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Abstract 

Due to fundamental physical constraints, the rate of growth of central processing unit clock 

speeds is beginning to fall short of the predictions set forth by Moore’s Law.  As a result, 

researchers are now exploiting the performance gains possible from multi-core processing.  

This project aims to introduce some of the difficulties presented by multi-core computing and 

what is needed to achieve an operational multi-core system. 
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1 Introduction 

 This document describes the design, implementation details, and analysis of the multi-

core Beta computer developed by Christopher Celio and Jonathan M. Long as the final 

laboratory project for 6.111, Introductory Digital Systems Lab, a course of the MIT Electrical 

Engineering & Computer Science Department offered during the Spring 2007 semester. 

 

1.1 The Game of Life 

 As a test of the performance benefits of a multi-core system, our system plays the 

zero-player Game Of Life (GoL).  The Game of Life is a simple mathematically model to 

simulate cellular life cycles.  The playing field consists of a matrix of Boolean values.  Each 

cell is an element in the matrix and can be either alive or dead.  Each round, one must visit 

each cell, compute the number of adjoining neighbors that are alive, and deduce the next state 

of the cell. The playing field can easily be divided into sections, giving each core its own 

domain.  A screenshot of the Game of Life, as generated by the Multi-Core Beta Computer. 

 
 

Figure 1: Screenshot of the Game of Life being played on the 

Multi-Core Beta Computer. 

 

1.2 Design Overview 

 The Multi-core Beta Computer consists of four Beta cores.  Each core has direct 

access to a private copy of instruction ROM and private memory for stack storage.  Each 

Beta processor has access to “shared resources.”  Shares resources include the PS2 Driver, 

Character Buffer, the Game Of Life Buffer, and a small amount of memory space used for 

synchronizing the Betas called Sync RAM.   

 Because there is only one port for access to shared resources, a memory arbiter acts to 

coordinate access to the shared memory bus. If two processors attempt to access the shared 

resources at the same time, the arbiter connects one processor to the memory bus, and stalls 

the other processor. 
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Memory decoders act as the glue for the system.  A private memory decoder coordinates 

data directly into and out of the Beta processor.  For example, it is in charge of either 

connecting the processor to private memory, or routing the data to the arbiter if the processor 

is accessing shared memory.   

A shared memory decoder decodes data from the memory arbiter and routes the data to 

the correct module, such as routing access to the Character Buffer when a processor would 

like to print to the screen. 

A display controller accesses the second port of the Character and the Game Of Life 

Buffers.  The display controller reads the data in the buffers, and translates the data to visuals 

to be displays on a VGA monitor. 

 

 
 

Figure 2: High Level Multi-Core Beta Computer block diagram.  Note that only 2 Beta microprocessors are 

shown. Additional Betas are added similarly.  All Betas communicate with the shared memory via the memory 

arbiter.  Each Beta has two memory access points: one for its personal copy of the instruction memory and one 

for access shared memory. 

 

2 Implementation Description 

 In this section, the design and implementation of the multi-core Beta computer 

modules are described. 

 

2.1 The Harvard RISC Beta Processor 

 

The Beta microprocessor is a construct used as a teaching tool to introduce Electrical 

Engineering & Computer Science students at MIT to processor design, instruction sets, and 

computer architecture.  It is used in the 6.004: Computation Structures core curriculum class, 

and all students implement their own beta processor using a Hardware Description Language.   
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In building a multi-core computer in Verilog, we wanted to focus as little on software 

as possible.  Implementing the Beta processor made the most sense because assembly editors 

and compilers were readily available.   

The Reduced Instruction Set Computer, or RISC, Beta processor implements a set of 

simple instructions such as mathematical operations (with the exception of divide), logical 

operations, memory accesses, and branching instructions.  All instructions are executed in a 

single cycle, with the exception of LD and LDR (memory reads), which take two cycles.  The 

Harvard Architecture means that the processor has two ports for accessing memory, one port 

for instruction data and one port for data memory (See Section 2.1.2: Instruction Memory & 

Harvard Architecture). 

 

 
Figure 3: The 6.004 Beta processor.  This is a single-stage, Harvard architecture processor 

designed to access asynchronous memory.  It is very similar to our own implementation of the 

Beta processor.  The main differences include the addition of stall logic, additional data lines 

for CPU ID# and Core Count, and changes to the Program Counter to interface with 

synchronous memory.  Image courtesy of the 6.004 “Building a Beta” lecture notes. 

 

 

The Beta has four main modules: the program counter, the register file, the ALU, and 

the control logic.  The program counter is in control of setting the Instruction Address and 

sending it to the instruction memory.   

The Register File holds 31 registers that act as small, 32-bit distributed RAM that can 

be accessed quickly by the processor.  This is the best place to store temporary variables.  

Thirty-two registers can be addressed, but R31 always returns zero. 

The ALU, or Arithmetic Logic Unit, is in the functional heart of the processor.  It takes 

in two 32-bit inputs, and a 5-bit function select signal, and outputs a 32-bit signal.  The ALU 

can perform addition, subtraction, multiplication (but no division), shift right, shift left, shift 

right arithmetic, AND, OR, XOR, , and comparison logic.  The inputs to the ALU originate 

either from registers from the Register File, or as a sign extended literal from the instruction 
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data.  The 32-bit output can either be sent out as the memory address, or multiplexed as write 

data to the Register File.  

The Control Logic module is the brain of the processor.  It takes in the 6-bit opcode 

from the 32-bit instruction data signal, and deduces the appropriate control signals for the 

processor.  It also deals with external stall logic sent to it either by the user (to pause 

execution of the Beta) or from the arbiter (to stall the Beta until it is safe to access shared 

memory).  

The Beta processor is well described through lecture notes and laboratory assignments 

found on the 6.004 website: http://6004.lcs.mit.edu/ .  Though wire diagrams accurately detail 

most of the modules, a number of differences between the 6.004 HDL simulation 

environment and the 6.111 FPGA environment necessitated a number of modifications. 

The biggest difference was that the Virtex BRAM modules used as memory for the 

project are synchronous modules.  Therefore, the LD and LDR operations (memory reads) 

now take two cycles to complete: the first cycle generates the memory address, on the clock 

edge the value is latched into the memory module, and on the second cycle the value for the 

specified memory address is returned to the Beta processor.  This also necessitated adding 

stall logic to the beta processor so that two cycle reads were stalled on the first cycle to allow 

time for the memory data to return to the Beta.   

The stall logic also came in to use for another reason.  In a multi-core environment, in 

which multiple processors are attempting to access limited resources, some beta processors 

need to be stalled until the resource becomes open.   

To facilitate the operation of the processors in a multi-core environment, two 

additional instructions were added to the Beta instruction set: CPUID (retrieve the CPU’s 

unique ID number) and NCORES (retrieve the total number of cores in the system).  Once a 

processor knows its ID and the total number of cores, the software can appropriately control 

each processor to perform the tasks specific to it.  For example, CPU#0 of two cores knows 

to control the top half of the Game of Life playing field, while CPU#1 of two cores takes the 

bottom half.   

2.1.1 Instruction Memory & the Harvard Architecture 

 A naïve approach to a multi-core architecture would involve a single shared memory 

resource that all processors access.  If the processors must share a single port of access, an 

Arbiter is needed to decide which processor gets assess, tie that processor to the memory bus, 

and stall all other processors attempting to access memory until it is their turn. 

 Unfortunately, the RISC Beta completes almost all of its instructions in a single cycle.  

Therefore, the processor must access memory every clock cycle to retrieve instruction data.  

If all processors had to access the same shared, single-port memory resource, there would be 

an unacceptable bottleneck.  A multi-core system, in which each core must share instruction 

memory with all other cores, would effectively be reduced to a more expensive, threaded 

single-core system.   

 There are a number of solutions to this dilemma.  One method involves using 

instruction caches to allow each processor to store a small set of instruction data.  

Unfortunately, this does not solve collisions during cache misses that will undoubtedly occur 

during interrupts and process changes.   

 Our solution was to go with a Harvard architecture, in which each processor is given 

its own private ROM copy of the instruction data, completely separate from data memory 

(See Section 2.5 Sync RAM for more details).  
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2.1.2 Private Data Memory 

 The Operating System uses a regular 300Hz clock interrupt to switch between user 

processes.  Both clock and keyboard interrupts also force a switch from user to kernel 

operations.  To allow the processor to switch between different threads of operation, each 

process has its own stack space and user-state (register contents).  Switching between 

processes requires storing the current user stack and loading a previous processor state.   The 

stack is also used to pass information between functions such as parameters and return 

values.  Thus, it is imperative that each processor has its own memory to store its stacks and 

user-states.  

 

2.1.3 Software 

 All software was written in Beta Assembly code in the BSIM java program.  The 

BSIM application can compile the assembly text file into a .coe file.  Python scripts provided 

by Professor Terman could instantly convert .coe files into .v files, instantiating the 

appropriate number of Block RAM modules, initialized with the program memory.  The 

Python scripts were modified by Matt Long as needed. 

 The Operation System is a modified version used as part of the class 6.004 to teach 

students about operation systems and kernels.  The code was modified by Professor Chris 

Terman of 6.004 and 6.111 for use on an FPGA. The OS has a simple time-sharing kernel 

that can handle a number of user processes.  The OS also has a set of supervisor calls which 

are used to interface with the keyboard input, the character buffer display, and semaphore 

control between user processes.  None of this code was modified by us for our project. 

 We did however, completely rewrite two of the three user processes for our use.  The 

former Pig Latin translation process now simply echoes what is typed by the user and then 

prints a role-call of all activated processors: 

 

00000001> Greetings 

GREETINGS: CPU_ID# 0 of 4 

  : CPU_ID# 1 of 4 

  : CPU_ID# 2 of 4 

  : CPU_ID# 3 of 4 
Figure 4. Typical Command line Output: The user can type in a message at the command line.  

Because Core#0 is given absolute preference by the memory arbiter, Core#0 captures all 

keyboard input.  Upon hitting “ENTER”, Core#0 echoes the message, and then appends its ID# 

and the core count.  When Core#0 has finished, the remaining cores write their ID# and core 

count in turn.  This demonstrates the synchronization of the cores, and the ability to write to the 

character buffer without glitches or collisions on the memory bus. 

 

 

 By having each core print to the screen, we could both verify that the core was alive 

and capable of writing to the shared character buffer.  Also, by having each core write in 

sequence, we could demonstrate that the cores were synchronized and communicating 

between each other correctly.  Furthermore, we could verify that each core correctly knew its 

own ID and the number of cores in the system.   

 The second user process we rewrote was used to play the Game of Life.  Based on the 

Core ID# and the number of cores, each processor could calculate the bounds of the playing 

field it should play.  The field was allocated by dividing the screen horizontally.  For a quad-

core system, the first core received the top quarter of the screen, the second core the second 

quarter, and so on.  The playing field bounds for a single core is computed as follows: 

 



 Celio & Long 7 

Core ID#0: x = [0, width) 

        y = [y_min, y_max) 

 

Where y_min = core_id * (HEIGHT / core_count) 

Y_max = y_min + (HEIGHT / core_count) 

 

Because divide operations were not allowed, a case-select statement was used to assign the 

y_min and y_max bounds.  The Game of Life playing field is stored as two matrices in the 

Game of Life RAM module.  Execution of a round involves reading the game state of each 

cell from one matrix, and writing the results, or the state of the next round, into the second 

matrix.  A Buffer Select Register tells the VGA Display Controller which matrix to display to 

the monitor.  The Buffer Select Register also helps the Beta cores remain synchronized.  

When the Buffer Select Register changes value, the cores know that a new round has begun 

(See Section 2.5 Sync RAM for more details). 

2.2 Private Memory Decoder 

 For every Beta processor in a system, an accompanying private memory decoder is 

also instantiated.  The private memory decoder multiplexes both outgoing (write) and 

incoming (read) operations from/to the associated Beta.  For writes, the decoder routes high 

write-enable signals and write data to 1) the Beta’s private data memory, 2) shared memory 

via the Memory Arbiter, or 3) the GoL buffer-select register (only accessed by Processor #0). 

For reads, the decoder redirects high memory output enable signals to the arbiter if an address 

within the appropriate address space is specified  by the Beta.  Furthermore, the decoder 

multiplexes incoming read-data (also based on memory address) from the three sources listed 

above.  This memory address-space is translated as shown in Table 1. 

 

Memory Address Memory Element 

0x00000000 – 0x00007FFF Private Data Memory 

0xFFFFFF00 GoL buffer-select Register 

All other addresses Shared Memory (Arbiter) 
Table 1: Partition of the address space as seen by the private memory decoder. 

2.3 Memory Arbiter 

 

 The memory Arbiter serves to connect all of the Beta processors to all Shared memory 

resources.  All processors route their memory addresses, memory write data busses, and read 

request signals to the Arbiter.  By monitoring each processor’s write and read signals, the 

Arbiter can deduce which processors are trying to access shared memory.  The Arbiter must 

then choose one processor to connect to the memory bus, and stall the other processors 

attempting to access shared memory.  In the interests of time and simplicity, our Arbiter 

design gives preference to the processor with the lowest ID. 

2.4 Shared Memory Decoder 

The Shared Memory Decoder takes read/write requests from the Memory Arbiter and 

forwards them to the appropriated shared memory element.  As with the Private Memory 

Decoder, forwarding is done by analyzing the memory address.  In the case of writes, after 

deciding which memory element a read/write is intended for, the decoder forwards write-

enable and write-data signals to the appropriate data element.  In the case of reads, the 

decoder multiplexes read data based on address, selecting the data from the intended memory 
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element.  The memory elements managed by the Shared Memory Decoder are shown in 

Table 2 along with their associated address space. 

 

 

 

Shared Memory Element Address Space 

Character Buffer 0xFFFF8000 – 0xFFFF8D00 

Game of Life RAM A 0xFFFF8D01 – 0xFFFFC600 

Game of Life RAM B 0xFFFFC601 – 0xFFFFFFEF 

GoL Buffer Select Register 0xFFFFFF00 

Sync RAM 0xFFFFFF01 – 0xFFFFFFF7 

PS2 (Keyboard) Buffer 0xFFFFFFF8 

System Timer 0xFFFFFFFC 
Table 2: Partition of the shared address space amongst all shared 

memory elements as seen by the Shared Memory Decoder. 

2.5 Sync Ram 

 For our system, a small amount of memory is needed for the Beta cores to 

communicate with one another for synchronization purposes.  The Sync RAM is a module of 

sixty-four 1-bit registers, where each register can be addressed for reads and writes.  The 

Sync RAM can be treated as a 64 element array of Boolean values. Two different methods 

were used for synchronization, one for The Game of Life process, and one for the command-

line process. 

In the command-line mode, when a user presses the “ENTER” key on the keyboard, the 

desired output is to have each core write to the character buffer to note its presence  (See 

Figure 4).  To prevent the output from being completely garbled, it was necessary to only 

have one core write to the character buffer at a time.  When a user presses “ENTER”, CPU#0 

immediately begins writing to the display.  When it finishes, it writes a Boolean true in its 

place in the table( “CPU_List” is an abstraction for a Boolean array inside Sync RAM): 

 

CPU_List[core_id] = “TRUE” 

 

CPU#1 monitors the CPU_LIST[0] .  When it sees CPU#0 has finished, it begins 

writing to the monitor.  When CPU#1 finishes, it writes to the Sync RAM and CPU#2 begins 

writing.  In this manner, each CPU monitors the Sync RAM and waits for the previous CPU 

to finish its task.  The last CPU has the job of clearing the registers in Sync RAM used by the 

command-line process.  When a CPU notices its own entry in the Sync RAM array has been 

cleared, it knows that the last CPU has finished, and all cores are ready for the next 

“ENTER” keystroke. The GameOfLife synchronization is handled a little differently.  It is 

very important that all CPUs are synchronized, and do not begin a round until the previous 

round has finished. When a CPU has finished its round, it “Checks in” by writing true in its 

spot in the Sync_RAM.  CPU#0 is tasked with monitoring the array and deducing when all 

processors have finished: 

 Once CPU#0 has found that all cores have finished, it clears the Sync RAM registers 

used for the GameOfLife, and then changes Buffer Select Register.  All checked in cores 

(except CPU#0) monitor the Buffer Select Register, and when they realize its value has 

changed, they know to begin the next round: 

 

//begin Round 

 Current_state = Buffer_Select Register 
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 ….. 

//perform Calculations 

 Next_state = ~current_state; 

 

 While(Next_state != Buffer_Select_Register) { 

  //wait here until CPU#0 signals to begin next  

  // round by modifying Buffer_Select_Register 

 } 

 

  To prevent memory congestion in reading the Buffer Select Register, it is wired directly to 

each core’s private memory decoder. 

 

2.6 PS2 Driver & Keyboard Support 

 The keyboard used for the command line prompt was connected to the system through 

a PS2 driver written by Professor Terman.  Keyboard support was beyond the scope of our 

project, but we did find a use for the keyboard as a debugging tool.  For example, hitting the 

“ENTER” key released a key to execute a section of Process 1 code.  Therefore, we could 

place our own code in the loop, such as flipping bits in the video buffer, to verify the Betas’ 

ability to access specific memory locations. 

 Though we did not code the driver, we did spend time to insure that the Betas could 

properly talk to the PS2 driver as a shared memory resource.  Unfortunately, the PS2 driver is 

not designed for multi-core use, and it would require a reworking of the OS keyboard service 

call to allow all Beta’s access to the keystrokes entered by the user.  The problem lies in the 

fact that the PS2 Driver’s FIFO buffer has a read_pointer that is incremented every time it 

detects that it has been accessed.  Therefore, the first Beta that reads the driver gets the 

character data.  Adding a counter to the Driver does not fix the problem for two reasons: 

because of the complexities of how the driver deduces if it has been read, and because the 

arbiter may stall someone who is in the middle of accessing the PS2 Driver and may have to 

start again (this is also an artifact of the arbiter always gives preference to CPU#0).   

 

2.7 32-bit Hex Display 

 The 32-bit Hex Display is Professor Terman’s code, provided to 6.111 students as an 

excellent abstraction module to effortlessly send 32-bit signals for display on the 6.111 Lab-

kit’s Hex display.   

 The hex display was used almost exclusively to monitor the instruction addresses of 

each of the cores.  Even at 27 Mhz, it was very easy to deduce the behavior of each core from 

the Hex Display.  For example, a solid 0x0618 denotes an illegal opcode crash (usually from 

attempting to read an instruction from reserved memory space), while oscillations in the 1E80 

region denote a processor waiting to receive the command from CPU#0 to begin the next 

round in the Game of Life.  

 

2.8 VGA Display 

 

The VGA Display subsystem retrieves and visualizes information from the Game of Life 

and character buffers.  The display is set to toggle between a terminal mode, which serves as 

a command line prompt for keyboard interaction with the Betas, and the Game of Life mode, 
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which displays the 120 by 120 grid of cells.  A block diagram of the VGA Display subsystem 

is shown in Figure 5. 

 

 
Figure 5: The VGA Display system.  Each display module has a dedicated read-only access 

port to the appropriate shared memories.  Use of a Font ROM allows for straightforward 

modification of font styles.  Outputs of each display mode are continually computed to allow 

for seamless display transitioning. 

 

2.8.1 VGA Controller 

The VGA Controller module takes the pixel_clock and reset_sync signals as inputs.  

From these inputs, the controller generates the following signals: pixel_count, line_count, 

blank_b, hsync, vsync.  Of these outputs, blank_b is wired directly to the VGA_Out signals 

used to drive a VGA monitor.  The raw hsync and vsync signals are passed through a simple 

sync delay module that delays the signals by two clock cycles.  This is done to allow the 

VGA color and blanking data to pass through a digital-to-analog block before being rejoined 

by the synching signals.  The pixel_count and line_count signals are both 10-bit signals that 

are used by the Terminal Display and Game of Life Display modules (described below) to 

calculate what color data is sent for each pixel of the display.  All of the module’s outputs are 

derived from the pixel_clock input as well as the VGA timing parameters for a 640 x 480 

display running at a 75 hz refresh rate, as shown in Table 3. 

 

 
Parameter Value 
PIXELS 800 
LINES 525 
HVID 640 

HFRONT 16 
HSYNC 96 
VVID 480 

VFRONT 11 
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VSYNC 2 
Table 3: VGA Timing parameters. Note that HBACK and 

VBACK parameters are also defined, but never used in 

calculation and are thus not shown in the above table. 

 

In the event of a HIGH reset_sync signal, the VGA Controller module is designed to 

produce a blank (black) display.  While an 800 x 600 pixel display was originally planned, 

peculiarities of the particular monitor model being used for the project and a lack of clear 

monitor documentation prevented the use of an 800 x 600 display.  However, due to the 

modularity of the VGA controller implementation, modifications to achieve any desired 

VGA display size and refresh rate can be achieved simply by making appropriate changes to 

the values in the table above. 

 

2.8.2 Terminal Display 

The Terminal Display module constantly displays the contents of the 80 x 40 character 

buffer, one of the memory modules within the system’s shared resources.  The Terminal 

Display module takes as inputs the pixel_clock, pixel_count, and line_count signals.  With a 

display size of 640 x 480 pixels and an 80 x 40 character display, each character occupies an 

8 x 12 region of the screen.  The Terminal Display module continually calculates 1) which 

line of characters (0 – 39), 2) which character within that line (0-79), 3) which row of pixels 

within that character (0-11), and 4) which pixel of that row (0-7) corresponds to the given 

screen position specified by pixel_count and line_count values. 

From the line and character values calculated as described above, a character address is 

calculated by the formula:  

 

charAddress = (80 × Line) + Character 

 

Note that addresses are referenced from the top-left corner of the display, i.e. the 

address of the character in the top-left corner is zero and the address of the bottom-right 

character is 3,199.  Since the VGA protocol scans horizontally, the address scheme of the 

character buffer behaves similarly in that the address increments from left to right across each 

line of characters.  The calculated character address is then sent to the Terminal Display’s 

dedicated port of the character RAM module.  Since the display is only interested in reading 

character codes and not writing them, this is a read-only port.  Note that in order to allow 

enough time to finish determining the color output data, character addresses sent to the 

character RAM are actually calculated from the “next line” and “next character” rather than 

the currently specified position. 

After receiving an 8-bit character code from the character RAM, the Terminal Display 

queries its own Font ROM to determine how to represent the character on screen.  Rather 

than fetching data for the entire 8 x 12 character, a single 8-bit row of data is retrieved one at 

a time.  This is done using the row values calculated from the given pixel_count and 

line_count.  Once a given row of a character (i.e. a “font byte”) is retrieved from the ROM, 

the ON/OFF status of the current pixel is found by analyzing the proper bit of the row.  If the 

bit is HIGH, the foreground color, white, is output.  If the bit is LOW, the background color, 

blue, is output. 

Since seven of the eight bits of a character code are used to specify a character (the 

high-order bit is used to indicate if the color scheme should be reversed), the Font ROM 

allows for up to 128 (2
7
) distinct character definitions.  Thus, the total needed size of the font 

ROM is 128 x 8 x 12 = 12288 bits.  On the 6.111 lab-kit, this can be realized within a single 

block RAM module. 
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2.8.3 Game of Life Display 

The Game of Life Display (GoL Display) module is responsible for continually 

representing the state of the GoL buffer.  Similarly to the Terminal Display module, the GoL 

Display module takes the pixel_clock, pixel_count, and line_count signals as inputs.  The 

module continually determines within which cell of the 120 x 120, if any, is being specified 

by pixel_count and line_count.  Each cell is represented by a 4 x 4 square on the monitor, 

resulting in a 480 x 480 pixel square being used by the grid.  Cells are identified by address 

calculated as follows: 

 

cellAddress = (120 × Line) + Column 

 

 Cell addresses are referenced from the top-left corner of the game board and 

increment horizontally across the board from left to right.  With a 120 x 120 grid, there are 

14,400 cells to be displayed with cell addresses ranging from 0 to 14,399.  The calculated cell 

address is then sent to a dedicated read-only port of the GoL memory unit.  On the next 

positive clock edge, the single bit of data stored at the reference address (the LIVE/DEAD 

state of the cell) is returned to the GoL Display module.  The pixel color output by the GoL 

Display module is chosen based on the live/dead status: white for live cells, black for dead 

cells.  To allow for processing time, as with the Terminal Display, the address of the “next 

line” and “next column” is actually used to calculate the cell address that is sent to the GoL 

memory.  Thus, the live/dead status will be available during the next cycle (i.e. when the 

“next cell” has become the current cell) to determine color output. 

 Outside of the 480 x 480 grid, an eight pixel wide wall is drawn (in white) to delineate 

the edge of the game.  Beyond the wall is unused space that, with additional time, could be 

used to display statistics about the game such as generations per second, total generations 

calculated, etc.  Note that these statistics are currently being displayed on the 16 character 

hex-display. 

 

2.8.4 VGA Top Module 

The VGA Top Module primarily serves as the interconnect of the VGA Controller, 

Terminal Display, and GoL Display modules.  Also within the VGA Top module is a small 

amount of logic responsible for multiplexing the RGB color data generated by the Terminal 

and GoL Displays.  An input driven by a switch on the 6.111 lab-kit is used as the selector bit 

to toggle between terminal and game display modes. 

As a last minute addition, in order to show school pride, supplementary logic was 

added in the VGA Top Module to generate the MIT logo.  The logo is centered within the 

480 x 480 Game of Life field and can be toggled on/off via a switch on the 6.111 lab-kit. 

 

2.9 Game of Life Memory 

The state of the Game of Life is stored between two identical RAM modules.  Two 

RAMs are needed so that a previous generation can be read from one RAM while the next 

generation is calculated and then stored in the other.  Furthermore, two initial game states are 

stored in ROMs, one of which is loaded into the GoL RAM modules upon system 

startup/reset.  A GoL memory manager module and its supporting modules are implemented 

to support RAM toggling and loading the RAMs from ROMs. 
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2.9.1 Game of Life RAM 

The GoL Memory module instantiates the two symmetric GoL RAMs named bufferA 

and bufferB.  The RAMs have dual access ports: 1) a read-only port for the VGA Display 

subsystem and 2) a read-write port accessed by the system Beta cores.  While there are two 

RAMs in the module, only one address, data-in, and data-out bus is provided to the outside 

world.  To choose which of the two RAMs is read/written by a Beta, a distinct 32-bit memory 

address is associated with each RAM.  There addresses are decoded by the Shared Memory 

Decoder (see Section 2.4) and translated into two buffer-select bits, one for each RAM.  For 

proper operation only one of the two buffer-select bits should be HIGH at any given time.  

The buffer-select bits are used to enable their associated RAMs for writing as well as 

multiplex among the data retrieved from each RAM for reading. 

To decide which of the two RAMs the VGA Display receives its data from, a 

ram_select register is periodically written to by a Beta.  Every read request from the VGA 

Display is processed by both RAMs, the data retrieved is then multiplexed by the ram_select 

register before being returned. 

 

2.9.2 Game of Life ROMs 

Two Game of Life states are stored in corresponding ROM modules.  The GoL ROM 

modules consist of a single read-only port used by the GoL Memory Manager upon a system 

boot/reset to load an initial state into the GoL Memory module.  Each state is stored in the 

lower 14,400 bits of the BRAMs that realize the two ROMs.  A dual “Gosper’s Gun” 

configuration is stored in one ROM and was chosen since the configuration ensures a game 

evolution that persists indefinitely.  The other ROM stores a state which is simply a randomly 

chosen series of ones and zeros. 

 

2.9.3 Game of Life Load Engine 

 The GoL Load Engine is responsible for loading the state stored in one of the two 

GoL ROMs into the GoL memory upon system boot/reset.  The engine is triggered by a 

“start” signal received from a level-to-pulse converter which has the system reset signal as its 

input (note that the reset signal is asserted on system boot as well as the manual reset button).  

Thus, on the negative edge of the reset signal, the engine is triggered to begin loading.  To 

ensure that writing to the GoL RAMs does not interfere with Beta operations, a busy signal is 

output to stall all Beta cores for the duration of the load. 

 Once started, the engine performs the load by incrementing through all 14,400 cell 

addresses.  Each address is first sent to the GoL ROM selected by a user switch.  On the next 

clock cycle the same address is then sent to the GoL RAM along with the data output from 

the ROM and a HIGH write-enable signal.  Thus, a load takes approximately 14,400 clock 

cycles to complete.  After loading the last address, the engine’s busy signal is unasserted, 

allowing the Betas to begin functioning. 

 

2.10 Lab-kit Top Module 

 The primary role of the top module is to serve as the interconnect for all the modules 

described above.  Additionally, the top module assigns all lab-kit inputs and outputs to their 

appropriate signals.  Outside of these two standard tasks, the top module contains logic for 

several additional features. 
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 First, the top module contains a clock multiplexer that allows dynamic clock rate 

shifting.  This feature was added so that a suitable clock rate, i.e. one that is slow enough to 

prevent memory read/write glitches yet fast enough to produce reasonable game performance, 

could be found without the need to recompile the project simply for the sake of changing the 

system clock.  Second, the top module generates timer interrupt signals needed by the Beta 

microprocessors for process time-sharing. 

 Finally, the top module calculates performance statistics of the Game of Life.  First, 

the total number of generations calculated by the system is calculated by counting the number 

of times the GoL ram select register goes high.  This value is displayed on the four left most 

digits of the character display on the 6.111 lab-kit.  Second, a measure of generations per 

second is computed.  The generations per second metric is calculated by registering the 

generation count every second and then taking the difference between the current generation 

count and the previous generation count.  Thus, the generations per second count is updated 

once per second rather than continuously.  The generations per second is also shown in the 16 

digit character display on the 6.111 lab-kit. 

 

3 Project Results 

 As whole, our project was very successful at providing compelling visual evidence of 

the system performance gains from multi-core processing.  Dynamically changing between 

one, two, and four cores resulted in a linear speed-up of the number of Game of Life 

generations calculated per second.  Being able to visually observe these system speed-ups on 

screen provides conclusive evidence that huge performance gains are possible in the field of 

multi-core processing.  It is important to note that software capable of taking full advantage 

of a multi-core architecture is of critical importance to exact any performance gains. 

 While we had hoped to demonstrate as many as eight or sixteen cores functioning in 

parallel, getting four cores to behave correctly without causing a system crash proved to be a 

difficult task in itself. 

 

4 Conclusions & Future Work 

 

 Though there are a number of improvements we would like to make to the system, we 

still conclude that our project was a total success.  Throughout the project, we remained 

reserved about the chances of implementing a fully working single-core system that married a 

Beta processor with a video buffer and Display Controller, knowing that many projects fail to 

successfully integrate all parts.   

 Though we synthesized and tested an octo-core version of our system, we realized that 

our simple memory arbiter was not adequate for more than four cores.  By giving absolute 

preference to the lowest core ID#, the higher numbered cores found themselves locked out of 

accessing shared resources. 

 Our current architecture can comfortably fit eight cores before using up all available 

Block RAM memory (and thirty percent of LUT’s).  A more miserly use of BRAMs could 

dramatically reduce the overhead involved and allow for the maximum use of LUTs.  We 

treated all BRAMs serving as instruction memories as single-port memory blocks from the 

point of view of the Beta processors.  However, it would be possible to halve the number of 

BRAMs used for instruction memory by dual porting the instruction memory ROMs.  

Caching could also further reduce the footprint of the instruction memories by letting more 

betas share instruction memory.  Each beta also has a private copy of data memory.  In the 

interest of time, this copy of data memory is a complete copy of instruction memory.  This 
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could be easily reduced to a few hundred bytes by accurately measuring the amount of stack 

space each user process needs, and changing the memory addresses in software to more 

efficiently utilize a smaller private memory space.  Therefore, we estimate, with careful 

memory control, that as many as 24 Beta processors could be implemented on the 6.111 

FPGA Lab-kit.  However, through personal experience, we believe the limiting factor is 

memory access of a single-port of shared resources, and the routing lengths for all of the 

cores to be routed to the memory arbiter.  Unfortunately, adding new cores to the system 

comes at a cost.  It costs more LUTs, more memory, longer and more difficult routings to 

reach the shared resources, more collisions in accessing shared resources, and slower clock 

speeds.    

 Our design worked optimally with four cores at a little under 27Mhz.  However, 

adding more cores would quickly require a complete architecture redesign from the ground 

up.  System architects who hope to leverage more cores will have to use more novel methods 

of sharing resources and synchronizing cores. 
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