x1FFF</td>
<td></td>
</tr>
<tr>
<td>0x0000</td>
<td>ADC</td>
</tr>
</tbody>
</table>

SRAM 1
- Address[12:0]
- Data[7:0]
- Output Enable
- Write Enable
- Bus Enable
- +5V

SRAM 2
- Address[12:0]
- Data[7:0]
- Output Enable
- Write Enable
- Bus Enable
- +5V

EPROM
- Address[12:0]
- Data[7:0]
- Output Enable
- Write Enable
- Bus Enable
- +5V

ADC
- Address[12:0]
- Data[7:0]
- Output Enable
- Write Enable
- Bus Enable
- +5V

Analog Input

Address[15:0]
Key Messages on Memory Devices

- **SRAM vs. DRAM**
 - SRAM holds state as long as power supply is turned on. DRAM must be “refreshed” – results in more complicated control
 - DRAM has much higher density, but requires special capacitor technology.
 - FPGA usually implemented in a standard digital process technology and uses SRAM technology

- **Non-Volatile Memory**
 - Fast Read, but very slow write (EPROM must be removed from the system for programming!)
 - Holds state even if the power supply is turned off

- **Memory Internals**
 - Has quite a bit of analog circuits internally -- pay particular attention to noise and PCB board integration

- **Device details**
 - Don’t worry about them, wait until 6.012 or 6.374
control signals such as *Write Enable* should be registered

a multi-cycle read/write is safer from a timing perspective than the single cycle read/write approach

it is a bad idea to enable two tri-states driving the bus at the same time

an SRAM does not need to be “refreshed” while a DRAM does

an EPROM/EEPROM/FLASH cell can hold its state even if the power supply is turned off

a synchronous memory can result in higher throughput