

Multi-Core βeta Computer

By Christopher Celio

and Jonathan M. Long

Abstract

Due to fundamental physical constraints, the rate of growth of central processing unit clock

speeds is beginning to fall short of the predictions set forth by Moore’s Law. As a result,

researchers are now exploiting the performance gains possible from multi-core processing.

This project aims to introduce some of the difficulties presented by multi-core computing and

what is needed to achieve an operational multi-core system.

Massachusetts Institute of Technology

6.111: Introductory Digital Systems Laboratory

TA: Amir Hirsch

May 17, 2007

 Celio & Long 1

Table of Contents

1 Introduction ...2
1.1 The Game of Life...2

1.2 Design Overview ...2

2 Implementation Description..3
2.1 The Harvard RISC Beta Processor ...3

2.1.1 Instruction Memory & the Harvard Architecture ..5

2.1.2 Private Data Memory ...6

2.1.3 Software...6

2.2 Private Memory Decoder ...7

2.3 Memory Arbiter ...7

2.4 Shared Memory Decoder ...7

2.5 Sync Ram ..8

2.6 PS2 Driver & Keyboard Support ..9

2.7 32-bit Hex Display...9

2.8 VGA Display ...9

2.8.1 VGA Controller.. 10

2.8.2 Terminal Display.. 11

2.8.3 Game of Life Display ... 12

2.8.4 VGA Top Module .. 12

2.9 Game of Life Memory ... 12

2.9.1 Game of Life RAM .. 13

2.9.2 Game of Life ROMs... 13

2.9.3 Game of Life Load Engine ... 13

2.10 Lab-kit Top Module ... 13

3 Project Results ... 14

4 Conclusions & Future Work ... 14

5 Acknowledgements .. 15

List of Figures and Tables

Figure 1: Screenshot of The Game of Life………………………………………..2

Figure 2: High Level Multi-Core Beta Computer block diagram………………...3

Figure 3: The 6.004 Beta processor……………………………………………….4

Figure 4: Typical Command line Output………………………………………….6

Figure 5: The VGA Display system……………………………………………….10

Table 1: Private Memory Decoder Address Space………………………………..7

Table 2: Shared Memory Decoder Address Space………………………………..8

Table 3: VGA Timing Parameters………………………………………………...10

 Celio & Long 2

1 Introduction

 This document describes the design, implementation details, and analysis of the multi-

core Beta computer developed by Christopher Celio and Jonathan M. Long as the final

laboratory project for 6.111, Introductory Digital Systems Lab, a course of the MIT Electrical

Engineering & Computer Science Department offered during the Spring 2007 semester.

1.1 The Game of Life

 As a test of the performance benefits of a multi-core system, our system plays the

zero-player Game Of Life (GoL). The Game of Life is a simple mathematically model to

simulate cellular life cycles. The playing field consists of a matrix of Boolean values. Each

cell is an element in the matrix and can be either alive or dead. Each round, one must visit

each cell, compute the number of adjoining neighbors that are alive, and deduce the next state

of the cell. The playing field can easily be divided into sections, giving each core its own

domain. A screenshot of the Game of Life, as generated by the Multi-Core Beta Computer.

Figure 1: Screenshot of the Game of Life being played on the

Multi-Core Beta Computer.

1.2 Design Overview

 The Multi-core Beta Computer consists of four Beta cores. Each core has direct

access to a private copy of instruction ROM and private memory for stack storage. Each

Beta processor has access to “shared resources.” Shares resources include the PS2 Driver,

Character Buffer, the Game Of Life Buffer, and a small amount of memory space used for

synchronizing the Betas called Sync RAM.

 Because there is only one port for access to shared resources, a memory arbiter acts to

coordinate access to the shared memory bus. If two processors attempt to access the shared

resources at the same time, the arbiter connects one processor to the memory bus, and stalls

the other processor.

 Celio & Long 3

Memory decoders act as the glue for the system. A private memory decoder coordinates

data directly into and out of the Beta processor. For example, it is in charge of either

connecting the processor to private memory, or routing the data to the arbiter if the processor

is accessing shared memory.

A shared memory decoder decodes data from the memory arbiter and routes the data to

the correct module, such as routing access to the Character Buffer when a processor would

like to print to the screen.

A display controller accesses the second port of the Character and the Game Of Life

Buffers. The display controller reads the data in the buffers, and translates the data to visuals

to be displays on a VGA monitor.

Figure 2: High Level Multi-Core Beta Computer block diagram. Note that only 2 Beta microprocessors are

shown. Additional Betas are added similarly. All Betas communicate with the shared memory via the memory

arbiter. Each Beta has two memory access points: one for its personal copy of the instruction memory and one

for access shared memory.

2 Implementation Description

 In this section, the design and implementation of the multi-core Beta computer

modules are described.

2.1 The Harvard RISC Beta Processor

The Beta microprocessor is a construct used as a teaching tool to introduce Electrical

Engineering & Computer Science students at MIT to processor design, instruction sets, and

computer architecture. It is used in the 6.004: Computation Structures core curriculum class,

and all students implement their own beta processor using a Hardware Description Language.

 Celio & Long 4

In building a multi-core computer in Verilog, we wanted to focus as little on software

as possible. Implementing the Beta processor made the most sense because assembly editors

and compilers were readily available.

The Reduced Instruction Set Computer, or RISC, Beta processor implements a set of

simple instructions such as mathematical operations (with the exception of divide), logical

operations, memory accesses, and branching instructions. All instructions are executed in a

single cycle, with the exception of LD and LDR (memory reads), which take two cycles. The

Harvard Architecture means that the processor has two ports for accessing memory, one port

for instruction data and one port for data memory (See Section 2.1.2: Instruction Memory &

Harvard Architecture).

Figure 3: The 6.004 Beta processor. This is a single-stage, Harvard architecture processor

designed to access asynchronous memory. It is very similar to our own implementation of the

Beta processor. The main differences include the addition of stall logic, additional data lines

for CPU ID# and Core Count, and changes to the Program Counter to interface with

synchronous memory. Image courtesy of the 6.004 “Building a Beta” lecture notes.

The Beta has four main modules: the program counter, the register file, the ALU, and

the control logic. The program counter is in control of setting the Instruction Address and

sending it to the instruction memory.

The Register File holds 31 registers that act as small, 32-bit distributed RAM that can

be accessed quickly by the processor. This is the best place to store temporary variables.

Thirty-two registers can be addressed, but R31 always returns zero.

The ALU, or Arithmetic Logic Unit, is in the functional heart of the processor. It takes

in two 32-bit inputs, and a 5-bit function select signal, and outputs a 32-bit signal. The ALU

can perform addition, subtraction, multiplication (but no division), shift right, shift left, shift

right arithmetic, AND, OR, XOR, , and comparison logic. The inputs to the ALU originate

either from registers from the Register File, or as a sign extended literal from the instruction

 Celio & Long 5

data. The 32-bit output can either be sent out as the memory address, or multiplexed as write

data to the Register File.

The Control Logic module is the brain of the processor. It takes in the 6-bit opcode

from the 32-bit instruction data signal, and deduces the appropriate control signals for the

processor. It also deals with external stall logic sent to it either by the user (to pause

execution of the Beta) or from the arbiter (to stall the Beta until it is safe to access shared

memory).

The Beta processor is well described through lecture notes and laboratory assignments

found on the 6.004 website: http://6004.lcs.mit.edu/ . Though wire diagrams accurately detail

most of the modules, a number of differences between the 6.004 HDL simulation

environment and the 6.111 FPGA environment necessitated a number of modifications.

The biggest difference was that the Virtex BRAM modules used as memory for the

project are synchronous modules. Therefore, the LD and LDR operations (memory reads)

now take two cycles to complete: the first cycle generates the memory address, on the clock

edge the value is latched into the memory module, and on the second cycle the value for the

specified memory address is returned to the Beta processor. This also necessitated adding

stall logic to the beta processor so that two cycle reads were stalled on the first cycle to allow

time for the memory data to return to the Beta.

The stall logic also came in to use for another reason. In a multi-core environment, in

which multiple processors are attempting to access limited resources, some beta processors

need to be stalled until the resource becomes open.

To facilitate the operation of the processors in a multi-core environment, two

additional instructions were added to the Beta instruction set: CPUID (retrieve the CPU’s

unique ID number) and NCORES (retrieve the total number of cores in the system). Once a

processor knows its ID and the total number of cores, the software can appropriately control

each processor to perform the tasks specific to it. For example, CPU#0 of two cores knows

to control the top half of the Game of Life playing field, while CPU#1 of two cores takes the

bottom half.

2.1.1 Instruction Memory & the Harvard Architecture

 A naïve approach to a multi-core architecture would involve a single shared memory

resource that all processors access. If the processors must share a single port of access, an

Arbiter is needed to decide which processor gets assess, tie that processor to the memory bus,

and stall all other processors attempting to access memory until it is their turn.

 Unfortunately, the RISC Beta completes almost all of its instructions in a single cycle.

Therefore, the processor must access memory every clock cycle to retrieve instruction data.

If all processors had to access the same shared, single-port memory resource, there would be

an unacceptable bottleneck. A multi-core system, in which each core must share instruction

memory with all other cores, would effectively be reduced to a more expensive, threaded

single-core system.

 There are a number of solutions to this dilemma. One method involves using

instruction caches to allow each processor to store a small set of instruction data.

Unfortunately, this does not solve collisions during cache misses that will undoubtedly occur

during interrupts and process changes.

 Our solution was to go with a Harvard architecture, in which each processor is given

its own private ROM copy of the instruction data, completely separate from data memory

(See Section 2.5 Sync RAM for more details).

 Celio & Long 6

2.1.2 Private Data Memory

 The Operating System uses a regular 300Hz clock interrupt to switch between user

processes. Both clock and keyboard interrupts also force a switch from user to kernel

operations. To allow the processor to switch between different threads of operation, each

process has its own stack space and user-state (register contents). Switching between

processes requires storing the current user stack and loading a previous processor state. The

stack is also used to pass information between functions such as parameters and return

values. Thus, it is imperative that each processor has its own memory to store its stacks and

user-states.

2.1.3 Software

 All software was written in Beta Assembly code in the BSIM java program. The

BSIM application can compile the assembly text file into a .coe file. Python scripts provided

by Professor Terman could instantly convert .coe files into .v files, instantiating the

appropriate number of Block RAM modules, initialized with the program memory. The

Python scripts were modified by Matt Long as needed.

 The Operation System is a modified version used as part of the class 6.004 to teach

students about operation systems and kernels. The code was modified by Professor Chris

Terman of 6.004 and 6.111 for use on an FPGA. The OS has a simple time-sharing kernel

that can handle a number of user processes. The OS also has a set of supervisor calls which

are used to interface with the keyboard input, the character buffer display, and semaphore

control between user processes. None of this code was modified by us for our project.

 We did however, completely rewrite two of the three user processes for our use. The

former Pig Latin translation process now simply echoes what is typed by the user and then

prints a role-call of all activated processors:

00000001> Greetings

GREETINGS: CPU_ID# 0 of 4

 : CPU_ID# 1 of 4

 : CPU_ID# 2 of 4

 : CPU_ID# 3 of 4
Figure 4. Typical Command line Output: The user can type in a message at the command line.

Because Core#0 is given absolute preference by the memory arbiter, Core#0 captures all

keyboard input. Upon hitting “ENTER”, Core#0 echoes the message, and then appends its ID#

and the core count. When Core#0 has finished, the remaining cores write their ID# and core

count in turn. This demonstrates the synchronization of the cores, and the ability to write to the

character buffer without glitches or collisions on the memory bus.

 By having each core print to the screen, we could both verify that the core was alive

and capable of writing to the shared character buffer. Also, by having each core write in

sequence, we could demonstrate that the cores were synchronized and communicating

between each other correctly. Furthermore, we could verify that each core correctly knew its

own ID and the number of cores in the system.

 The second user process we rewrote was used to play the Game of Life. Based on the

Core ID# and the number of cores, each processor could calculate the bounds of the playing

field it should play. The field was allocated by dividing the screen horizontally. For a quad-

core system, the first core received the top quarter of the screen, the second core the second

quarter, and so on. The playing field bounds for a single core is computed as follows:

 Celio & Long 7

Core ID#0: x = [0, width)

 y = [y_min, y_max)

Where y_min = core_id * (HEIGHT / core_count)

Y_max = y_min + (HEIGHT / core_count)

Because divide operations were not allowed, a case-select statement was used to assign the

y_min and y_max bounds. The Game of Life playing field is stored as two matrices in the

Game of Life RAM module. Execution of a round involves reading the game state of each

cell from one matrix, and writing the results, or the state of the next round, into the second

matrix. A Buffer Select Register tells the VGA Display Controller which matrix to display to

the monitor. The Buffer Select Register also helps the Beta cores remain synchronized.

When the Buffer Select Register changes value, the cores know that a new round has begun

(See Section 2.5 Sync RAM for more details).

2.2 Private Memory Decoder

 For every Beta processor in a system, an accompanying private memory decoder is

also instantiated. The private memory decoder multiplexes both outgoing (write) and

incoming (read) operations from/to the associated Beta. For writes, the decoder routes high

write-enable signals and write data to 1) the Beta’s private data memory, 2) shared memory

via the Memory Arbiter, or 3) the GoL buffer-select register (only accessed by Processor #0).

For reads, the decoder redirects high memory output enable signals to the arbiter if an address

within the appropriate address space is specified by the Beta. Furthermore, the decoder

multiplexes incoming read-data (also based on memory address) from the three sources listed

above. This memory address-space is translated as shown in Table 1.

Memory Address Memory Element

0x00000000 – 0x00007FFF Private Data Memory

0xFFFFFF00 GoL buffer-select Register

All other addresses Shared Memory (Arbiter)
Table 1: Partition of the address space as seen by the private memory decoder.

2.3 Memory Arbiter

 The memory Arbiter serves to connect all of the Beta processors to all Shared memory

resources. All processors route their memory addresses, memory write data busses, and read

request signals to the Arbiter. By monitoring each processor’s write and read signals, the

Arbiter can deduce which processors are trying to access shared memory. The Arbiter must

then choose one processor to connect to the memory bus, and stall the other processors

attempting to access shared memory. In the interests of time and simplicity, our Arbiter

design gives preference to the processor with the lowest ID.

2.4 Shared Memory Decoder

The Shared Memory Decoder takes read/write requests from the Memory Arbiter and

forwards them to the appropriated shared memory element. As with the Private Memory

Decoder, forwarding is done by analyzing the memory address. In the case of writes, after

deciding which memory element a read/write is intended for, the decoder forwards write-

enable and write-data signals to the appropriate data element. In the case of reads, the

decoder multiplexes read data based on address, selecting the data from the intended memory

 Celio & Long 8

element. The memory elements managed by the Shared Memory Decoder are shown in

Table 2 along with their associated address space.

Shared Memory Element Address Space

Character Buffer 0xFFFF8000 – 0xFFFF8D00

Game of Life RAM A 0xFFFF8D01 – 0xFFFFC600

Game of Life RAM B 0xFFFFC601 – 0xFFFFFFEF

GoL Buffer Select Register 0xFFFFFF00

Sync RAM 0xFFFFFF01 – 0xFFFFFFF7

PS2 (Keyboard) Buffer 0xFFFFFFF8

System Timer 0xFFFFFFFC
Table 2: Partition of the shared address space amongst all shared

memory elements as seen by the Shared Memory Decoder.

2.5 Sync Ram

 For our system, a small amount of memory is needed for the Beta cores to

communicate with one another for synchronization purposes. The Sync RAM is a module of

sixty-four 1-bit registers, where each register can be addressed for reads and writes. The

Sync RAM can be treated as a 64 element array of Boolean values. Two different methods

were used for synchronization, one for The Game of Life process, and one for the command-

line process.

In the command-line mode, when a user presses the “ENTER” key on the keyboard, the

desired output is to have each core write to the character buffer to note its presence (See

Figure 4). To prevent the output from being completely garbled, it was necessary to only

have one core write to the character buffer at a time. When a user presses “ENTER”, CPU#0

immediately begins writing to the display. When it finishes, it writes a Boolean true in its

place in the table(“CPU_List” is an abstraction for a Boolean array inside Sync RAM):

CPU_List[core_id] = “TRUE”

CPU#1 monitors the CPU_LIST[0] . When it sees CPU#0 has finished, it begins

writing to the monitor. When CPU#1 finishes, it writes to the Sync RAM and CPU#2 begins

writing. In this manner, each CPU monitors the Sync RAM and waits for the previous CPU

to finish its task. The last CPU has the job of clearing the registers in Sync RAM used by the

command-line process. When a CPU notices its own entry in the Sync RAM array has been

cleared, it knows that the last CPU has finished, and all cores are ready for the next

“ENTER” keystroke. The GameOfLife synchronization is handled a little differently. It is

very important that all CPUs are synchronized, and do not begin a round until the previous

round has finished. When a CPU has finished its round, it “Checks in” by writing true in its

spot in the Sync_RAM. CPU#0 is tasked with monitoring the array and deducing when all

processors have finished:

 Once CPU#0 has found that all cores have finished, it clears the Sync RAM registers

used for the GameOfLife, and then changes Buffer Select Register. All checked in cores

(except CPU#0) monitor the Buffer Select Register, and when they realize its value has

changed, they know to begin the next round:

//begin Round

 Current_state = Buffer_Select Register

 Celio & Long 9

 …..

//perform Calculations

 Next_state = ~current_state;

 While(Next_state != Buffer_Select_Register) {

 //wait here until CPU#0 signals to begin next

 // round by modifying Buffer_Select_Register

 }

 To prevent memory congestion in reading the Buffer Select Register, it is wired directly to

each core’s private memory decoder.

2.6 PS2 Driver & Keyboard Support

 The keyboard used for the command line prompt was connected to the system through

a PS2 driver written by Professor Terman. Keyboard support was beyond the scope of our

project, but we did find a use for the keyboard as a debugging tool. For example, hitting the

“ENTER” key released a key to execute a section of Process 1 code. Therefore, we could

place our own code in the loop, such as flipping bits in the video buffer, to verify the Betas’

ability to access specific memory locations.

 Though we did not code the driver, we did spend time to insure that the Betas could

properly talk to the PS2 driver as a shared memory resource. Unfortunately, the PS2 driver is

not designed for multi-core use, and it would require a reworking of the OS keyboard service

call to allow all Beta’s access to the keystrokes entered by the user. The problem lies in the

fact that the PS2 Driver’s FIFO buffer has a read_pointer that is incremented every time it

detects that it has been accessed. Therefore, the first Beta that reads the driver gets the

character data. Adding a counter to the Driver does not fix the problem for two reasons:

because of the complexities of how the driver deduces if it has been read, and because the

arbiter may stall someone who is in the middle of accessing the PS2 Driver and may have to

start again (this is also an artifact of the arbiter always gives preference to CPU#0).

2.7 32-bit Hex Display

 The 32-bit Hex Display is Professor Terman’s code, provided to 6.111 students as an

excellent abstraction module to effortlessly send 32-bit signals for display on the 6.111 Lab-

kit’s Hex display.

 The hex display was used almost exclusively to monitor the instruction addresses of

each of the cores. Even at 27 Mhz, it was very easy to deduce the behavior of each core from

the Hex Display. For example, a solid 0x0618 denotes an illegal opcode crash (usually from

attempting to read an instruction from reserved memory space), while oscillations in the 1E80

region denote a processor waiting to receive the command from CPU#0 to begin the next

round in the Game of Life.

2.8 VGA Display

The VGA Display subsystem retrieves and visualizes information from the Game of Life

and character buffers. The display is set to toggle between a terminal mode, which serves as

a command line prompt for keyboard interaction with the Betas, and the Game of Life mode,

 Celio & Long 10

which displays the 120 by 120 grid of cells. A block diagram of the VGA Display subsystem

is shown in Figure 5.

Figure 5: The VGA Display system. Each display module has a dedicated read-only access

port to the appropriate shared memories. Use of a Font ROM allows for straightforward

modification of font styles. Outputs of each display mode are continually computed to allow

for seamless display transitioning.

2.8.1 VGA Controller

The VGA Controller module takes the pixel_clock and reset_sync signals as inputs.

From these inputs, the controller generates the following signals: pixel_count, line_count,

blank_b, hsync, vsync. Of these outputs, blank_b is wired directly to the VGA_Out signals

used to drive a VGA monitor. The raw hsync and vsync signals are passed through a simple

sync delay module that delays the signals by two clock cycles. This is done to allow the

VGA color and blanking data to pass through a digital-to-analog block before being rejoined

by the synching signals. The pixel_count and line_count signals are both 10-bit signals that

are used by the Terminal Display and Game of Life Display modules (described below) to

calculate what color data is sent for each pixel of the display. All of the module’s outputs are

derived from the pixel_clock input as well as the VGA timing parameters for a 640 x 480

display running at a 75 hz refresh rate, as shown in Table 3.

Parameter Value
PIXELS 800
LINES 525
HVID 640

HFRONT 16
HSYNC 96
VVID 480

VFRONT 11

 Celio & Long 11

VSYNC 2
Table 3: VGA Timing parameters. Note that HBACK and

VBACK parameters are also defined, but never used in

calculation and are thus not shown in the above table.

In the event of a HIGH reset_sync signal, the VGA Controller module is designed to

produce a blank (black) display. While an 800 x 600 pixel display was originally planned,

peculiarities of the particular monitor model being used for the project and a lack of clear

monitor documentation prevented the use of an 800 x 600 display. However, due to the

modularity of the VGA controller implementation, modifications to achieve any desired

VGA display size and refresh rate can be achieved simply by making appropriate changes to

the values in the table above.

2.8.2 Terminal Display

The Terminal Display module constantly displays the contents of the 80 x 40 character

buffer, one of the memory modules within the system’s shared resources. The Terminal

Display module takes as inputs the pixel_clock, pixel_count, and line_count signals. With a

display size of 640 x 480 pixels and an 80 x 40 character display, each character occupies an

8 x 12 region of the screen. The Terminal Display module continually calculates 1) which

line of characters (0 – 39), 2) which character within that line (0-79), 3) which row of pixels

within that character (0-11), and 4) which pixel of that row (0-7) corresponds to the given

screen position specified by pixel_count and line_count values.

From the line and character values calculated as described above, a character address is

calculated by the formula:

charAddress = (80 × Line) + Character

Note that addresses are referenced from the top-left corner of the display, i.e. the

address of the character in the top-left corner is zero and the address of the bottom-right

character is 3,199. Since the VGA protocol scans horizontally, the address scheme of the

character buffer behaves similarly in that the address increments from left to right across each

line of characters. The calculated character address is then sent to the Terminal Display’s

dedicated port of the character RAM module. Since the display is only interested in reading

character codes and not writing them, this is a read-only port. Note that in order to allow

enough time to finish determining the color output data, character addresses sent to the

character RAM are actually calculated from the “next line” and “next character” rather than

the currently specified position.

After receiving an 8-bit character code from the character RAM, the Terminal Display

queries its own Font ROM to determine how to represent the character on screen. Rather

than fetching data for the entire 8 x 12 character, a single 8-bit row of data is retrieved one at

a time. This is done using the row values calculated from the given pixel_count and

line_count. Once a given row of a character (i.e. a “font byte”) is retrieved from the ROM,

the ON/OFF status of the current pixel is found by analyzing the proper bit of the row. If the

bit is HIGH, the foreground color, white, is output. If the bit is LOW, the background color,

blue, is output.

Since seven of the eight bits of a character code are used to specify a character (the

high-order bit is used to indicate if the color scheme should be reversed), the Font ROM

allows for up to 128 (2
7
) distinct character definitions. Thus, the total needed size of the font

ROM is 128 x 8 x 12 = 12288 bits. On the 6.111 lab-kit, this can be realized within a single

block RAM module.

 Celio & Long 12

2.8.3 Game of Life Display

The Game of Life Display (GoL Display) module is responsible for continually

representing the state of the GoL buffer. Similarly to the Terminal Display module, the GoL

Display module takes the pixel_clock, pixel_count, and line_count signals as inputs. The

module continually determines within which cell of the 120 x 120, if any, is being specified

by pixel_count and line_count. Each cell is represented by a 4 x 4 square on the monitor,

resulting in a 480 x 480 pixel square being used by the grid. Cells are identified by address

calculated as follows:

cellAddress = (120 × Line) + Column

 Cell addresses are referenced from the top-left corner of the game board and

increment horizontally across the board from left to right. With a 120 x 120 grid, there are

14,400 cells to be displayed with cell addresses ranging from 0 to 14,399. The calculated cell

address is then sent to a dedicated read-only port of the GoL memory unit. On the next

positive clock edge, the single bit of data stored at the reference address (the LIVE/DEAD

state of the cell) is returned to the GoL Display module. The pixel color output by the GoL

Display module is chosen based on the live/dead status: white for live cells, black for dead

cells. To allow for processing time, as with the Terminal Display, the address of the “next

line” and “next column” is actually used to calculate the cell address that is sent to the GoL

memory. Thus, the live/dead status will be available during the next cycle (i.e. when the

“next cell” has become the current cell) to determine color output.

 Outside of the 480 x 480 grid, an eight pixel wide wall is drawn (in white) to delineate

the edge of the game. Beyond the wall is unused space that, with additional time, could be

used to display statistics about the game such as generations per second, total generations

calculated, etc. Note that these statistics are currently being displayed on the 16 character

hex-display.

2.8.4 VGA Top Module

The VGA Top Module primarily serves as the interconnect of the VGA Controller,

Terminal Display, and GoL Display modules. Also within the VGA Top module is a small

amount of logic responsible for multiplexing the RGB color data generated by the Terminal

and GoL Displays. An input driven by a switch on the 6.111 lab-kit is used as the selector bit

to toggle between terminal and game display modes.

As a last minute addition, in order to show school pride, supplementary logic was

added in the VGA Top Module to generate the MIT logo. The logo is centered within the

480 x 480 Game of Life field and can be toggled on/off via a switch on the 6.111 lab-kit.

2.9 Game of Life Memory

The state of the Game of Life is stored between two identical RAM modules. Two

RAMs are needed so that a previous generation can be read from one RAM while the next

generation is calculated and then stored in the other. Furthermore, two initial game states are

stored in ROMs, one of which is loaded into the GoL RAM modules upon system

startup/reset. A GoL memory manager module and its supporting modules are implemented

to support RAM toggling and loading the RAMs from ROMs.

 Celio & Long 13

2.9.1 Game of Life RAM

The GoL Memory module instantiates the two symmetric GoL RAMs named bufferA

and bufferB. The RAMs have dual access ports: 1) a read-only port for the VGA Display

subsystem and 2) a read-write port accessed by the system Beta cores. While there are two

RAMs in the module, only one address, data-in, and data-out bus is provided to the outside

world. To choose which of the two RAMs is read/written by a Beta, a distinct 32-bit memory

address is associated with each RAM. There addresses are decoded by the Shared Memory

Decoder (see Section 2.4) and translated into two buffer-select bits, one for each RAM. For

proper operation only one of the two buffer-select bits should be HIGH at any given time.

The buffer-select bits are used to enable their associated RAMs for writing as well as

multiplex among the data retrieved from each RAM for reading.

To decide which of the two RAMs the VGA Display receives its data from, a

ram_select register is periodically written to by a Beta. Every read request from the VGA

Display is processed by both RAMs, the data retrieved is then multiplexed by the ram_select

register before being returned.

2.9.2 Game of Life ROMs

Two Game of Life states are stored in corresponding ROM modules. The GoL ROM

modules consist of a single read-only port used by the GoL Memory Manager upon a system

boot/reset to load an initial state into the GoL Memory module. Each state is stored in the

lower 14,400 bits of the BRAMs that realize the two ROMs. A dual “Gosper’s Gun”

configuration is stored in one ROM and was chosen since the configuration ensures a game

evolution that persists indefinitely. The other ROM stores a state which is simply a randomly

chosen series of ones and zeros.

2.9.3 Game of Life Load Engine

 The GoL Load Engine is responsible for loading the state stored in one of the two

GoL ROMs into the GoL memory upon system boot/reset. The engine is triggered by a

“start” signal received from a level-to-pulse converter which has the system reset signal as its

input (note that the reset signal is asserted on system boot as well as the manual reset button).

Thus, on the negative edge of the reset signal, the engine is triggered to begin loading. To

ensure that writing to the GoL RAMs does not interfere with Beta operations, a busy signal is

output to stall all Beta cores for the duration of the load.

 Once started, the engine performs the load by incrementing through all 14,400 cell

addresses. Each address is first sent to the GoL ROM selected by a user switch. On the next

clock cycle the same address is then sent to the GoL RAM along with the data output from

the ROM and a HIGH write-enable signal. Thus, a load takes approximately 14,400 clock

cycles to complete. After loading the last address, the engine’s busy signal is unasserted,

allowing the Betas to begin functioning.

2.10 Lab-kit Top Module

 The primary role of the top module is to serve as the interconnect for all the modules

described above. Additionally, the top module assigns all lab-kit inputs and outputs to their

appropriate signals. Outside of these two standard tasks, the top module contains logic for

several additional features.

 Celio & Long 14

 First, the top module contains a clock multiplexer that allows dynamic clock rate

shifting. This feature was added so that a suitable clock rate, i.e. one that is slow enough to

prevent memory read/write glitches yet fast enough to produce reasonable game performance,

could be found without the need to recompile the project simply for the sake of changing the

system clock. Second, the top module generates timer interrupt signals needed by the Beta

microprocessors for process time-sharing.

 Finally, the top module calculates performance statistics of the Game of Life. First,

the total number of generations calculated by the system is calculated by counting the number

of times the GoL ram select register goes high. This value is displayed on the four left most

digits of the character display on the 6.111 lab-kit. Second, a measure of generations per

second is computed. The generations per second metric is calculated by registering the

generation count every second and then taking the difference between the current generation

count and the previous generation count. Thus, the generations per second count is updated

once per second rather than continuously. The generations per second is also shown in the 16

digit character display on the 6.111 lab-kit.

3 Project Results

 As whole, our project was very successful at providing compelling visual evidence of

the system performance gains from multi-core processing. Dynamically changing between

one, two, and four cores resulted in a linear speed-up of the number of Game of Life

generations calculated per second. Being able to visually observe these system speed-ups on

screen provides conclusive evidence that huge performance gains are possible in the field of

multi-core processing. It is important to note that software capable of taking full advantage

of a multi-core architecture is of critical importance to exact any performance gains.

 While we had hoped to demonstrate as many as eight or sixteen cores functioning in

parallel, getting four cores to behave correctly without causing a system crash proved to be a

difficult task in itself.

4 Conclusions & Future Work

 Though there are a number of improvements we would like to make to the system, we

still conclude that our project was a total success. Throughout the project, we remained

reserved about the chances of implementing a fully working single-core system that married a

Beta processor with a video buffer and Display Controller, knowing that many projects fail to

successfully integrate all parts.

 Though we synthesized and tested an octo-core version of our system, we realized that

our simple memory arbiter was not adequate for more than four cores. By giving absolute

preference to the lowest core ID#, the higher numbered cores found themselves locked out of

accessing shared resources.

 Our current architecture can comfortably fit eight cores before using up all available

Block RAM memory (and thirty percent of LUT’s). A more miserly use of BRAMs could

dramatically reduce the overhead involved and allow for the maximum use of LUTs. We

treated all BRAMs serving as instruction memories as single-port memory blocks from the

point of view of the Beta processors. However, it would be possible to halve the number of

BRAMs used for instruction memory by dual porting the instruction memory ROMs.

Caching could also further reduce the footprint of the instruction memories by letting more

betas share instruction memory. Each beta also has a private copy of data memory. In the

interest of time, this copy of data memory is a complete copy of instruction memory. This

 Celio & Long 15

could be easily reduced to a few hundred bytes by accurately measuring the amount of stack

space each user process needs, and changing the memory addresses in software to more

efficiently utilize a smaller private memory space. Therefore, we estimate, with careful

memory control, that as many as 24 Beta processors could be implemented on the 6.111

FPGA Lab-kit. However, through personal experience, we believe the limiting factor is

memory access of a single-port of shared resources, and the routing lengths for all of the

cores to be routed to the memory arbiter. Unfortunately, adding new cores to the system

comes at a cost. It costs more LUTs, more memory, longer and more difficult routings to

reach the shared resources, more collisions in accessing shared resources, and slower clock

speeds.

 Our design worked optimally with four cores at a little under 27Mhz. However,

adding more cores would quickly require a complete architecture redesign from the ground

up. System architects who hope to leverage more cores will have to use more novel methods

of sharing resources and synchronizing cores.

5 Acknowledgements

 Many thanks are in order for Professor Chris Terman for providing guidance, software

compilation tools/scripts, keyboard driver, and extensive understanding of the Beta

microprocessor. Thanks also to our project TA, Amir Hirsh, for his guidance in designing

and implementing our project. Also, thanks to the entire Spring 2007 6.111 staff for

providing an exceptionally well taught course in digital design principles. Finally, thanks to

John and Jamie Long for taking the time to edit this report and make it more readable.

