
1

1984: An Object Tracking Surveillance System
by Robert Crowell and Lyric Doshi

Abstract
The 1984: An Object Tracking Surveillance System will track the motion of any arbitrary target selected
using a mouse. When the mouse is clicked, a video camera visually identifies the color of the object the
laser was targeting and tracks the movement of the target. A simple particle filter, initialized based on the
target's color and location, will be used for image processing. The camera will be mounted to a movable
platform mounted to a servo, allowing the system to keep its target within the center of the video screen.

The final system tracked lighter colors fairly well, especially skin color. The VGA display showed could
show individual particles or a box around the center of mass of the particles. The tracking experienced
issues due to the quality of the image. Some simple filters were used to improve image quality, but high
fluctuations in pixel color still adversely affected the system’s tracking ability. Improvements to the
system center around improving the image data with more sophisticated filters and double buffering the
camera data.

Table of Contents
1 Overview 2 6 Conclusion 16
2 Particle Filter Theory 2 7 Acknowledgements 16
3 Image Processing Theory 2 Appendix (separate document) 17
4 Design and Implementation 3 adv7185init 18
4.1 Video Acquisition 3 crosshair 31
4.1.1 ADV7185 Initialization and the i2c Interface 3 fifo_controller 33
4.1.2 NTSC Decoder 3 generator 35
4.1.3 FIFO Controller 5 i2c 38
4.1.4 NTSC Interpolator 5 lab2_labkit 43
4.1.5 YCrCb to RGB Converter 7 lfsr_23 62
4.1.6 Median Filter 7 lfsr_25 63
4.1.7 Video Buffering 7 median_filter 64
4.2 Particle Filtering 8 memory_controller 71
4.2.1 Particle FSM 8 mouse_pointer 74
4.2.1.1 Initialization 8 ntsc_decoder 75
4.2.1.2 Particle Checking 11 ntsc_interpolator 85
4.2.1.3 Calculating Center of Mass 11 particle_fsm 88
4.2.1.4 Spawning 11 particle_is_alive 107
4.2.1.5 Activating 12 prng_23 115
4.2.2 Checking Particles 12 prng_25 117
4.2.3 Linear Feedback Shift Registers 13 ps2_mouse 119
4.2.4 Pseudo-Random Number Generation 13 rgb2hsv 128
4.2.5 VGA Display Checker 14 servo_feedback 132
4.2.6 RGB to HSV Converter 14 servo_pwm 133
4.3 Servo 14 vga_display_rectangle 136
4.3.1 Servo PWM 14 zbt_controller 137
4.3.2 Servo Feedback 14 zbt_dual_port 139
4.4 PS2 Mouse 14
4.5 VGA 14
5 Testing and Debugging 15

2

List of Figures
1. Video Acquisition Block Diagram 4 4. Particle FSM 10
2. NTSC Decoder FSM 6 5. Pariticle_Is_Alive FSM 13
3. Particle Filter Block Diagram 9

1 Overview - Lyric
The 1984 system is capable of tracking the motion of an arbitrary target selected by the operator of the
system. Originally, a laser pointer was going to be used to select a target to track, but the final version of
the system uses a mouse to select to target from the VGA display. When the mouse is clicked, the system
identifies the color of the object the mouse was targeting and continues to track the movement of this
object. A simple particle filter, initialized based on the position of the object selected by the mouse, is
used for image processing. The camera is mounted to a movable platform rotated by a servo, allowing the
system to keep its target within the center of the video screen. To demonstrate tracking, the system either
draws all the particles used for tracking or a box around the center of mass of the particles.

This report explains the theory and modules created to build this system. The system begins with video
data from a security camera and decodes the NTSC signal. It interpolates between the YCrCb color data
to improve the image color quality and then passes the data to an asynchronous FIFO. Next, the system
applies median filtering before storing the image data in a dual port ZBT RAM. From there, the VGA
display module constantly reads image data to display. During the blanking period of the camera, the
particle filter reads and analyzes the image data when it has a target to track, updating particle positions
for display in the process. Section 2 explains the Particle Filter Theory. Section 3 discusses Image
Processing Theory, while Section 4 discusses the Design and Implementation. Section 5 explains Testing
and Debugging, Section 6 gives the conclusion, and Section 7 presents the Acknowledgements.

2 Particle Filter Theory - Lyric
The Particle Filter uses a set of independent particles to track a given target by color. Each particle has a
position, velocity per frame, and assigned color. At initialization, particles are placed on the target object
in the image, given random velocities, and assigned the target's color from the image data. At each frame
of video, each particle checks to see if it is still on its assigned color. If so, it moves one step using its
velocity and awaits the next frame. If the particle is no longer above pixels of its assigned color, it is
removed. Finally, new particles are spawned at the center of mass of the currently living particles. They
have the same assigned color as the other particles and an initial velocity based on the velocity of a
randomly chosen living particle with a little random variation. In short, particles that are successfully
tracking the assigned color will survive from frame to frame and spawn new particles that will ideally do
the same thing. The random variation in the velocities of newly spawned particles allows the filter to
adapt to changes in velocity of the target. A particle may consist of multiple pixels, in which case a
threshold is set to determine how many pixels must be of the assigned color for the particle to survive. To
check these pixels, the image data is converted to the hue-saturation-value (HSV) color space because
HSV makes the system more robust to changes in lighting affecting the target's color.

3 Image Processing Theory - Rob
The 1984 system interfaces with the composite video output of a surveillance camera which encoded
NTSC video according to the ITU-R BT.601 standard. Video frames are encoded in the YCrCb color
space, which allocates ten bits for the luminance data, Y, and ten bits for each of the two chrominance
values, Cr and Cb. The interlaced NTSC video provided by the camera has 720 pixels per line, with 485
lines of active video per frame (accounting for horizontal and vertical blanking, each frame is 858x525).
Since the video is interlaced, each frame is actually sent as two consecutive fields, even and odd, each
field containing every other row of pixels in the frame. Furthermore, in order to reduce the size of the
video, each frame is encoded in a 4:2:2 format in which only half of the chrominance information for

3

each pixel is provided. While each of the 720 active video samples in a row includes luminance
information, the odd pixels include only Cr and the even pixels only Cb. A video decoder must therefore
infer each missing chrominance value from the surrounding pixels. The video produced by the camera
also includes a significant amount of "salt and pepper noise," which causes the color of a given pixel to
fluctuate significantly through time even when the scene is not changing.

Optimized to remove information which is not discernable by the human eye, the compressed and
interlaced format of NTSC frames can be problematic for image processing applications. Moving objects
appear distorted around their edges due to interlacing; since only half of the rows of video are updated at
a time, the "ghost" of quickly moving object will trail behind the object as it moves. This issue is
resolved by buffering both fields of a frame before allowing the image processing algorithm access to the
new frame. To account for the lossy compression which discards half of the chrominance in each pixel, a
simple linear interpolator provides horizontal coherency by averaging the relevant chroma values from
the two nearest pixels on the row. While more advanced techniques are available that consider
information contained in nearby pixels in adjacent rows, or pixels at the same location in previous and
future frames, this simple interpolator is sufficient for 1984. Salt and pepper noise is reduced by a median
filter, which sorts the color values of a pixel and its four nearest neighbors in its row and assigns the
current pixel's value to the median of this list. Though it slightly blurs the image, the median filter
eliminates much of the noise in a frame and provides the particle filter, which relies heavily on
chrominance information, with a more continuous and accurate representation of the scene.

4 Design and Implementation
The discussion of design is split into two parts, video acquisition and particle filtering.

4.1 Video Acquisition - Rob
The video acquisition stage of 1984 is handled by a series of modules which pass pixels through a chain
starting from the video decoder chip and ending at the SRAM containing the video buffer. Due to the fact
that pixels arrive at a slower rate than the rest of the system, an asynchronous FIFO queue is employed to
bridge the two clock domains. Pixel filtering and conversion from YCrCb to RGB is performed before a
pixel is stored into the RAM for use by the particle filter and display onto the screen. Figure 1 gives the
video acquisition block diagram.

4.1.1 ADV7185 Initialization and the i2c Interface
Two modules provided by Nathan Ickes and available on the 6.111 website, ADV7185init and i2c,
initialize the ADV7185 NTSC decoder chip. The ADV7185 contains a number of internal registers
which define any processing that is done on the video input, as well as the video source (composite or s-
video) and its properties. For example, the value of one register determines the brightness of a scene,
while another determines which of the available filters the video is passed through. The FPGA accesses
these registers over an i2c bus, which is a standard single-bit bus with a second clock line. Since 1984
does not need to read data from the registers, the i2c module provides a slow clock signal at 250KHz and
drives data onto the bus one bit at a time. The ADV7185init module defines the desired values for each
of the ADV7185's internal configuration registers, and sets them during a system reset by providing data
to the i2c module 8 bytes at a time.

4.1.2 NTSC Decoder
The ntsc_decoder module interprets the raw input stream provided by the camera through the ADV7185
and writing it into an asynchronous FIFO. Samples are provided by the decoder based on an external
27MHz line-linked clock, llc, which is determined by the data coming in from the camera; ten new bits of
video data are available on each rising edge of llc. To eliminate glitches due to the propagation delay
between the ADV7185 and the ntsc_decoder module on the FPGA, however, the data stream from the
decoder is sampled on the falling edge of llc.

4

camera

ADV7185
(llc)

ycrcb (10)

i2c

(250 KHz)

ntsc
decoder

(llc)

labkit

r

 data (8)

 SD
A

TA
 (1)

 SC
LO

C
K

 (1)

llc (1)

rgb (24)

col_count (10)

row_count (10)

ycrcb (10)

fifo controller
(llc, 31.5 MHz)

adv7185init
 (27 MHz)

CVBS
data_out2 (36)
data_out1 (36)

zbt dual port
(63MHz)

address1 (19)
data1 (36)
we1 (1)

r
a

 d
w
ddata2 (36)

we2 (1)

address2 (19)

col_count (10)

ntsc_type (2)

row
_count (10)

done (1)

col_count (10)
row_count (10)
rgb (24)

median filter
(31.5 MHz)

d

c
r
y

ycrcb2rgb
(31.5 MHz)

nts

memory
controller
(31.5MHz,
63MHz)

Figure 1: Video Acquisition Blo

done (1)
gb (24
ddres
ata (3
e (1)
ata_o

one (1

ol_co
ow_co
crcb (

c_typ

ck Dia
eset (1)
ycrcb (30)

row
_count (10)

col_count (10)

zbt controller
(63MHz)

)
s (19)
6)

controls

 data (36)
we (1)

address (19)

ut (36)

ntsc_type (2)

)

unt (10)
unt (10)

30)

ntsc interpolator
 (31.5 MHz)

e (2)

gram

5

Figure 2 shows the FSM for ntsc_decoder. Following a system reset, ntsc_decoder waits for the upper-
left pixel of a frame to be sent by the ADV7185. The decoder watches for the characteristic
3FF_000_000_XY sequence of samples that indicates the beginning or end of a row of active video. The
XY data includes a field number (0 or 1 representing odd or even rows) and two boolean flags indicating
whether the next set of frames occur during a horizontal or vertical blanking period. Because the current
row or column is never transmitted in the video stream, the beginning of the first row of video in a frame
is signaled by a transition from vertical blanking of field 0 to active video of field 0. Once this transition
has been detected, ntsc_decoder begins to send data into the fifo_controller module. The decoder must
maintain a count of the number of samples it has seen in order to determine whether the data from the
ADV7185 is of the NTSC_Y, NTSC_CR, NTSC_CB, or NO_DATA type, as well as the row and column
the current sample belongs to. The NO_DATA type accompanies samples which occur during blanking
periods, while the NTSC_Y, NTSC_CR, and NTSC_CB types are used to indicate which of the three
pixel values the ten bits supplied by the ADV7185 represent.

Pixels are decoded across rows first, each sample representing the next column on the row. Once the
horizontal blanking period for a row ends, the row counter is incremented by two and the column counter
is reset to zero, indicating that a new row of pixels is about to begin. Once the even field of a frame has
finished and its vertical blanking period has concluded, the row counter is set to 1 and its column counter
is again reset to 0, indicating that the first row of the odd field is about to be received. Once both the even
and odd fields have been received, the entire interlaced frame is finished and the decoder resets itself to
receive row 0 from the next frame's even field.

4.1.3 FIFO Controller
Any asynchronous FIFO is used to bridge the two clock domains between llc and the global pixel_clock
used by the rest of the system; the decoder writes data into the FIFO and the linear interpolating filter
reads them out. As ten-bit segments of video data are produced by the ntsc_decoder, their row, column,
type, and 10-bit data are written into a 32-bit wide FIFO (the row and column each occupy ten bits, while
two bits are required to indicate which of the four data types the data represents). The fifo_controller
module provides write access to the video decoder on the negative edge of llc, and provides read access to
the ntsc_interpolator module on positive edges of pixel_clock. Because the interpolator is capable of
processing a new ten-bit data segment, the read enable of the FIFO is tied directly to the ~fifo_empty
signal. The write enable of the FIFO is tied to high, storing every value made available by the decoder,
including the NO_DATA segments.

4.1.4 NTSC Interpolator
Because the NTSC video stream includes only half of the chrominance information for each pixel, the
missing values are inferred by the ntsc_interpolator module which is responsible for producing thirty-bit
YCrCb values for every pixel. When a Cr or Cb value is read from the FIFO, the interpolator registers its
value for use in inferring the Cr or Cb value for the next sample. Each time an NTSC_Y data type is read
from fifo_controller, a complete pixel is produced and the interpolator_done signal is set high for one
cycle. The resulting pixel is a combination of the current Y value, the chrominance data which was
received on the previous read from the FIFO, and an inferred chrominance value. To infer missing
chrominance information, ntsc_interpolator uses a simple linear interpolator which averages the two
most recently received chrominance values for pixels on the same row. If the most recently received
chrominance value was Cr when an NTSC_Y sample is read from the FIFO, for example, the module
returns a pixel whose value is {Y[i], Cr[i], (Cb[i-1]+Cb[i+1]) / 2}. Division by 2 is accomplished by
shifting the sum Cb[i-1] + Cb[i+1] to the left once. The module also outputs the correct row and column
for each pixel that is produced.

Because the decoder produces ten bits of video data on each cycle of the slower 27MHz clock, the
interpolator often has to stall for one cycle if there is no new data in the FIFO. Furthermore, even if data

6

FIND
SAV 01

FIND
10

FIND
FF

FIND
SAV 00

FIND
SAV 00

FIND
SAV XY

FIND
SAV 00

FIND
10

FIND
FF

FIND
00

FIND
XY

START
FIELD 0

YB
0

CR
0

YR
0

CB
0

SAV
0

EAV
0 INIT

EAV
Y 0

EAV
C 0

VBLANK
0 INIT

VBLANK
Y 0

VBLANK
C 0

START
FIELD 1

YB
1

CR
1

YR
1

CB
1

VBLANK
1 INIT

VBLANK
Y 1

VBLANK
C 1

EAV
1 INIT

EAV
C 1

SAV
1

Figure 2: NTSC decoder FSM. The
FIND_SAV01 through FIND SAV00
states represent searching for the
transition between vertical blanking for
the even field and start of the even
field. The FIND_SAV_XY state
parses the SAV sample, which
indicates the current field and vertical
and horizontal blanking status. If any
of the stages before FIND_SAV00 fail
to find the input they are expecting, the
machine aborts and returns to the
FIND_SAV01_INIT state. The next
states are identical to the
FIND_SAV01 state, except they are
looking for the start of field 0.

Once active video for field 0 begins, as
indicated by a transition into
START_FIELD0, the decoder begins
to count pixels and rows. In the CR
and CB states, the decoder produces Cr
and Cb data segments. The two YR
and YB states represent the production
of luminance data for a sample which
just produced a Cb or Cr value,
respectively.

After the machine has counted through
720 pixels, it entrs the EAV state and
waits for an SAV sample. Depending
on the XY values in this frame, the
machine either enters SAV0 or
transitions to the vertical blanking
states if there are no more lines of
video in the field. Once the vertical
blanking state VBLANK_Y0 detects
the SAV for field 1, it enters the
START_FIELD1 state and again
begins making video pixels available.

Once field 1 has completed blanking,
the machine enters START_FIELD0
and begins decoding the next frame.

EAV
Y 1

FIND
00

7

were being provided by the FIFO every cycle, complete pixel values could only be produced every other
cycle since two data segments define each video sample.

4.1.5 YCrCb to RGB Converter
The complete thirty-bit YCrCb pixels produced by the interpolator are converted into 24-bit RGB pixels
by the ycrcb2rgb module provided by Xilinx as part of xapp283. This three-stage pipelined module
performs several multiplications and additions on the YCrCb output before producing valid RGB output
that is used by the rest of the system. To account for the delays of this module, the row, column, and
interpolator_done signals are delayed by three cycles.

4.1.6 Median Filter
To clean up salt and pepper noise that prevents the particle filter from accurately processing a frame, the
median_filter module contains a 120-bit line buffer that stores the five most-recently received pixels
from the ycrcb2rgb module in the order in which they were received. When a new RGB pixel arrives as
indicated by the delayed interpolator_done signal, it is placed into the front of the line buffer while the
rest of the pixels advance one position through the buffer. The last pixel in the buffer, which has the
lowest column value, is pushed out of the buffer and discarded. A series of comparisons are performed
on the five pixels currently in the line buffer in order to determine which of the five values is the median;
each of the three RGB components of the pixels are considered separately to compute a median pixel
value. To compute the median value of R, for example, two numbers are computed for each of the five R
values: number_leq and number_geq. For a given R value, number_leq indicates the number of other
pixels in the line buffer whose R value is less than or equal to its value, while number_geq indicates the
number of pixels whose R value is greater than or equal. The median R will have a value of at least 2 for
both of these numbers.

To produce a value for a pixel, the median color values of the pixel and its two nearest neighbors to the
left and to the right must be considered. Therefore, this module adds an additional two cycle delay
between receiving a pixel and producing its final RGB value in the best case. However, because a pixel
can only be produced after another has arrived into the buffer, the delay due to median_filter is often
four or more clock cycles, thanks to the asynchronous production of pixels by the decoder and the fact
that video samples cannot be produced faster than 13.5MHz.

4.1.7 Video Buffering
The most recent frame of video received from the camera is stored in a large off-chip single-port ZBT
512kx36 SRAM, whose filtered RGB pixel values are read by both the particle filter and the VGA
display. By clocking the ZBT's ram_clock at twice the rate of the rest of the system, the other modules
can behave as if the ZBT were actually a dual-port RAM supporting two operations in a single
pixel_clock cycle. To compensate for the propagation delay between the FPGA and the off-chip ZBT,
and ensure that the setup and hold times for registers on the FPGA were not violated, the ram_clock sent
to the ZBT is 180 degrees out of phase with the internal ram_clock used to generate and latch in the data
sent to and received from the RAM. Each 24-bit pixel is allocated a single 19-bit address in the RAM,
which is calculated by concatenating the lower nine bits of the pixel's row with the ten bits of its column.
Due to the fact that the NTSC signal contains only 485 rows of active video, none of the video pixels are
lost despite the fact that only nine bits are used for the address since up to 512 rows can be addressed in
nine bits.

The ZBT is pipelined, resulting in a two ram_clock cycle delay between making a read request and
receiving a response. Since the RAM uses the zero bus-turnaround protocol, write data is also provided
two cycles after the address is set, allowing one request to be handled each clock cycle without any dead
cycles when performing a write-after-read operation. The zbt_controller module handles the timing of
sending the address, write enable, and data signals to the RAM. When a read or write is requested,

8

zbt_controller sends the address and write enable signals to the RAM immediately. If the request is a
write operation, the data to be written is driven onto the ZBT's data bus two cycles later. If the request is
a read operation, however, zbt_controller tristates the data bus two cycles later and reads the value being
driven onto the bus by the RAM.

A higher level module zbt_dual_port multiplexes its input with zbt_controller, sending two requests to
the controller during each of the system's clock cycles. The zbt_dual_port module has two identical sets
of input ports, supporting two addresses, two write enables, and two data inputs to be handled during the
cycle. The module also provides two data output buses corresponding to the two values returned by the
controller. To prevent the RAM from writing to incorrect addresses due to glitches in the address or write
enable signals, the address, write enable, and data inputs are registered during the first cycle of
ram_clock. During the second cycle, the dual port ram sends address1, we1, and data_in1 to
zbt_controller. The values of address2, we2, and data_in2 are sent to the controller during the third
cycle. The value data_out1 returned by the RAM containing the contents of address1 is registered by
zbt_dual_port during the fourth cycle, and data_out2 is ready during the fifth cycle. Due to timing
constraints, the value of data_out2 cannot be registered, and therefore must be registered by the particle
filter before it is used.

The memory_controller module interacts with zbt_dual_port to provide read access to the VGA
module, read access to the particle filter, and write access to the median filter. Because a momentary
lapse in displaying video on the screen is immediately apparent and unacceptable, one of the two ports on
the dual-port ZBT is dedicated exclusively to read operations requested by the VGA module. Read
operations by the particle filter and write operations by the median filter are multiplexed by
memory_controller onto the second port of the ZBT. When the delayed interpolator_done signal is
high, indicating that a pixel of video is ready, the memory controller sends the row, column, and 24-bit
data of the pixel to the zbt_dual_port module and sets we2 high. At all other times, we2 is low and the
row and column requested by the particle filter are sent to zbt_dual_port.

4.2 Particle Filtering - Lyric
The particle filter is managed by the particle_fsm module. This module in turn makes use of the
particle_is_alive module, the vga_display_rectangle module, the linear feedback shift register modules
(LFSR_23 and LFSR_25), the pseudo-random number generator modules (PRNG_23 and PRNG_25), a
single port BRAM called particle_memory and a dual port BRAM called particle_map_dual_port. The
particle_memory is 36 bits x 512 rows, while the particle_map_dual_port is 1 bit x 2^20 rows. The
particle filter consists of 169 particles. The number is a perfect square to make initialization velocities
uniformly distributed. The exactly value is arbitrary and can be changed. 169 was found to work, so it
was used. To convert colors from RGB to the HSV color space, the hsv2rgb module was used. Figure 3
shows the block diagram for the particle filter portion of the system.

4.2.1 Particle FSM
This module consists of the FSM shown in Figure 4 that controls the particle filter. This FSM consists of
five phases: Initialization, Particle Checking, Calculating Center of Mass (COM), Spawning, and
Activating. Each phase and its associated states and functions are described below. After every field is
decoded by the ntsc_decoder, the particle_fsm receives a start signal. It then has over 30,000 cycles to
use the memory_controller to complete its function, but requires many fewer.

4.2.1.1 Initialization
When the FSM receives an initialize signal, it moves from IDLE to INITIALIZE_WAIT_FOR_START
and sets the hasValidTarget signal high and registers the target location. The FSM then moves to
INITIALIZE_POSITION after the next start. In this state, the initial positions of all 169 particles are
written to a first 169 even addresses of particle_memory which stores all the particle's positions and

9

velocities in two lines each. These initial positions are all the same, and they are inputs to the module. The
position is selected by the user using the mouse from section 4.4. Then the FSM moves to
INITIALIZE_VELOCITY. Here all the particles are given velocities starting with (-12,-12) and stepping
by two in both directions to every pair of possible velocities up to (12,12). These velocities are written in
the first 169 odd addresses of particle_memory to correspond to the positions written there in the

hsv (24)

previous state. Next, the FSM moves through SEND_TARGET_COLOR_ADDRESS,
WAIT_FOR_TARGET_COLOR and SAVE_TARGET_COLOR during which it sends the particles'
initial position to the memory_controller and awaits and then registers the returned HSV 24-bit color of
the target. Finally, the FSM goes to CLEAR_RAM in which clears every location in

rand_y(4)
vga_data
vga_addr(20)

particle_fsm

row
_count (10)

rgb (24) col_count (10)

particle_map_
dual_port

vga_data
vga_addr(20)

fsm_data

fsm_addr(20)

particle_memory
addr(9)

dout(36)

start
initialize

target_x (11)
target_y (11)

busy
all_dead

hasValidTarget

prng_23

prng_25

lfsr_23

lfsr_25

rand_x(4)
next_bit

Figure 3: The block diagram for the particle filter. The row (10), column (10), and
pixel_color (24) sent to particle_fsm to forward to the memory_controller are not drawn.
All modules have a reset and 31.5 mhz clock input.

next_bit

particle_is_alive

y (11)

x (11)

start

busy
result

contains

x(11)

y(11)
vga_display_

rectangle

rgb2hsv

memory_controller

10

IDLE INITIALIZE_
WAIT_FOR_
START

INITIALIZE_
POSITION

INITIALIZE_
VELOCITY

SEND_
TARGET_
COLOR_
ADDRESS

WAIT_FOR_
TARGET_
COLOR

SAVE_
TARGET_
COLOR

CLEAR_
RAM

initialize start

cycle 169 particles articles cycle 169 p

cycle all 220
addresses

start &&
hasValidTarget

hasValidTarget =1

PARTICLE_
CHECK_
CONTROL

PARTICLE_
CHECK

REGISTER_
PARTICLE_
VELOCITY

WAIT_FOR_
CHECK_
RESULT
clear from dual port

UPDATE_
PARTICLE_
POSITION
store to dual port

cycle 169 particles

found
dead and
living
particle

particle_is_alive_start =1

particle_is_
alive_busy !particle_is_alive_result

particle_is_alive_result

PREPARE_
TO_CALCU
LATE_COM

all_dead
busy = 0

DIVISION_
COM_X

DIVISION_
COM_Y

RESULT_X

RESULT_Y

rfd

rfd

rfd

wait for result wait for result

SPAWN_
CONTROL

SPAWN_
WRITE_
POSITION

SPAWN_
READ_
VELOCITY

SPAWN_
GET_READ_
DATA

look for dead
and living particles

SPAWN_
WRITE_
VELOCITY ACTIVATE_

PARTICLES

no more dead
particles

cycle 169 particles

busy = 0

busy = 0

Figure 4: The FSM for the particle_fsm module which
controls the particle filter.

busy = 1 by default

11

particle_map_dual_port. The particle_map_dual_port stores a bit for every position on the VGA
display. The bit is high if the position is held by a particle and low otherwise. The module makes
displaying the particles simple and efficient. Upon initialization, the RAM is completely cleared. After
that, only changes for moving, dying, and spawning particles are written to the RAM so that they can be
done quickly. The RAM is dual port so that the VGA display can continually query the
particle_map_dual_port module to check for the presence of a particle at a given location. Once the
RAM is cleared, the FSM returns to IDLE to await the next start.

4.2.1.2 Particle Checking
If the initialize signal is low and the hasValidTarget signal is still high, the FSM moves from IDLE to
PARTICLE_CHECK_CONTROL at the next start. This state manages cycling through all living particles
to check if they are still alive. Living ones will be moved to their new position, while ones that just died
will be removed. For each living particle with status ALIVE, the state first sends the address in the
particle_memory corresponding to that particle to the particle_memory to discover its position and
moves into PARTICLE_CHECK. From here, the minor-FSM particle_is_alive module is sent a start
signal along with the position of the particle that was just read out from the particle_memory. At the
same time, the velocity of the particle is requested from the particle_memory. After that velocity is
registered in REGISTER_PARTICLE_VELOCITY for use after the particle is determined to be alive or
not, the FSM waits in WAIT_FOR_CHECK_RESULT until the particle_is_alive busy signal goes down.
In this state, the particle is also cleared from the particle_map_dual_port using its current location. If it
survives, its new position will be written to particle_map_dual_port during
UPDATE_PARTICLE_POSITION. If result is low, the particle's status is set as DEAD and the FSM
moves back to PARTICLE_CHECK_CONTROL to continue to the next particle. If result is high, the
particle’s (x,y) coordinates are added to a summer over x positions and a summer over y positions
respectively. These sums will be used to calculate the center of mass of the living particles later. The new
positions of the particles, the (x,y) with the registered velocities added to them, are sent to
particle_memory as the FSM leaves WAIT_FOR_CHECK_RESULT if result is high. The FSM moves to
UPDATE_PARTICLE_POSITION, where the new position of the particle is written to the
particle_map_dual_port. Finally, the FSM returns to PARTICLE_CHECK_CONTROL to continue to
the next particle. If all 169 particles are found to be dead, the all_dead signal goes high, hasValidTarget is
set low, and the FSM returns to IDLE. Otherwise, the FSM now moves to
PREPARE_TO_CALCULATE_COM to begin the next phase.

4.2.1.3 Calculating Center of Mass
The center of mass is required for the Spawning phase, so it is calculated between Particle Check and
Spawning. The phase starts at PREPARE_TO_CALCULATE_COM, which waits for the division units
rfd ready signal. It then moves to DIVISION_COM_X and at the next rfd, sends the division unit the sum
of all x coordinates as the dividend and number of particles currently alive (total particles - number dead)
as the divisor. The FSM moves to DIVISION_COM_Y and does the same with the dividend as the sum
of all y coordinates. Then the FSM waits in RESULT_X for the division to complete and registers the
result. It moves to RESULT_Y and does the same for the y center of mass before moving on to
SPAWN_CONTROL.

4.2.1.4 Spawning
In this phase, the FSM spawn new particles to replace those that died since the last field. The state
maintains two pointers to the list of particle statuses. One will be used to find living particles, and one
will be used to find dead ones. In SPAWN_CONTROL, the FSM increments both pointers until the live
pointer points to a living particle and the dead pointer points to a dead one. A new particle will now be
spawned to replace the dead one using the velocity information from the living particle pointed to by the
live pointer. The FSM transitions to SPAWN_WRITE_POSITION and writes the position of the dead
particle to the particle_memory as the current center of mass. During this state, the status of this newly

12

spawned particle is set to SPAWNING. The purpose of this is so that the newly spawned particle is not in
turn used to spawn other particles during this iteration. Only currently living particles that have shown
they are tracking the target by being alive should be used to generate new ones. The FSM then moves to
SPAWN_READ_VELOCITY to read the velocity of the living particle out of the particle_memory. In
SPAWN_GET_READ_DATA, the velocity data is delayed a single cycle. This is because the velocity
data needs to be used to determine and write the new velocity for the spawning particle, but the BRAM
does not support a write immediately after a read. Next clock cycle, the FSM moves to
SPAWN_WRITE_VELOCITY and writes the new velocity of the spawning particle to the
particle_memory. This is determined by adding random numbers ranging from -7 to 8 to the x and y
components of the velocity of the living particle to get the velocity for the spawning particle. The random
number generation is discussed in Sections 4.2.3 and 4.2.4. The FSM finally increments the live and dead
pointers by one to make sure the next spawn check does not use the same particles and moves to
SPAWN_CONTROL.

The FSM continues this process in SPAWN_CONTROL, looking for the next living and dead particles
using the two pointers. When one pointer finds an appropriate particle, it stays with it while the other
continues to increment. The living pointer may cycle back to the same living particles if the number of
particles to be spawned exceeds the number currently alive. When the dead pointer reaches 169, however,
all dead particles have been attended to and replaced with newly spawned ones. Now all that remains is to
change the status of the new particles from SPAWNING to ALIVE. This is done in the final phase as the
FSM moves to ACTIVATE_PARTICLES.

4.2.1.5 Activating
This is the shortest and simplest phase. The FSM sits in ACTIVATE_PARTICLES and cycles through all
169 particles and sets all these statuses to be ALIVE. Now the particle_fsm has completed its work for the
current field of video and can return to IDLE to await the next start.

4.2.2 Checking Particles
This module particle_is_alive checks to see if a given particle is still alive. The FSM takes the current
position of the particle of interest as well as the color the particles is tracking and a start signal as initial
inputs. Once the FSM, shown in Figure 5, is given a particle position and a start signal, it spends a cycle
in each of nine states, from IDLE to ADD8, sending a row and column identifying a different pixel in the
3 x 3 pixel particle to the ZBT RAM to learn the color of each of the pixels in the current camera image.
Then the FSM waits 17 cycles in WAIT for the pixel color data to be read out from the ZBT RAM and
converted from RGB to HSV for better analysis. Then as the data comes in over 9 consecutive cycles in
the DATA state, the FSM compares each pixel's color against the color the particle is tracking. Small
variations in hue and larger ones in saturation and value are permitted. Under the current settings, hue
may vary by 10, saturation may vary by 31, and value may vary by 15. These may be tweaked as desired.
Because the hue and saturation play much less of a role in affecting the color when value is very high or
low, the variation in hue and saturation could be very large and the color should still be considered white
or black. Thus, a few extra special thresholds are added to check for these cases. If the value of both the
pixel and particle's assigned color is greater than 235 or less than 25, hue and saturation are ignored. If
saturation is under 25, only value is considered as normal and hue is completely ignored. If a pixel is on
the screen, as checked by the vga_display_rectangle module, and its color matches the particle's
assigned color, then a counter is incremented. If the counter exceeds a preset threshold (currently 3), then
enough of the particle's pixels match the assigned color for the particle to be considered to be still alive.
In this case, a high signal for result is returned during the RESULTS state when the busy signal goes low.
Otherwise, if the particle is deemed to be dead because too few pixels match the particle's assigned color,
then the result remains low during the RESULTS state.

13

4.2.3 Linear Feedback Shift Registers
Linear feedback shift registers (lfsr_23 and lfsr_25) are used to generate a pseudo-random sequence of
bits. Each cycle, the shift register shifts all the bits in the bus to the right one register so a single bit is
pushed out as the output of the module. A new bit is added on the left with a value determined by an xor
on the bits contained in some specified subset of the registers. An n-bit shift register using a good set of
registers for the xor will produce all 2^n - 1 n-bit strings on the bus (except for all 0's). The registers used

IDLE

busy = 1 by default

ADD1 ADD2

 col = x
 row = y + 1

ADD3

ADD4

 col = x + 2
 row = y

 col = x + 1
 row = y

if(start)
 col = x
 row = y
busy = 0

 start

RESULTS

WAIT

ADD8 ADD7

ADD6

ADD5 DATA

wait 17 cycles to
wait for data

busy = 0
result = (counter >
THRESHOLD)

 col = x + 2
 row = y + 2

 col = x + 1
 row = y + 2

 col = x + 2
 row = y + 1

 col = x
 row = y + 2

 wait 9 cycles for
all data to come in

increment counter
when received pixel
color data matches
particle color

Figure 5: The FSM for the particle_is_alive module which checks all the pixels in a
particle to see if they are the same color as the particle’s assigned color.

 col = x + 1
 row = y + 1

for the xor can be determined using a polynomials from a look-up table of good polynomials. The 23-bit
shift register uses the 5th and 23rd bits xor-ed together to get the replacement bit while the 25-bit shift
register uses the 3rd and 25th bits.

4.2.4 Pseudo-Random Number Generation
These modules serve as pseudo-random number generators to produce the pseudo-random numbers
(prng_23 and prng_25) needed to alter velocities when spawning new particles. Each module consists of
a simple four-state FSM that pulls four bits at a time from the LFSR. Specifically, the prng_23 uses
lfsr_23 and the prng_25 uses lfsr_25. Every four cycles, the module has a signed pseudo-random number
between -7 and 8 ready. When the module receives the next signal, it begins the calculation of the next
random number which is ready four cycles later and registered until the following next signal is received.
Because the LFSRs are of relatively prime sizes, four bits are used at once, and the random numbers from
the two modules are always used at the same time, the exact same pair of random numbers will not be
repeated for the order of 2^25 * 2^23 * 4 cycles, which is more than enough for this application.
Furthermore, the changing motion in the camera image of the targets being tracked also adds external
random variation to the system since the random velocities are only generated to help track this

14

random/unknown motion.
4.2.5 VGA Display Checker
The vga_display_rectangle simply checks whether an (x,y) point is within the VGA display, i.e. if
between 0 and 639 inclusive and y is between 0 and 479 inclusive. If so, contains is high, and low
otherwise. The module is used when checking pixels on particles because if part of a particle is off of the
VGA display, it should automatically be considered to be a non-matching pixel without needing to u
image data from the RAM. This also means the pixel_is_alive modu
R

4.2.6 RGB to HSV Converter - Rob
A standard conversion algorithm is used to convert the 24-bit RGB pixels contained in the ZBT video
buffer into 24-bit HSV pixels used by the particle filter. The hsv2rgb module computes the maximum
and minimum of the three R, G, and B values for a pixel in order to assign each pixel a value V. Severa
8-bit multipliers and two 16-bit, eighteen cycle pipelined dividers are used to compute the hue, H, and
s

4.3 Servo - Lyric
There are two mod
s

4.3.1 Servo PWM
The angle the servo turns to is controlled by the width of a periodic pulse sent to the servo every 20 ms.
The servo was calibrated to find the widths corresponding to 0 and 180 degrees. Every .5 milliseconds,
the servo_pwm module checks to see if the pulse width needs to be increased or decreased based on
signals. A sustained signal to turn clockwise decreases the pulse width at the rate of 1 degree / .145
seconds. Likewise, a counterclockwise signal causes the pulse width to increase at the same rate. This rate
was chosen because it empirically was slow enough for the camera to maintain a clear image. However, i
can be easily adjusted. If clockwise and counterclockwise signals or no signals are given to the module,
the module mainta
is

4.3.2 Servo Feedback
The goal of the 1984 system is to keep the target horizontally centered in the camera image. The
servo_feedback module takes the current center of mass of the particles as an input. If the center o
is to the left of a defined center region of the screen (currently 270 pixels to 370 pixels), then the
servo_feedback module is told to move the camera counterclockwise until the center of mass reac
center region of the image. Likewise, if the center of mass is to the right of the center region, the
servo_feed
c

4.4 PS2 Mouse
The ps2_module was taken in its entirety from the 6.111 Fall 2005 website. It was used to allow the use
to select targets much more easily because the laser pointer proved to be impossible to track due to si
and color variation. The module takes information from a PS/2 mouse as input and outputs the (x,y)
position of the mouse as well as signals corresponding to mouse clicks. Whenever the
p

4.5 VGA - Rob
The VGA interface takes advantage of the vga module written previously, which generates the line_count
and pixel_count signals that indicate which pixel is currently being drawn to the screen. The module also
generates the horizontal sync, vertical sync, and screen

x is

se the
le does not depend on the ZBT

AM's behavior in this situation because the return data is ignored.

l

aturation, S, for each pixel. In total, the rgb2hsv module adds twenty cycles of delay into the system.

ules used to control the servo motor which rotates the camera: servo_pwm and
ervo_feedback.

 input

t

ins the current pulse width. The pulse width is only adjusted if the system has a target it
 trying to track.

f mass

hes the

back is given a high clockwise signal. Both signals are low when the center of mass is
entered.

r
ze

 user left-clicks, the
osition of the mouse is sent to the particle_fsm module as the target location input.

 blank signals consistent with the delays expected

15

by the pipelined ADV7125 used to drive the monitor.
In addition to showing the buffered video frame held in the ZBT SRAM, the VGA module is responsible
for displaying a square representing the location of the mouse pointer, a box around the target currently
being tracked, and the location of each of the 169 particles. A cyan square representing the mouse c
location is displayed by the mouse_location module, which compares the values of line_count and
pixel_count with the current x and y coordinates of the mouse, mouse_x and mouse_y. The cursor has
pre-defined size WIDTH. If the vga's current pixel is within WIDTH units along the x or y axis from
(mouse_x, mouse_y), the pixel provided by the video frame is discarded and replaced with a cyan pixel
instead. A frame surrounding the current target is drawn similarly by the crosshair module; the frame
has a defined width and thickness, and a video pixel is replaced with a blue one whenever i
th

The particle_map_dual_port module contains a single bit for each of the display pixels. If a particle is
currently present at a given location (particle_x, particle_y), the location in the RAM corresponding to
(particle_x, particle_y) contains a boolean 1. Otherwise, the location's value is set to 0. When displa
a pixel, the vga interface queries particle_map_dual_port with its (pixel_count, line_count). If the
location contains a 1, the video pixel is replaced with a green pixel and a particle is displayed on the
screen instead. Q
a

5 Testing and Debugging - Rob and Lyric
All significant modules were first tested using Modelsim Behavior Simulation. This step alone allowed
for the removal of many bugs. Some test benches were also constructed to test several modules working
together. These tests were particularly useful in checking basic timing and ensuring the right signals wen
high during the correct states. They also helped make sure the FSMs traversed their states correctly and
that calculations were being performed correctly. Further testing continued on the logic analyzer.
logic analyzer was particularly useful in debugging the ZBT and particle filter. Outputting RAM
addresses, RAM data, FSM states, done signals and a fe
m

In general, an incremental approach toward implementing and integrating modules allowed the sy
be assembled and verified in a rational manner, and helped identify which modules were causing
problems. For example, a very noticeable flickering in the VGA screen was debugged by stepping
through the partially assembled system, adding modules individ
m

In order to test the video decoder, a large BRAM capable of storing a 256x256 black and white image w
implemented before the dual port ZBT RAM was added. Since luminance in the YCrCb color space is
the equivalent of a black and white image, only 8 bits per location had to be stored. Since the BRAM
experiences a dead cycle during a write-after-read operation, the BRAM module was clocked at 94.5MHz
to allow the module to simulate a dual-port RAM. While the temporary BRAM buffer allowed the video
decoder's operation to be verified, its large size and fa
is

Once the particle filter components were successfully tested on Modelsim, the integrated particle filter
was tested using a simple image written to a small BRAM. The image consisted of a green square on a
black background that could be moved using switches on the FPGA. Another switch was used to signal
that another iteration of the particle filter should be calculated. Using the two switches, the particle filt
could be tested to make sure it could track the green square as it started and stopped moving. The test
combined with data from the logic analyzer also helped identify and eliminate a few timing and logic
bugs in the particle filter. For example, the test made it possible to check whether the right pixels were

ursor

a

t lies within
e bounds of the frame. The frame is centered around the center of mass of the particles.

ying

uerying this BRAM incurs an additional delay; thus, the vga signals are delayed an
dditional cycle.

t

The

w other signals to the analyzer uncovered bugs
issed in Modelsim and helped identify their source.

stem to

ually until the culprit--the hex display
odule on the front of the labkit, was identified and removed.

as

st clock resulted in routing and propagation delay

sues which were resolved by switching to the ZBT.

er

16

being analyzed for each particle and ensure the correct decisions were being made based on the pixel
colors
d

After all the components were completed, another similar tested was performed with the entire screen
split into two halves of different colors. The colors were written from the video decoder module instea
the correct video data to ensure the full system was being tested. This test also uncovered a few small
timing bugs. Once those were fixed, the test showed a great example of the correctness of the particle
fi

6 Conclusion - Rob
The 1984 system successfully tracked objects as they moved through a scene. While its performance on
dark colors was poor, the system was surprisingly successful tracking skin and faces. By filtering noise
out of the image and rotating the camera to keep its target in view, the system can keep track of mobile
objects for around thirty seconds before losing its target. Video quality issues associated with interlaced
video could be addressed by adopting a double-buffering scheme in which one RAM bank is reserved
buffering the current frame of video while the other provides the VGA module and particle filter with
video pixels from the previously buffered and de-interlaced frame. Furthermore, adding vertical and
temporal coherency into the ntsc_interpolator module would increase the quality of the resulting image.
A more sophisticated particle filter that weights each particle based on how well it is currently tracking
target would improve the system as well. Combined with more advanced image filtering techniques, a
cleaner and higher-resolution video source would enable the particle filter to track the motion of smaller,
fa

7 Acknowledgements - Rob and Lyric
The authors would like to thank the 6.111 staff for their help throughout the course of the project.
Everyone was very willing to help with any issues encountered with the design, Xilinx, or the FPGA. In
particular, we'd like to thank Javier Castro for his guidance and continued attention as well as empathy
when Xilinx's interface and behavior left everyone frustrated and confused. Additionally, the assistance
of Nathan Ickes in explaining the i2c protocol and the finer points of using DCMs and timing constrain
proved invaluable. F

. The test also uncovered a bug in the spawn code that cause an infinite loop when all the particles
ied.

d of

lter on the fake video data and showed all the system pieces worked together properly after integration.

for

its

ster moving objects, including the laser pointer which proved to be impossible to follow reliably.

ts
urthermore, Rob would like to add that he would love to see more infinite 'Find'

boxes in the future.

	1984: An Object Tracking Surveillance System
	Abstract

