
6.111 Group 1 Final Project

A Wireless Headphone and Speaker Set

Nivedita Chandrasekaran, Jessica Nesvold, and Aditi Shrikumar

May 17, 2007

Abstract

The goal of this project was the design and Field Pro-
grammable Logic Array implementation of a wireless
headphone set capable of transmitting an audio sig-
nal wirelessly across a distance of 20 feet. Ideally,
the system would convert an analog signal from a
3.5mm headphone jack to a digital signal, introduce
compression and error correction codes, transmit and
recieve it wirelessly, decompress and error check it,
and then convert it back to an analog signal which
could be output to headphones. Currently, the wire-
less transmission and reception are not integrated
into the system, which means that the analog to digi-
tal and compression/error checking modules commu-
nicate with the corresponding decompression/error
checking and digital to analog modules using wires.
The uses one channel of audio, sampled at 90-kHz
with a resolution of 16 bits. The compression algo-
rithm reduces the size of the data by 50% by encod-
ing differences between five consecutive samples. The
wireless transcievers are interfaced with using Verilog
modules and operate at 2.4-GHz.

Contents

1 Introduction 3

2 The Digital-Analog Interface 3
2.1 Analog-to-Digital conversion 4
2.2 The Digital-to-Analog Modules 6

3 Compression and Decompression 6

3.1 Compression 6
3.2 Decompression 8
3.3 Error Safety Encoding 9
3.4 Error Detection and Correction 10

4 The Buffers 11
4.1 The Transmit Buffer 11
4.2 The Receive Buffer 12

5 Wireless Communication 13
5.1 Hardware and SPI Interface 13

5.1.1 Hardware 13
5.1.2 SPI Interface 13
5.1.3 Configuration 14
5.1.4 Transmission 16
5.1.5 Reception 17
5.1.6 Integration With The FPGA -

Creation of a 27/4-MHz clock . 18

6 Conclusion 18

List of Figures

1 Block diagram of the wireless hea-
phone and speaker set.) 3

2 The timing diagram for the serial in-
terface to the AD7656.(Diagram taken
from existing documentation which is
attached.) 4

3 Block diagram of the analog to digital
conversion interface. 4

4 The sampling module’s modes of op-
eration. 5

1

5 The module that takes in successive
samples and outputs chunks of five
samples each. 5

6 Timing diagram for the interface to
the AD5063. 6

7 The digital-to-analog interface module. 6
8 The serializer. 7
9 The structure of the compressed data 7
11 Matlab simulation of codec, the large

graph contains the info from both of
the smaller ones. top left = original
audio, bottom left = output of decom-
pression 9

12 The structure of added error correction 9
13 ModelSim of compression/ er-

ror correction in/error correction out/decompression
11

14 ModelSim ouput for test of buffer aditi 12
15 ModelSim ouput for test of

buffer nivedita 12
16 The inputs and outputs of the CC2420 13
17 Timing diagram for the CC2420 . . . 14
19 The configuration and command regis-

ters accessed by the configuration FSM. 15
20 The transmission finite state machine. 16
22 The Receive FSM. 18
10 ModelSim of compres-

sion/decompression modules with
working error correction recursion. . . 20

18 The configuration finite state machine. 20
21 ModelSim of the Transmit FSM in ac-

tion. 21
23 The Receive FSM. 21

2

1 Introduction

The wireless headphone and speaker set is a system
designed to break confines. In a world where people
like to be unrestricted and unhindered, our project
seeks to allow people to both efficiently and accu-
rately transmit and receive their music without the
use of wires. As is shown in Figure 1, the wire-
less headphone and speaker set consists of two sepa-
rate sections, a transmitting end and a receiving end.
Connected by nothing but air, this frees both the user
doing the transmitting and the user doing the receiv-
ing to move about as the wish (assuming, of course,
that they are willing to take their labkit with them).

Figure 1: Block diagram of the wireless heaphone and
speaker set.)

Our system contains four main components, the
first of which is the A/D and D/A converter pair
which allow us to take analog output from the user
and convert it into digital signals that can be pro-
cessed and subsequently transmitted over the air.
The second component consists of the compression
and decompression modules which utilize an algo-
rithm designed to compress inputted data by fifty
percent. These modules allow more data to be trans-
mitted per wireless packet than would normally oc-
cur, helping to increase the overall efficiency of the
system.

The third component consists of an error correc-
tion algorithm. Before the data is transmitted it
is passed through an error correction module which
adds redundant data that is used by the error cor-
rection module on the receiving end to fix as many
errors as possible that are introduced by the wireless

transmission itself.
The fourth part is made up of the wireless trans-

mitter and receiver itself. This component uses the
CC2420 chip to establish a wireless link, and we com-
municate with the chip solely through the use of
Verilog. This is a particularly unique and interest-
ing approach because it completely bypasses the on-
board microcontroller normally used to interface to
the chip, allowing us to achieve a potentially higher
data rate.

As is also shown in Figure 1 the receiving end is
essentially the inverse of the transmitting end. This
is because ideally we should be getting out the exact
same data that we are putting into the system. Po-
tential errors that can be introduced along the way,
however, include error from the compression and de-
compression modules (which implement a lossy algo-
rithm) and error from the wireless transmission itself
(in which bit flips or loss of data may occur). In order
to minimize this error, the codec used was tested ex-
tensively in Matlab before being integrated into the
system. Additionally, the CC2420 itself implements a
CRC checking system. Thirdly, we have implemented
our own error correction modules, as discussed above.
A lot of attention to detail was paid with regards to
the minimization of errors to ensure that our project
would be both easy to use and practical.

In this paper, each component and the correspond-
ing modules and logic implemented is discussed in de-
tail. The results of various ModelSim tests are pro-
vided to show functionality of the code used. Finally,
a discussion of the overall outcome of our project is
presented.

2 The Digital-Analog Interface

The Digital-Analog interface is how the system com-
municates with the outside world. On the transmit-
ting end, it consists of an Analog-to-Digital module
which samples the audio into 16-bit words and sends
chunks of five words each to the compression mod-
ule. On the recieving end, it consists of a Digital-to-
Analog module which recives decompressed chunks
from the decompression module, serializes the sep-
arate words, and sends them to a digital to analog

3

converter.

2.1 Analog-to-Digital conversion

To convert the incoming analog signal to a digital sig-
nal this project uses an AD7656 chip by Analog De-
vices. The chip is a 16-bit successive-approximation
analog to digital converter with a maximum conver-
sion rate of 250,000 samples per second.

The interface has two parts: configuring and con-
trolling the analog to digital converter, and convert-
ing the serial output data into chunks that are usable
by the compression module. Figure 2 shows the tim-
ing diagram for the serial interface to the AD7656.
The first part, configuring and communicating with
the chip, involves generating the correct signals at the
specified times and clocking the serial data in after
the chip has finished converting the data.

[htb]

Figure 2: The timing diagram for the serial interface
to the AD7656.(Diagram taken from existing docu-
mentation which is attached.)

The chip operates as follows: on the positive edge
of the convst signal, it begins converting the ac-
quired analog signal into a digital signal. While it
is converting, it outputs a high busy signal. Approx-
imately 3µs later, conversion finishes and busy goes
low indicating that the data is ready to be read out.
When the user wishes to read it, he or she must set
the C̄S chip select (active-low) signal to zero, and the
chip immediately begins clocking out the sixteen bits
of data (MSB first) on the sdata line, with each bit
ready on the positive edge of sclk.

The number of positive edges of convst per second

determines the sampling rate. In order to avoid alias-
ing in the audible range, this rate must be at least
44.4kHz (because humans can hear upto 22.2kHz).
Beyond that, increases in sampling rate have no audi-
ble effect. Thus, if this project transmitted the sam-
pled audio raw, with no compression or error check-
ing, a sampling rate of 44.4kHz would suffice. Nev-
ertheless, limitations on the speed of wireless trans-
mission meant that some compression would be nec-
essary. Jessica Nesvold, one of the team members,
came up with a scheme to compress the data by 50%
(described in section 3) by encoding the differences
between five successive 16-bit samples. The closer
the samples are to each-other, the less lossy the com-
pression. This means that an increase in sampling
rate beyond 44.4kHz could have audible effects be-
cause it gives samples that are closer together in time,
and potentially closer together in value. After some
experimentation, the team members found that the
improvement from a 45-kHz sampling rate to 90-kHz
sampling rate was audible. The resultant increase in
data rate could still be accomodated, so a sampling
rate of 90-kHz was decided upon.

Figure 3 is a block diagram of the interface de-
signed to signal conversions and receive data. The

[htb]

Figure 3: Block diagram of the analog to digital con-
version interface.

90-kHz sampling signal convst is generated using a

4

divider module (code in the appendix) that divides
the 27-MHz FPGA clock by 300. The serial clock
sclk was chosen to be 5.4-Mhz, 60 times faster than
the sampling clock, to allow enough time for conver-
sions to finish before reading out the serial data. In
this setup, the third signal C̄S, which controls when
the chip starts clocking out data, is not triggered by
the busy signal going low. Instead, it stays high for
20 sclk cycles (3.7µs) after the convst positive edge
before going low. The specifications for the AD7656
guarantee that conversion will have finished by this
time, so data can safely be clocked out. The main
reason for not triggering this signal off the falling
edge of busy is to avoid timing errors: there is no
relationship between the falling edge of busy and the
next sclk positive edge, so there is a risk of missing
the MSB if busy falls at the wrong time and there is
not enough time between the falling edge of convst
and the next rising edge of sclk.

The sampling module begins the sampling cycle
with the AD7656 when the sample signal from the
chunk module is high. It outputs a word of 32 bits
to the chunk module along with a word-ready signal
to indicate that the word is valid. Figure samplefsm
shows the modes of operation of the sampling mod-
ule.

[htb]

Figure 4: The sampling module’s modes of operation.

The system was originally designed for stereo au-
dio, in which case the AD7656 would output two

samples totaling 32 bits (16 each for the left and
right channels) every sampling cycle. This is why
the counter ‘i’ clocks in data for 32 clock cycles, and
why word is marked as 32 bits wide. Nevertheless,
only one digital-to-analog chip arrived in time, so in
the actual system, the first 16 bits of word are al-
ways zero because only one of the audio channels is
sampled.

The second task of the analog-to-digital interface
is to convert the recieved samples into chunks of
five that can be sent to the compression module.
This is accomplished using the module shown in Fig-
ure 5. This module contins five FIFO stacks onto

Figure 5: The module that takes in successive sam-
ples and outputs chunks of five samples each.

which incoming samples from the sampling module
are pushed. Internal logic keeps track of the sam-
ple count, and every time five samples have been
recieved, the module pushes one sample off each of
the five stacks, supplying the compression module
with the required five samples. It also outputs a
chunk-ready signal that tells the compression mod-
ule when the five samples become valid.

The chunk module is also in charge of supplying
some control signals, both to the analog to digital
converter and the sampling module. It houses a di-
vider that supplies the convst and sclk signals, and
provides the sample signal, which controls whether
or not sampling takes place, to the sampling module.

5

2.2 The Digital-to-Analog Modules

The digital to analog interface can be thought of as
the reverse of the analog to digital interface: it re-
cieves chunks of five samples each from the decom-
pression module, and sends them to a digital to ana-
log converter in serial form, while supplying all of the
appropriate control signals.

The chip used for this part of the project is the
AD5063, a 16-bit voltage-out digital to analog con-
verter by Analog Devices. The interface to it is ex-
tremely straightforward, everything is accomplished
using two control signals: a sync signal to start a
conversion, and a sclk serial clock using which the
chip clocks in the user-supplied d-out data MSB first.
Figure 6 shows the timing diagram for these three sig-
nals.

Figure 6: Timing diagram for the interface to the
AD5063.

An overall block diagram is shown in figure 7. This
module contains five numbered FIFO stacks. When
decompression is finished, the decompresse sends in
five decoded samples to the digital-to-analog inter-
face module along with a data-valid signal that in-
dicates whether the wires hold valid data. When the
module receives the numbers, it pushes each of the
samples onto a separate stack: N1 is pushed onto
stack1, N2 onto stack2 and so on. Meanwhile, com-
binatorial logic keeps track of which stack to push
data out of, making sure that that the samples re-
tain their time-ordering. The module cycles around
the stacks from stack1 through stack5 in a round-
robin fashion.

Once a sample is pushed out of a stack, it is sent to
a serializer module. Figure 8 shows a schematic dia-
gram of the serializer’s modes of operation. The op-
eration of the serializer is triggered off the same con-
trol signals as the digital to analog converter. When

Figure 7: The digital-to-analog interface module.

the sync signal goes high, the sample to be output is
stored in sample and serialization begins. The index
of the data bit being output decrements every sclk
cycle till it hits zero. The module is then idle until the
next sync pulse, when the cycle repeats. The digital
to analog converter requires eight configuration bits
before each sample, so the counter decrements from
24 (instead of just 16 for the sample). In the mode of
operation needed for this project, the configuration
bits are all zeroes, so they are just appended to the
actual sample before being sent to the serializer.

3 Compression and Decom-
pression

3.1 Compression

The compression module works to take in five signed
sixteen bit numbers. It then compresses these five
numbers into one single forty-bit number. This con-
stitutes fifty percent compression. Compression is
important to our system, as the compression of data
allows more data to be contained per packet sent by
the wireless link. The more data a single packet con-
tains, the faster the song is transmitted and the faster
the user is able to enjoy music on the receiving end

6

Figure 8: The serializer.

of our system.
The compression implemented in our system used

a homemade compression algorithm. The algorithm
is lossy as it makes use of only fixed length difference
values. The structure of the forty bit number created
is shown in Figure 9

Figure 9: The structure of the compressed data

In Figure 9, N1 represents the first sixteen bit num-
ber inputted to the system. First refers to the first
number of the five given to the compression module
that was originally outputted by the D/A converter.
As is shown, the number N1 is copied exactly to the
bottom 16 bits of the outputted data. This will serve
as a reference number for the decompression module.
shift val is short for shift value. It is the amount

by which all of the following difference magnitudes
(diff1, diff2, diff3 and diff4) are to be shifted by.
Shifts are measured as the location of the first digit
in the actual difference value. For example, if diff1

is equal to 1100 and shift val is equal to 1001, or
5, we know that we would like the first bit of the
number 1100 to begin at the binary location repre-
senting 25. In other words, diff1 is encoded as the
number 110000. The same is true for diff2, diff3 and

diff4. Also, all 4 difference values share the same
shift val.

The one-bit numbers s1 through s4 represent the
sign of their respective difference magnitudes. A
value of zero represents a positive difference while
a value of 1 represents a negative difference.

This string of bits is decoded quite simply. The
first number, N1, is given. The second number is
found by first shifting the value of diff1 and either
adding or subtracting (as given by s1) this from N1.
The third number is found by shifting diff2 and either
adding or subtracting this from the previously found
second number. The third, fourth and fifth numbers
are found in a similar manner.

A finite state machine was used to implement this
compression algorithm, the state transition diagram
for which can be found in the appendix. This FSM is
very linear, following a step-by-step method to com-
press the data.

To ensure proper functionality, the compression
fsm must first be reset. This places the FSM in
state wait. In this state the fsm is literally ‘waiting
for the inputted data to become valid. This occurs
when the valid in signal goes high. When valid in
becomes high the five inputted numbers are regis-
tered as N1 through N5. By registering these num-
bers only when valid in is high, it allows the inputs
to change once valid in goes low again without ad-
verse affects to the system.

After registering the numbers N1 through N5, the
FSM enters state diff. This is the state in which
the actual difference magnitudes are calculated. ‘Ac-
tual means that they are exact, found simply as the
difference between two adjacent numbers. For exam-
ple, diff1 is set to be abs(N2 N1), diff2 is set to be
abs(N3-N2) and so on for all four difference magni-
tudes. The values of s1 through s4 are set in this state
as well. This is done by looking at the two numbers
being subtracted. If the larger is being subtracted
from the smaller, we know that the output will be
negative and the corresponding s value is set to one,
otherwise it is set to zero.

After the initial difference values have been found
(note that these can be as large as sixteen bits as
they have not yet been limited to four bits in length),
shift val must be calculated. This is calculated as

7

being the location of the first one in the largest differ-
ence. This means that when decompression occurs, at
the very least the largest difference will be recovered
to its order of magnitude. This helps the algorithm
follow the sound as closely as possible, thereby pro-
ducing sound that is as near to the original as possi-
ble. shift val is therefore calculated in the progres-
sion of states state max diff to state max1. Note
that for the purposes of this FSM shift val actu-
ally corresponds to the value max1 (the location of
the first one in the maximum difference magnitude).

Once shift val has been calculated, the FSM de-
termines the sixteen possible difference values that
can actually be encoded by the compression sys-
tem itself. There are only sixteen values that can
be encoded because the compression format only al-
lows for four-bit long values of diff1 through diff2.
Hence, if shift val is five, the sixteen possible values
that diff1 can take on are 000000, 000100, 0001000,
0001100, etc. To take a practical example, the num-
ber four would actually be encoded as diff1 = 0001.
This is because shifting up the most significant bit of
0001 to the shift val position of 5 gives 000100, or
four. The finding of possible encoded values is done
in state vals.

Now all that is left for the FSM to do is to deter-
mine which of the possible values best corresponds
to the actual difference value and store the four bit
representation of these back as diff1 through diff4.

Because this represents a lossy type of compres-
sion, there is the possibility for compounding errors
on the decompression side. This is because N3 is
found using N2, hence if there was any error in the
difference magnitude used to fine N2, this will also
be found in N3. To prevent this from happening, ev-
ery time a four-bit difference value is calculated, the
compression FSM cycles back and recalculates the
new difference magnitudes.

For example, consider that N2N1 = 10 and that
N3N2 = 14. If N2N1 is estimated as 8, when N2
is decompressed it will be estimated as two less than
the actual value. This means that to recover N3 on
the decompression side, a difference of 16 is actually
needed to get back N3 exactly. Thus, once N2−N1
has been calculated the compression FSM enters a
state called state recal diff2 where the actual value

of diff2 is calculated using the value of N2 that will
be found by the decompressor.

An example of this working is shown below in Fig-
ure 10 which shows compression and decompression
of various signals.

The interesting case occurs where the number−314
in test case 1 is recovered exactly by the decompres-
sion module despite the fact that there was error in-
troduced in the second number decompressed. Had
the additional recursive difference calculations not
been introduced, the error would have compounded
and −314 would not have been recovered.

3.2 Decompression

The decompression module takes in a forty-bit num-
ber that has been created by the compression mod-
ule and outputs five signed sixteen bit numbers. To
achieve proper functionality, the decompression mod-
ule must first be reset before it is used. This is be-
cause the module makes use of an FSM to control
the progression of the decompressing which must be
initialized into the right state. Reseting the module
causes the FSM to be placed in state wait, a state
in which it can wait for valid data to be provided to
it.

When the data inputted to the system becomes
valid, the data is sectionalized appropriately and reg-
istered. The sections the data is divided into can be
classified as difference values, sign values, shift val
and N1. N1 is the reference value, representing a
complete uncompressed version of the first sixteen bit
number. shift val is the value of the bit placement
of the most significant bit of the difference values (dis-
cussed in the section on compression). The sign val-
ues are stored as N2 sign through N5 sign and rep-
resent the sign of their corresponding difference val-
ues. To note, the difference values here are assigned
as N2 diff through N5 diff whereas the compression
module referred to them as diff1 through diff4. The
numerical inconsistency is unfortunate, but they cor-
respond as follows: N2 diff = diff1, N3 diff = diff2,
etc.

The process of decompression is fairly simple. First
the stored difference values are shifted to represent
the actual encoded difference values. This happens in

8

state shiftl. After the difference values have been
shifted, N1 is first calculated by adding or subtracting
diff 2 from N1, as determined by N2 sign. Namely,
an N2 sign value of 0 represents an addition and an
N2 sign value of 1 represents a subtraction.

N3 through N5 are then found by adding or
subtracting the shifted versions of N3 diff through
N5 diff from N2 through N4. Testing of the decom-
pression module was done in ModelSim, the result of
which is shown in Figure 10. Such a test, however,
is not indicative of what kind of sound the decom-
pression module will output. For this reason, more
extensive testing was done using Matlab, the results
of which are shown in figure 11

Figure 11: Matlab simulation of codec, the large
graph contains the info from both of the smaller ones.
top left = original audio, bottom left = output of de-
compression

As can be seen in Figure 11, decompressed audio is
very similar to that of compressed audio, with most of
the differences occurring on large transitions of data.
In testing the Verilog implementation of the codec,
errors introduced by compression and decompression
in low frequencies were negligible while really high
frequencies were repressed. A demo of this can be
seen in the video tape posted on the project website.
All in all, the codec used was really successful and
produced good results when applied to audio signals.

3.3 Error Safety Encoding

The error correction input module takes in a forty
bit packet from the compression module and adds

ten bits of error correction to it. The parts of the
packet that are error corrected for directly correspond
to the importance of the bits. In our case, we are
mostly concerned with the bottom twenty bits of any
given packet. This is because the first sixteen bits
correspond to the N1 number which is used as the
basis for reference for the rest of the difference values.
The next four bits correspond to the shift val which
is also incredibly important as it dictates the amount
by which every difference value is to be shifted before
it is applied in the decompression algorithm.

The error correction scheme used here locates the
position of ones in the data. For example if the six-
teen bit number, N1 is equal to 0001000100000001
we know that the first one, the most significant one,
is located at bit number twelve. Similarly the sec-
ond one is located at bit number eight. Because N1
is sixteen bits long, it takes four bits to encode the
position of the first one. If N1 is equal to zero, the
position of the first one is simply set to zero as well.
To note, shift val is only a four bit number so the
position of the first one in shift val need only be
encoded with two bits.

The ten bits added to the forty bit data packet are
as shown in figure 12

Figure 12: The structure of added error correction

The four bit value first1 corresponds to the location
of the first one in the value N1. The four bit value
second1 corresponds to the location of the second one
in the value N1. Also, the two bit value shift1 cor-
responds to the location of the first one in the value
shift val. The error correction output module uses
these values to zero everything that is higher than
the location of the first one, as well as everything lo-
cated between the first and second ones in the case of
N1. It will also make sure that there are ones located
at the specified values. As such, this guarantees that
the sign and most significant bits of N1 are correct
and that the most significant bits of the shift val

9

are correct.
This error correction is implemented via a finite

state machine that first calculates the value of the
location of the first one in both shift val and N1
once valid in has gone high. After the position of the
first ones have been located, the position of the sec-
ond one in N1 can be found and the error correction
can be added. The data is thus ready for transmis-
sion and can be passed to the FIFO buffer on the
transmit side.

Unfortunately the effectiveness of this system could
not be tested with the wireless module, but testing
was carried out in ModelSim. This testing will be
discussed in the section on Error Correction Output
as the modules were tested together to be sure that
they had no adverse effects on any of the data.

3.4 Error Detection and Correction

The error correction output module takes in a fifty
bit packet formatted for error correction and outputs
a forty bit error corrected packet. The error correc-
tion module implements the same algorithm regard-
less of whether or not an error has occurred. It can
do this because it knows what the first few bits of
both shift val and N1 are meant to be and then
just sets them as such.

To implement this functionality, an FSM is used.
When reset, the FSM is placed in the wait state where
it waits for the signal valid in to become high. When
this happens it registers the data and parses it into
the values, first1, second1, shift1, N1, shift val and
rest data where rest data is simply the rest of the
inputted data which is not affected by the error cor-
rection algorithm.

The error correction process involves left shifting
the data to the position of the first one, setting the
MSB of the shifted number to one and then right
shifting the data back by the same amount. In this
way, the first one is set to one regardless and the
higher order bits are all zeroed appropriately.

In the case of the number N1 which has associated
with it both a first one and a second one, the number
N1 is first treated for the value of second1 and then
for the value of first1. When second1 is accounted
for, the first one will be zeroed because everything

above the value of the second1 will gets zeroed. This
is alright, however, because N1 is adjusted for first1
in the following states.

When error compression has been completed, the
valid out signal is set to one. The FSM will not tran-
sition back to state wait until it has received con-
firmation that its outputted data has been read by
the following module. This is indicated when the
valid read signal goes high. (valid read here corre-
sponds to the valid decompressing signal outputted
by the decompression module when it begins decom-
pression).

Testing of the error correction ouput module was
done together with both the error correction input
module and the compression and decompression
modules. Namely, the modules were hooked up
as: compression → error correction input → er-
ror correction output → decompression.

The same tests that were used to test the com-
pression and decompression modules (shown in the
section on compression) were run again with the er-
ror correction modules in the middle. Because er-
ror correction is implemented regardless of whether
or not there was any error, this was a good way to
test the functionality of the modules. As is shown
in figure 13, the same results were obtained with er-
ror correction inserted as were obtained with no error
correction, thereby showing that the error correction
modules work at least in principle. Unfortunately full
practical testing was not able to be carried out do to
the lack of the wireless portion of our project in its
final form.

Another interesting thing that is portrayed in Fig-
ure error correction out.1 is the formation of the busy
signals in the bottom four rows of the output. Here it
is shown how the system as a whole is able to pipeline
the data through. For example, once the busy signal
for valid compressing goes low, it is able to take in
more data on the next valid in signal even though the
data out has not yet been calculated by the rest of
the system. This further shows the correct function-
ality of interaction between different modules in the
overall system.

10

Figure 13: ModelSim of compression/ er-
ror correction in/error correction out/decompression

4 The Buffers

4.1 The Transmit Buffer

The buffer aditi module refers to the FIFO buffer
located on the transmit side. It is responsible for
taking in the fifty bit numbers outputted by the er-
ror correction in module and creating eight-hundred
bit packets compatible for transmission by the wire-
less module. As such there are two important sig-
nals concerning the input and output of this system.
The first signal is valid in, which signals that data is
ready to be taken into the system. The second sig-
nal is done transmit which signals that the transmit
module is ready to send a new packet.

To create the eight-hundred bit packets, the
buffer aditi module makes use of an internal FSM.
On reset, this FSM is placed in state wait where it
waits for inputted data to become valid. Once this
occurs it registers the data as the bottom fifty bits
of data in. Data in represents a sequence of eight-
hundred registers where data packets can be built
up.

After the data has been registered, the FSM tran-
sitions to a sequence of ackin states which acknowl-
edge that the module has taken in the data. These

states are needed to interface properly with the er-
ror correction in module which waits for confirma-
tion that its data has been read before moving on
to error correct more data. The ackin states tran-
sition to state store. This is a registered value set
by the FSM before the ackin states begin. In the
case of the transition from state wait to state ackin,
state store is set as state 100. This state is simi-
lar to the state wait, except for the fact that when
valid in becomes high the inputted data is stored as
bit numbers 50 to 99 of data in, creating a 100 bit
long packet. The FSM then acknowledges the intake
of data and subsequently transitions to state 150. A
similar transition of states continues until an eight
hundred bit packet is built up. Once this occurs
the data is stored in the FIFO as dictated by the
in pointer.

The FIFO implemented by the buffer aditi mod-
ule can store up to ten eight hundred bit packets
at a time. It makes use of two pointers, which
are stored as registered values internally. These are
the in pointer and the out pointer. When an eight-
hundred bit packet is written to the FIFO, it is writ-
ten to the slot in pointer points to. Afterwards,
in pointer is incremented by one. When an eight-
hundred bit packet is read from the FIFO, it is read
from the slot out pointer points to. After a read has
taken place, out pointer is also incremented by 1. If
out pointer or in pointer ever reach a value of ten,
they will be set back to 1 instead of incremented to 11
producing a cyclic effect whereby data can be contin-
uously read and written to the ten slot FIFO. There
are two ways by which the module knows that a read
has been requested. The first is a detection of a posi-
tive edge of the done transmit signal. The second is if
the valid out signal is low. The done transmit signal
represents a direct request from the transmit module
for more data. If there is data in the FIFO when this
occurs, the data will be outputted and valid out will
be set high. If there is no data in the FIFO, valid out
is set low. This lets the transmit module know that
there is no data to transmit. This also means that
the buffer aditi module will continue to try to output
new data every clock cycle. Thus, as soon as new
data is inputted into the FIFO, it can be outputted
to the transmitter.

11

Testing of this module was done both in ModelSim
and via compilation onto the labkit. The results of
ModelSim testing can be seen in Figure 14. In this
figure, note that the data inputted to the system is
referred to as data right.

Figure 14: ModelSim ouput for test of buffer aditi

As is shown in Figure 14, the outputted data does
not become valid until sixteen numbers have been
received (the number necessary to create one eight-
hundred bit packet). Also, after valid out goes high it
becomes low again once done transmit becomes high.
This is because after the first eight hundred bit packet
was outputted there was nothing left in the FIFO.
The behavior shown here is all in accordance with
the expected behavior of the system.

4.2 The Receive Buffer

The buffer nivedita module refers to the FIFO buffer
located on the receive side of the system. In addition
to implementing a FIFO it also takes care of parsing
the eight-hundred bit packets produced by the wire-
less system back into the fifty bit packets compati-
ble with the error correction out module. The im-
plementation of the FIFO is analogous to that found
in the module, buffer aditi. The only difference is
that there are 160 slots as opposed to only 10. This
corresponds to the same amount of storage space,
however, as the slots here are only fifty bits wide as
opposed to eight-hundred. To parse the received data
packets, an internal FSM is used. This FSM makes
use of only three states; a wait state, an acknowledge
state and a store state. On reset, the FSM is placed
in the wait state where it waits for the valid in sig-
nal to become high. Once this happens the inputted
data can be registered and the FSM can transition

to state ackin. This acknowledge state is for ensur-
ing that the same data does not get read twice and
is essential for interfacing to the transmitter. The
transmitter runs on a much slower clock than does
the buffer module. Therefore, even if the valid in sig-
nal is only high for one transmitter clock cycle, this
may constitute may buffer clock cycles. The addition
of the ackin state prevents the buffer FSM from cy-
cling back into the wait state and seeing a valid in
signal that is still high from the previously regis-
tered and processed data. After the valid in signal
has gone low, the FSM can transition to the store
state. This is where the data is parsed and stored
in the FIFO. The lower fifty bits represent the first
data value that is to be stored, the next fifty bits
represent the second and so on. There are sixteen
fifty bit data values stored in every eight hundred bit
packet, thus every packet received represents an in-
crease of sixteen values in the FIFO. Another purpose
served by this buffer is to prevent periods of silence
in the sound outputted at the receiving end. In other
words, the data is buffered up before it is sent on to
compression and decompression so that even if there
is an occasional delay in the received wireless infor-
mation the user will not be affected. It was decided
that the packet length themselves would be enough
to buffer the incoming data. In other words, every
packet brings with it a buffer of fifteen. This is be-
cause once the first fifty bit data value is outputted
there are still fifteen more behind it in the FIFO. It
was thought that this would be enough to buffer the
system on. Unfortunately, full testing of the function-
ality of this buffering mechanism was never carried
out as the wireless was never integrated in the system.
Testing of the buffer was therefore done in Modelsim,
the results of which are shown in Figure 15. Again,

Figure 15: ModelSim ouput for test of buffer nivedita

12

the inputted data is found on the port, data right.
Although it is unclear on this picture, the data in-
putted is an eight-hundred bit packet representing
the sequence of numbers 15 to 0. Two of these pack-
ets are inputted into the system and are then clocked
out according to the request data out signal, which
has the same functionality as the done transmit sig-
nal discussed in the buffer aditi section. As is shown,
valid out only becomes high after the data out signal
has changed to the first number to be outputted, 15.
Additionally, new data is outputted only on the rising
edge of request data out. This combines to confirm
correct functionality of the system.

5 Wireless Communication

5.1 Hardware and SPI Interface

5.1.1 Hardware

The wireless portion of the system was implemented
using a Serial Peripheral Interface (SPI) link that
communicated with the CC2420 2.4Ghz wireless chip
from Chipcon, which was mounted on the CC2420
Demonstration Board Kit (DBK). The design and
implementation process for the Verilog code for the
SPI interface was implemented by using the “CC2420
Examples Release” and “CC2420DBK Libraries” C
code from the Chipcon as a starting point and guide-
line for the functionality and operations the SPI in-
terface would have to implement. Two CC2420DBKs
were used to form the wireless link. The SPI inter-
face was implemented in a series of Verilog modules
that implemented complex operations like the config-
uration of the CC2420, the transmission of data, and
the reception of data in relatively simple finite state
machines. This CC2420 was chosen because it could
support the high data rates needed to stream audio
wirelessly since, according to the specification sheets,
the CC2420 is capable of supporting data rates of up
to 250kbps.

The SPI interface is a novel feature because it
talks directly to the CC2420. The overhead involved
in passing commands to the microprocessor on the
C2420DBK to command the CC2420 to transmit and
receive data is completely eliminated. In this sec-

tion of the report, the timing constraints and func-
tions of the inputs and outputs between the Verilog-
implemented SPI and CC2420 will be discussed.
Then, the operation and function of the three main
modules, the ConfigureFSM, TransmitFSM, and Re-
ceiveFSM will be discussed. Then, the design process
and method of integration with the FPGA will be de-
tailed. Finally, the degree of the success of the imple-
mentation of the wireless system and its integration
with the system will be evaluated.

5.1.2 SPI Interface

Figure 16 shows the four one-bit input and output
lines the Verilog interface uses to communicate with
the CC2420.

Figure 16: The inputs and outputs of the CC2420

The three input lines to the CC2420 are the SI,
CSn, and SCLK lines. The single clocked output
line from the CC2420 is the SO line. Other out-
puts from the pin itself include the FIFO, FIFOP,
and SFD pins. These go low and high as packets of
data are received and transmitted. More details of
their operation are included in the ReceiveFSM and
TransmitFSM sections.

The Verilog interface assumes master role normally
taken on by the microprocessor in the CC2420DBK
board and dictates all actions of the CC2420. All
communication with the chip is performed most sig-
nificant bit (MSB) first. The chip is enabled when the
CSn signal is low. The chip can take in data from the
SI line and CSn lineon each rising edge of the SCLK
signal. In order for the chip to properly read bits in
from the SI line, the SI and CSn inputs to the chip
must be set up at least 25ns before the rising edge of
the SCLK signal. This places a maximum constraint
of 10Mhz on the maximum frequency at which the
SPI interface can be clocked.

13

All operations performed by the CC2420 are dic-
tated by 33 16-bit configuration registers, 15 com-
mand strobe registers, 2 8-bit registers to access the
separate receive and transmit FIFOs, and the data
that can be written the local RAM on the chip which
holds configuration information about the chip as
well as data to be transmitted or data that has been
received. Register and RAM access can only be per-
formed when CSn is low.

The command strobe registers are relatively easy
to message. They contain no data and only serve
to set certain signals in the chip high and low. As
a result, a typical command strobe access involves
pulling CSn low, making sure that SCLK is running,
and then shifting in 8 bits of data on 8 rising edges of
SCLK, 6bits of which are the command strobe regis-
ter address, MSB first to the CC2420. The first bit
of the register access command tells the chip whether
a RAM or register access command will follow while
the next bit selects a read or write operation. The
next 6 bits select one of the 50 configuration and com-
mand registers. A command strobe register address
will never cause the chip to expect a 16-bit data se-
quence, while a 6-bit configuration address will cause
the CC2420 to treat the next 16 bits that come down
the SI line as data to be written into the selected
configuration register.

[RAM/REGISTER][dont care][6-bit address]

Command strobe register access

[RAM/REGISTER][READ/WRITE][6-bit address][16-bit data]

Configuration register access

RAM access, however, is slightly more compli-
cated. Figure 17 is a timing diagram taken from
the timing diagrams in the CC2420 documentation
specifying RAM access. Table 6 in the CC2420 chip
documentation1 lists the various addresses and con-
tents expected in the CC2420 RAM.

Figure 17: Timing diagram for the CC2420

1http://www.chipcon.com/files/CC2420_Data_Sheet_1_

4.pdf

The first bit of the expected command is a 1 for
RAM access. The next 7 bits in the command specify
the address in the RAM to which the data must be
written. The next 2 bits select which of the three
memory banks the address is located in the TXFIFO
bank (00), the RXFIFO bank (01), or the security
bank (10). Then, the bit specifying a read/write (0)
or read (1) operation is transferred. After this, 5 dont
care bits are transmitted. After this sequence of data,
the data written into the RAM can be transferred,
one byte at a time, MSB first. Successive writes and
reads to memory can take place, which the caveat
that memory locations automatically increment with
each successive read or write. After a RAM strobe,
memory access can only be terminated by bringing
CSn high for the duration of an SCLK cycle.

Successive register access and RAM operations
(provided that the RAM operations access succes-
sive addresses) can be undertaken with CSn low for
each operation. As a result, no wait time is needed
between one operation and next unlike a micropro-
cessor, which needs to exit out of each command and
redo any microprocessor-specific setup operations be-
fore executing the next command to the CC2420.

All CC2420 related modules are clocked on CC2420
clock, which must be 10Mhz or slower. Data to the
chip on the SI and CSn lines is registered out in order
to prevent any glitching on the line while a read or
write to CC2420 registers or RAM is taking place. In
order to properly set up SI and CSn well before the
rising edge of SCLK, which is when the CC2420 will
register in the data, SCLK is the inverse of the clock
any module accessing the CC2420 runs off of. This is
especially key in making certain that the setup and
hold time constraints on CSn and SI are met in order
to ensure the expected operation of the CC2420.

For the rest of this document, the registers accessed
with be referred to by the names assigned to them in
the CC2420 chip documentation.

5.1.3 Configuration

Certain registers must be strobed or written into be-
fore the CC2420 is ready to transmit data. This
module implements a sequential FSM structure that
performs the various operations needed to ready the

14

CC2420 for the transmission or reception of data.
In the first stage RESET, the entire CC2420 is re-

set with a hard chip reset by pulling the reset chipn
pin of the CC2420 low for a single clock cycle. After
waiting for an additional 16 clock cycles, the RESET
stage is exited. This wait is absolutely crucial, as af-
ter a reset to the chip certain capacitors and other
elements of the DBK must be allowed to discharge
before command strobes will function properly.

In the second stage, STROBE, the command reg-
ister SXOCSN, is strobed in order to turn on the
crystal oscillator inside the chip. Without the crys-
tal oscillator turned on, RAM and register access of
the CC2420 are not possible.

In the third stage, WAITLONG, we must wait for
at least 1ms (or 10,000 100ns clock cycles) for the
crystal oscillator to turn completely on. This number
can be found in the CC2420 specifications for the
CC2420 chip. In the end, it was decided to force the
chip to wait for at least 2ms in order to essentially
guarantee that register and RAM access would be
possible by the end of the WAITLONG stage.

In the REGWRITE stage, 5 configuration regis-
ters (MDMCTRL0, MDMCTRL1, SECCTRL0, and
FSCTRL) are consecutively written to in order to
configure the chip to receive IEEE 802.15.4 formatted
packets, enable automatic address recognition by the
hardware, set the FIFOP threshold to maximum (the
consequence of this will be discussed in the Recep-
tion section), and to program the frequency channel
on which the chip will be transmitting. The consec-
utive writes are performed by simply constructing a
120-bit register that contains each of the 5 8bit reg-
ister access commands followed by immediately by
the corresponding 16-bits of data to be written into
this register. Then, the data in the register is simply
shifted out on the SI line on each clock cycle.

Table 1 lists all of the configuration and command
registers accessed in the STROBE and REGWRITE
stages.

After the REGWRITE stage is completed, we en-
ter a single clock-cycle long stage called WAIT2 in
which CSn is pulled high before we enter the next
stage for safetys sake and in order to prevent incor-
rect values of SI from being entered into the RAM on
the next stage. This stage is an artifact of the debug-

Figure 19: The configuration and command registers
accessed by the configuration FSM.

ging process, and can be taken out in order to take
full advantage of the feature of consecutive register
and RAM accesses allowed by the SPI interface.

Finally, after the REGWRITE stage, the
MEMWRITE1 stage is entered. In this stage, the
MSB(most significant byte) and LSB (least signifi-
cant byte) of the PANID are written to the CC2420
memory locations 0x169 and 0x168, respectively.
First, the memory address is strobed and set up, and
then two consecutive bytes of data from the 16-bit
PANID are passed in. Note that the LSB must be
written first, followed by the MSB , as the memory
location pointer automatically increments with each
memory access. In the WAIT3 stage, we then bring
CSn high for a single clock cycle. This wait stage
is absolutely crucial since non-consecutive RAM ac-
cesses must be terminated by setting CSn high.

In the MEM2WRITE stage, we make the second
write to memory in order to write the device ad-
dress, or the SHORTADDR to the CC2420 memory.
The MSB and LSB are written to memory locations
0x16B and 0x16A, respectively. Again, the LSB must
be written to memory before the MSB since the ad-
dress pointer of CC2420 RAM automatically incre-
ments.

The following stages (except for the IDLE stage)
were introduced for debugging purposes and were
then kept because they performed the useful func-
tion of allowing the user to check whether or not
the PANID and SHORTADDR had been written into
memory correctly. The sequence of stages WAIT3,
ASKREAD1, WAIT4, and ASKREAD2 allows the
user to read from the ram locations that were written
to in the MEM1WRITE and MEM2WRITE stages
in order to make sure that the PANID and SHORT-

15

ADDR were written to properly in those memory
write stages.

Finally, the IDLE state is entered and signals that
the chip has been configured by setting the “config-
ured” flag high for all time. The FSM will stay in
this state until the next reset signal. SI is low and
CSn is high as well.

5.1.4 Transmission

Figure 20: The transmission finite state machine.

After the configuration stage, the chip is ready to
transmit packets of data. This module is respon-
sible for handling the transmission of 40-bit (or 5-
byte) packets of data. While this module is currently
hardwired to handle the 5-byte packets of data, it
can be easily modified to handle larger amounts of
data by simply (1) changing the allowed size of the
PAYLOAD input and (2) changing the counters in
the WRITEPACKET stage. This module also waits
for an acknowledgement(ACK) frame from the re-
ceiver it targets. If the TransmitAggressiveFSM does
not receive an ACK frame, the FSM ensures that
it will retransmit the packet until an ACK frame is
received. If the ACK frame is received, TransmitAg-
gressiveFSM will call a minorFSM called CheckAck
responsible for parsing ACK frames in order to make
sure that the ACK frame

WAITBUSY is the initial state. This part of the
transmit operation checks to see whether a transmit

operation is in progress by making sure that neither
the SFD nor the FIFO pin are high. - if a transmit
operation is in progress, the TransmitAggressiveFSM
will continue to WAITBUSY. Otherwise, the opera-
tion will move to the RECMODEON state.

In the next stage, RECMODEON, the FSM
strobes two command registers in succession. The
first strobe to the FLUSHTX register (0x09) flushes
the TXFIFO, the bank of the RAM that stores the
packet to be transmitted, and the second strobe to
the RXON command register (0x03)turns on the re-
ceive mode so that the transmitter will be able to
receive acknowledgement signals from the receiver.
Once this has been completed, the FSM will move on
to the STROBETX state.

In the STROBETX, the FSM strobes the STXON
(0x04) register, which turns on transmit mode. This
strobe of the STXON register is what makes this an
aggressive transmit there is another register, STX-
CCAON that only turns on the transmit mode when
the channel the transmitter sends packets out on is
clear. While this is cleaner and more polite to other
transmitters using this range, it was decided that it
was simpler to blast the packet from the transmitter
regardless of other traffic on the line since the trans-
mitter retransmits if an acknowledgement frame is
not received from the receiver. This stage also strobes
the WRITE TXFIFO (0x3E) register, which will al-
low us to write the packet to the TXFIFO in the
WRITEPACKET stage.

The WRITEPACKET stage is especially crucial as
this is where the packet constructed by the FSM is
shifted into the chips TXFIFO. At this point, it is
considered that this is probably the state in which
packets were not written to the TXFIFO correctly.
Instead of strobing the TXFIFO byte access register
(0x3E), it is suggested that this strobe be removed
and that a memory write to location 0x000 replace
this attempt at writing to the TXFIFO. At any rate,
the packet constructed takes the following form:

1. 1-byte LENGTH The most significant bit is re-
served as a 0. The following 7 bits encode up
to 128 bytes of data that can be stored in the
TXFIFO. However, this length also includes the
overhead of storing various preamble information

16

that must be included in the packet and that will
always take up 11 bytes of space. As a result, the
maximum PAYLOAD size can only be 117 bytes
long. So, when the user enters their LENGTH
size, the LENGTH must equal the length of the
PAYLOAD in bytes + 11 for overhead. For ex-
ample, the LENGTH of a 5-byte payload packet
is 16. This must match the rest of the packet.

2. The 2-byte FCS (frame control sequence) is next.
To request an acknowledgement, this must be set
to 0x8861.

3. Next is the 2-byte DATASEQNO, which essen-
tially numbers the packet so that the Trans-
mitAggressiveFSM can match which packets it
has received acknowledgements for.

4. 2-byte PANID The PANID of the transmitter
and receiver.

5. 2-bytes DESTADDR The SHORTADDR of the
receiver.

6. 2-bytes MYADDR The SHORTADDR of the
transmitter.

7. 5-bytes PAYLOAD The 5-byte payload cur-
rently hardcoded into TransmitAggressiveFSM.

This data is shifted into the TXFIFO. As can be
seen from the above packet structure, there is an over-
head of 9 bytes and a payload of 5 bytes. The chip it-
self tracks the length, and when n-2 bytes are written
to the TXFIFO, the chip writes in another 2 bytes for
a frame check sequence which contain a checksum on
the rest of the packet, and then automatically trans-
mits the packet after adding an additional SFD (start
of frame delimiter) preamable. While the packet is
being transmitted, the SFD pin goes high when the
SFD field has been completely transmitted.

The FSM then enters the WAITACK state, where
it waits for 6760 clock cycles for an acknowledge-
ment frame. The number of wait cycles was calcu-
lated from the documentation and includes the time
it takes for the packet to be sent out as well as fact
that it takes a certain amount of time for the ACK
frame to be transmitted back. The CC2420 chip

knows that an ACK frame has been received when
the FIFOP PIN goes high.

If an ACK frame has not been received, the FSM
simply strobes the TXON register without rewriting
to the TXFIFO. This causes the CC2420 to retrans-
mit the packet still in the TXFIFO.

If an acknowledgement is received, the FSM enters
the CHECKACK stage, where it calls the CheckAck
FSM to read the RXFIFO of the transmitter and
chunk through any data in the RXFIFO to check
for the proper format of an acknowledgement packet,
which simply consists of: reading from the RXFIFO
by strobing 0x7F (the second bit of the read com-
mand must be a 1 for a read) and then chunking in
the packet and outputting a high success value for
a clock cycle if the length of the ACK packet is 5,
if the DATA SEQ NO matches the numbered packet
the transmitter sent, if the frame control sequence is
0x0002, and if the MSB of the CRC byte from the
ACK packet is high, which means that the checksum
passed on the receiver end. The mechanics of this
can be seen in the code for the Check ACK module.

Figure 21 shows the TransmitAggressiveFSM in ac-
tion with a ModelSim of inputs and outputs over
time as it exits the STROBETX state and enters the
WRITEPACKET state.

5.1.5 Reception

The ReceiveFSM was relatively straightforward to
code since it was simply a larger version of the Check-
AckFSM. Admittedly, this ReceiveFSM is hardcoded
to parse a packet with a 5-byte test PAYLOAD, but
it should be relatively simple to adjust the counters
in the state that parses the packet in order to parse
a 100-byte packet. An intelligent parser capable of
reading the length byte and then parsing the packet
for that length of time would have been ideal. How-
ever, time constraints and debugging the system did
not allow for this to happen.

The Receive FSM in Figure 22 is far less compli-
cated that the TransmitAggressiveFSM. In the ini-
tial stage RECON, the RXON command register is
strobed to enable the reception of packets. The Re-
ceiveFSM then waits for either a packet to come in
in this case both the FIFOP PIN and FIFO PIN in-

17

Figure 22: The Receive FSM.

puts from the CC2420 will go high. If a packet is re-
ceived, the PARSEPACKET stage is enteredl, where
the RXFIFO is strobed with the 0x3E command and
the assumed 5-byte packet is parsed. The mechanics
of this packet-parsing can be seen in the code for Re-
ceiveFSM. The parsing of the packet does depend on
the format of the packet being sent from the trans-
mitter. If the ReceiveFSM is in the WAIT stage and
FIFOP PIN goes high while FIFO PIN is low, this
signals an overflow. The FIFO PIN on the CC2420
goes high when more than a byte of data is in the RX-
FIFO, while the FIFOP PIN only goes high when a
certain nonzero threshold of bytes is in the RXFIFO
(This threshold is set in the ConfigurationFSM with
the programming of a register). If FIFOP is high
and FIFO is low, an underflow has occurred and the
RXFIFO needs to be flushed. This is accomplished
by strobing the FLUSHRX command register (0x08)
twice for good measure.

Figure 23 shows the ReceiveFSM in the PARSEP-
ACKET stage, where various contents of the packet
are read out and outputted from the ReceiveFSM.

5.1.6 Integration With The FPGA - Cre-
ation of a 27/4-MHz clock

In order to integrate with the FPGA, a 6.75Mhz clock
was created by passing the 27Mhz clock through a
module containing a 4-bit registered counter. Then,
the MSB of the counter was passed out as the 6.75
Mhz clock. The counters reset was different from the
reset of the other modules to ensure that the clock of
the wireless modules would be completely decoupled
from the wireless modules themselves. The general
configuration of the hardware interface between the
CC2420 and the 6.111 labkit can be seen below. The
wires are connected from a cable between the user2
ports on the labkit and the pins on the P4 header
strip on the CC2420DBK.

Key things learned while wiring up the
CC2420DBK:

1. The voltage regulator pin on the CC2420DBK
P4 pin number 10 must be wired to high (to 3.3
volts) in order for the CC2420DBK to function
correctly.

2. An external power source between 4-7 volts must
be supplied to the CC2420DBK in order to allow
the chip to properly drive outputs like SO, FIFO,
FIFOP, and SFD.

3. The CC2420DBK microprocessor reset (P4, pin
3) must be wired to ground to bypass the micro-
controller in order to use to SPI interface. This
ground must connected to both labkit ground
and CC2420DBK ground (P4 pin 20).

6 Conclusion

In the end, only the transmit side of the wireless por-
tion of our project was functional. Even after in-
tense debugging, we were unable to make the receiver
side of the wireless link function properly with auto-
matic address recognition. Instead, we could only
receive what appeared to be portions of the test 5-
byte packet being sent from the transmitter side of
the network. Problems with the writing of the packet
to the transmitter may be the cause of this problem.

18

As a result, we were unable to integrate the wire-
less portion of our system into the project. We were,
however, able to hardwire the A/D, compression, de-
compression, and D/A systems directly together to
take in music, compress it, decompress it, and play it
on a set of speakers or headphones. While our project
was not fully integrated, we do feel that we learned
a lot both from the construction of our individual
projects as well as group discussion and debugging of
the D/A, compression and decompression, and wire-
less transmitter and receiver sides of our project. We
would like to thank the awesome 6.111 staff for pro-
viding us with the tools to construct and implement
such an ambitious project and for the help they pro-
vided in debugging various parts of system and offer-
ing design tips and solutions. Thanks especially to
our long-suffering and patient TA, Dave Wentzloff!

19

Figure 10: ModelSim of compression/decompression modules with working error correction recursion.

Figure 18: The configuration finite state machine.

20

Figure 21: ModelSim of the Transmit FSM in action.

Figure 23: The Receive FSM.

21

