Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 - Introductory Digital Systems Laboratory (Spring 2007) Final Project (1984: An Object Tracking Surveillance System) Check Off Sheet

Student Names: Lyric Doshi and Rob Crowell

TA Signature/Date:

	Be .	Able to	Demonstrate	Your	Working	Final	Proj	ect	t
--	------	---------	--------------------	------	---------	-------	------	-----	---

Be Able to Demonstrate Your Working Final Project	
Track laser pointer after it has been acquired	
Obtain and track a target when the laser pointer is turned off	
 Rob Must Be Able to Demonstrate Decode the NTSC signal (detect SAV, field #, blanking) and produce a 24-bit YCrCb signal 	a 🔲
 Demonstrate a ZBT controller clocked 2x that simulates a dual port RA supporting either two reads or a read and a write in a single clock cycle 	
 Demonstrate a VGA controller that displays a crosshair overlaid on the image stored in ZBT 	e 🗌
Lyric Must Be Able to Demonstrate	
Show the servo moving the camera back and forth	
 Demonstrate a working particle filter: Show that particles are updated correctly based on their velocity ar location 	nd 🔲
 Show that new particles are spawned to replace dead ones such that there are always 169 particles alive 	ıt 🔲
• Detect the presence of a red laser when it appears within a designated drawn on the VGA display	box
 Obtain a target by capturing pixels around the laser pointer's last locat when it is turned off 	ion