Pool Game Designed and Implemented Using MajorMinor FSM Setup

Group 10

Gary M. Matthias
Timothy Mwangi
Anthony Quivers

Input Module

- Physical Objects
-Pool table
-Pool stick
- Devices
- Video camera
- Accelerometer
-Analog-to-digital converter

The Pool Stick

- Equipped with an accelerometer for speed calculations
- Colored at the tip for recognition by the camera

Camera View of Pool Table

Input Module: Block Diagram

Game Logic Unit

Design Specification

- Independent Set of modules used to control the all balls on the table.
- Responsible for controlling all events and enforcing all rules of 2 player British pool.
- Unit is abstracted away from user input interface and output graphics system.
- The positions of all balls are refreshed for the grapics module once per frame

Control Unit Implementation

- All balls on the table are controlled concurrently
- There are a total of 16 instances of Ball FSM Modules (i.e.: 1 for cue and 15 balls 1 through 15).
- Internal 2D VGA graphics interface for testing and debugging (This doubles as a backup graphics interface)

3-D Pool Display

- Perspective ray tracing
-The math
-Block diagram
-Memory requirements

Perspective Ray Tracing

Virtual screen

The Math

Intersection of a line and plane
-Parametric equation of a line

$$
\mathrm{x}=\mathrm{x}_{1}+\mathrm{u}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) ; \mathrm{y}=\mathrm{y}_{1}+\mathrm{u}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) ; \mathrm{z}=\mathrm{z}_{1}+\mathrm{u}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)
$$

- Equation of a plane: $\mathrm{Ax}+\mathrm{B} y+\mathrm{C} z+\mathrm{D}=0$

Substitute equation of line into equation of plane

- $\mathrm{A}(\mathrm{x} 1+\mathrm{u}(\mathrm{x} 2-\mathrm{x} 1))+\mathrm{B}(\mathrm{y} 1+\mathrm{u}(\mathrm{y} 2-\mathrm{y} 1))+\mathrm{C}(\mathrm{z} 1+\mathrm{u}(\mathrm{z} 2-\mathrm{z} 1))+\mathrm{D}=0$

Solve for U

- $\mathrm{U}=\mathrm{Ax} 1+\mathrm{By} 1+\mathrm{Cz} 1+\mathrm{D} / \mathrm{A}(\mathrm{x} 1-\mathrm{x} 2)+/ \mathrm{B}(\mathrm{y} 1-\mathrm{y} 2)+\mathrm{C}(\mathrm{z} 1-\mathrm{z} 2)$

If $A(x 1-x 2)+/ B(y 1-y 2)+C(z 1-z 2)=0$
-Line is perpendicular to plane, no intersection/infinite intersections

Intersection of a line and sphere
-Equation of a sphere: $\left(\mathrm{x}-\mathrm{x}_{3}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{3}\right)^{2}+\left(\mathrm{z}-\mathrm{z}_{3}\right)^{2}=\mathrm{r}^{2}$
Define:

- $\mathrm{a}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}$
-b $=2\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\left(\mathrm{y}_{1}-\mathrm{y}_{3}\right)+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\right]$
$\cdot \mathrm{C}=\mathrm{x}_{3}{ }^{2}+\mathrm{y}_{3}{ }^{2}+\mathrm{z}_{3}{ }^{2}+\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}+\mathrm{z}_{1}{ }^{2}-2\left[\mathrm{x}_{3} \mathrm{x}_{1}+\mathrm{y}_{3} \mathrm{y}_{1}+\mathrm{z}_{3} \mathrm{z}_{1}\right]-\mathrm{r}^{2}$
Quadratic equation: $\mathrm{au}^{2}+\mathrm{bu}+\mathrm{c}=0$; Solution: $-\mathrm{b}+-\mathrm{sqrt}(\mathrm{b} * \mathrm{~b}-4 \mathrm{ac}) / 2 \mathrm{a}$
The exact behavior is determined by the expression within the square root :
b*b - 4 ac
-If this is less than 0 then the line does not intersect the sphere.
-If it equals 0 then the line is a tangent to the sphere intersecting it at one point, namely at $\mathrm{u}=-\mathrm{b} / 2 \mathrm{a}$.
-If it is greater than 0 the line intersects the sphere at two points.

Graphics Module Block Diagram

Signal description

$\mathrm{Bx}_{\mathrm{i}}, \mathrm{By}_{\mathrm{i}}=\mathrm{x}$ and y position of ball i
$\mathrm{Bp}_{\mathrm{i}}=$ Boolean, Is ball i still on the table?
$\mathrm{X}_{\mathrm{t},} \mathrm{Y}_{\mathrm{t}}=\mathrm{x}$ and y position of cue tip
$X_{p}, Y_{p}=x$ and y position of pivot
$\mathrm{P}=$ Current player
P_c = pixel count
L_c = line count
E_P_L = Vector from eye to
pixel
$\mathrm{Nv}_{\mathrm{i}}=$ Normal vector
$\mathrm{O}_{\mathrm{i}}=$ Object
P_L_S = Vector from point to light source.
$\mathrm{NI}=$ Number of intersections
$\mathrm{PI}_{\mathrm{i}}=$ Point of $\mathrm{i}^{\text {ith }}$ intersection
N_L_D=dot product of normal at point and point to light vector.

Lum = Luminosity in YUV absolute color scale

Memory requirements

-For each pixel $0<=$ Luminosity<=120; Luminosity can be equal to 240 but in this 3-D renderer the maximum used is 120 . -Requires 7 bits/pixel
-For each pixel $0<=\mathrm{O}_{\mathrm{i}}<=120$ is stored requires 7-bits/pixel
-Total memory requirement for double buffer:

$$
=((7+7) / 8) \times(1024 \times 768) \times 2 \times 10^{-6}=2.76 \mathrm{MB} .
$$

