# Pool Game Designed and Implemented Using Major-Minor FSM Setup

Group 10

Gary M. Matthias Timothy Mwangi Anthony Quivers

# Input Module

- Physical Objects
  - -Pool table
  - -Pool stick
- Devices
  - -Video camera
  - -Accelerometer
  - -Analog-to-digital converter

# The Pool Stick

- Equipped with an accelerometer for speed calculations
- Colored at the tip for recognition by the camera

### **Camera View of Pool Table**



### Input Module: Block Diagram



# Game Logic Unit

#### **Design Specification**

- Independent Set of modules used to control the all balls on the table.
- Responsible for controlling all events and enforcing all rules of 2 player British pool.
- Unit is abstracted away from user input interface and output graphics system.
- The positions of all balls are refreshed for the grapics module once per frame

#### **Control Unit Implementation**

- All balls on the table are controlled concurrently
- There are a total of 16 instances of **Ball FSM Modules** (i.e.: 1 for cue and 15 balls 1 through 15).
- Internal 2D VGA graphics interface for testing and debugging (This doubles as a backup graphics interface)





# 3-D Pool Display

- •Perspective ray tracing
- •The math
- •Block diagram
- •Memory requirements

### Perspective Ray Tracing



### The Math

- Intersection of a line and plane
- •Parametric equation of a line

 $x = x_1 + u (x_2 - x_1); y = y_1 + u (y_2 - y_1); z = z_1 + u (z_2 - z_1)$ 

- •Equation of a plane: A x + B y + C z + D = 0
- Substitute equation of line into equation of plane
- •A (x1 + u (x2 x1))+B (y1 + u (y2 y1))+C (z1 + u (z2 z1))+D = 0 Solve for U
- •U=Ax1+By1+Cz1+D/A(x1-x2)+/B(y1-y2)+C(z1-z2)
- If A(x1-x2)+/B(y1-y2)+C(z1-z2) = 0
- •Line is perpendicular to plane, no intersection/infinite intersections

Intersection of a line and sphere

•Equation of a sphere: 
$$(x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = r^2$$
  
Define:

•a = 
$$(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$
  
•b = 2[  $(x_2 - x_1) (x_1 - x_3) + (y_2 - y_1) (y_1 - y_3) + (z_2 - z_1) (z_1 - z_3)$ ]  
•c =  $x_3^2 + y_3^2 + z_3^2 + x_1^2 + y_1^2 + z_1^2 - 2[x_3 x_1 + y_3 y_1 + z_3 z_1] - r^2$   
Quadratic equation: au<sup>2</sup>+bu+c = 0; Solution: -b +-sqrt(b\*b - 4ac)/2a  
The exact behavior is determined by the expression within the square root :  
b\*b - 4 ac

•If this is less than 0 then the line does not intersect the sphere.

•If it equals 0 then the line is a tangent to the sphere intersecting it at one point, namely at u = -b/2a.

•If it is greater than 0 the line intersects the sphere at two points.



| Signal description                                              |
|-----------------------------------------------------------------|
| $Bx_{i}By_{i} = x$ and y position of ball i                     |
| $Bp_i = Boolean$ , Is ball i still on the table?                |
| $X_{t,} Y_{t} = x$ and y position of cue tip                    |
| $X_{p, Y_{p}} = x$ and y position of pivot                      |
| P = Current player                                              |
| p_c = pixel count                                               |
| L_c = line count                                                |
| $E_P_L = Vector from eye to$                                    |
| pixel                                                           |
| Nv <sub>i</sub> = Normal vector                                 |
| $O_i = Object$                                                  |
| $P_L_S =$ Vector from point to light source.                    |
| NI = Number of intersections                                    |
| $PI_i$ = Point of i <sup>ith</sup> intersection                 |
| N_L_D=dot product of normal at point and point to light vector. |
| Lum = Luminosity in YUV absolute color scale                    |
|                                                                 |

### Memory requirements

- •For each pixel 0<=Luminosity<=120; Luminosity can be equal to 240 but in this 3-D renderer the maximum used is 120. –Requires 7 bits/pixel
- •For each pixel  $0 \le O_i \le 120$  is stored requires 7-bits/pixel
- •Total memory requirement for double buffer:
  - $= ((7+7)/8) \times (1024 \times 768) \times 2 \times 10^{-6} = 2.76 \text{MB}.$