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ABSTRACT:   
  
 Inspired by our team’s athleticism, Virtual Basketball allows the player to practice shooting 
anywhere and anytime, without the use of a ball. The goal is to create a final project that will take 
inputs from the accelerometer attached to the user’s hands and display the projection of the ball 
after calculating release velocities. In addition, visual aesthetics like the ball’s shadow, a score box, 
and bouncing would be great. The system is made of two main components:  the accelerometer to 
calculate initial velocities and the cartoon image output simulating the shot. Using an ADXL330 3-
axis accelerometer, the initial velocities of the ball can be calculated. We were able to calculate 
velocities from the accelerometer and display a screenshot with the court, ball, score box, and 
beaver “player” by reading the images from the ROM. A test screen composed of only the ball was 
able to take input velocities calculated from the accelerometer and display movement of the ball 
given those initial velocities. Unfortunately, given the time constraint and technical difficulties, the 
final system was not completely integrated. Nonetheless, it was an amazing educational experience. 
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VIRTUAL BASKETBALL: HOW WELL DO YOU SHOOT? 
 
 

I. INTRODUCTION 

Figure 1: The Nintendo Wii 

 
 The introduction of the Nintendo Wii 
revolutionized the gaming industry by being the first 
console to use accelerometers, gyroscopes, and infrared 
sensors to communicate between the player and game. 
Accelerometers measure the acceleration of the player’s 
hand that holds the stick. Gyroscopes read the tilt and 
rotation of the motion. And the infrared transmitter and 
receiver communicate the data and locate the player’s 
relative position.  
 The Wii allows players of all ages to play games ranging from virtual golf, tennis, to Zelda 
and Spiderman. Its wireless controller can function as a pointing device such as gun or a tennis 
racket. It physically involves the user, such that researchers even claim that it is a good, fun weight-
loss mechanism. It has truly changed the future of video games and opened new doors with its 
innovative use of accelerometers and gyroscopes.  
 
II. VIRTUAL BASKETBALL GAME OVERVIEW 
 
 The idea behind our final project is to build a virtual basketball system that simulates a 
player shooting free throw shots. The Virtual Basketball system has two main components shown in 
Figure 2, one that calculates the velocity given inputs from an accelerometer and another that 
displays the projectile motion of the ball via VGA given initial velocity inputs.  

Chun Jingwen 
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Figure 2: Big Picture Block Diagram of the Overall System 

 Ideally, the basketball game would involve the player starting in set position. As he/she 
tosses the imaginary ball, an almost-real-time display of the ball’s projected path would show up on 
a basketball court angled at a perspective based on readings from the accelerometer attached at the 
hand. If the player makes the basket, then a celebration picture shows. Should the player miss, the 
ball will bounce off some surfaces and come to a rest. Refer to the Game Display for more details. 
 It turns out that calculating the velocity from the accelerometer outputs is not easy. The 
difficult lies in adjusting for noise in the hands as they move. Also, the rotation of the hand presents 
a much more complicated mathematical problem than originally anticipated. As a result, our actual 
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working system is a simple game where the player 
pushes his/her hands forward to move a ball 
according to the force of the push. 
 The accelerometer is sewn onto the fingers 
of the Velcro-made device show in Figure 3.  It is 
guarded as much as possible with electrical tape to 
avoid static shock. Its location on the fingers allows 
the most stable measurement of acceleration w
excessive noise.  

ithout 

hosen for its serial output ports, optimal analog input 

 

ve 
ar zero 

.1.1 arallel Interface 

For reference to the pin connections, please see the data sheet for the AD571. Pin 14, 15, 16 

n 
11) are controlled by the parallel interface module connected through the lab kit.  

Figure  3: Picture of Device Used to 
Attach the Accelerometer to the Hands. 
The positive axes are indicated as above. 

+Y +Z 

+X 

 
III. ACCELEROMETER INPUT 
 
 The main device used in this project is the ADXL330 3-axis accelerometer (on an evaluation 
board), the same accelerometer used in the Nintendo Wii. It is powered with the 3.3V voltage 
source on the lab kit such that the output voltage ranges from 0 to 3.3V. The ADXL330 has a 
measurement range of ±3 g minimum and a sensitivity of approximately 330 mV/g (for a 3.3V 
operating voltage). In order to actually calculate velocity using the FPGA, the voltage outputs from 
the accelerometer needs to be passed through analog-to-digital converters. For a full scale block 
diagram, please refer to Velocity Block Diagram in Appendix A. The lab kit 27Mhz clock supplies 
all the modules with the clk signal, and reset_sync also goes to all modules. 
 
3.1 Analog-to-Digital Interface  

Figure 4: Picture of the Fully-wired Circuit 

  
 ADCs are made with serial or parallel 
output ports, each with advantages and 
disadvantages. The advantages of serial ports are 
that it requires minimal wiring. However, it also 
requires precise timing guidelines such that the 
correct outputs bits are registered out from the 
ADC. Parallel ports output all the bits at once so 
that the data can be read all at once as soon as it’s 
ready. However, lots of wires are required to 
represent each bit.  
 At first, the 10-bit AD7810 ADC was c
range, and ease of usage (dip pins). However, due to ordering issues, the chips did not arrive on 
time. Instead, parallel 10-bit AD571 ADC chips were used in our circuit. Each digital bit represents
10 mV (important for conversion later). Each of the 3 axes to the ADCs first connects to an 
operational amplifier before being fed into the ADC. This is because the accelerometer cannot dri
such a high load as the ADC, so the op-amp provides a high impedance input resulting in ne
input current. This way, the outputs of the ADC are more representative of the actual voltage 
outputs from the accelerometer. The final circuit can be seen in Figure 4.  
   
3 P
 
 
are connected to ground. V- (pin 12) is connected to +5V and V+ (pin 10) is connected to -12V, 
both from the lab kit. The control signals DATA_READY_bar (pin 17) and BLK/CONV_bar (pi
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 The module has the inputs clk and reset (as with all other modules), and div_convst (the 
sampling clock), data (10-bit data from the ADC), and data_ready_bar (on active low, signals data 

e 
Figure 6 shows the signals used in the parallel interface to control the 

itializes in the BLANK 
tate. In  

e 

goes low 
start a 

le wait for the 
 is 

ext 

ATA
ets stored into the output acc. Finally, in the DONE state, the module 

l Interface 

erial interface was built in preparation for use with the AD7810 ADC. It 
orks differently from the parallel interface described above, but the timing concepts are the same. 

iders   

ca , t  and Y-axis of ADXL330 have a maximum sampling 
equency of 1.6 kHz, and the Z-axis has a maximum operating frequency of 550 Hz. To meet this 

e 

ready to be read). The outputs are convert_bar (goes low to signal conversion start) and a 10-bit 
acceleration output, acc.  
 Using the timing and control sequences diagram from the specifications of the AD571, th
transition state diagram in 
ADC. There are many waiting periods in this modules, thus an internal counter is used to count all 
the waits because the times do not overlap. 
 
 On reset, the module else

in
s  BLANK, it waits for
the counter to reach 
BLANK_TIME (2 us). Onc
the counter equals 
BLANK_TIME, the 
convert_bar signal 
to signal the ADC to 
conversion and the state 
transitions to 
CONVERTING. In this 
state, the modu
AD571 to tell it that data
ready by making 
data_ready_bar low. Once it 
gets this signal, the n
state is WAIT_ACTIVE, 
where the module waits D
available, the digital data g
waits for a sampling clock high (described in Time Dividers) to begin another blanking and 
conversion. 
 
3.1.2 Seria

READY_TIME (500 ns) before the data is active for reading. Once 

 
 As said earlier, the s
w
We will not go into detail about the timing and state transitions, but the module transition state 
diagram can be found under Serial Interface State Transition Diagram in Appendix B, as well as the 
Verilog module. 
 
3.2 Time Div
 
 According to specifi tions he X-
fr
requirement and still sample at an appreciable resolution, two clock dividers were created to 
generate a 1 kHz and a 500 Hz signal. The outputs of these two time dividers div_1khz and 
div_500hz are used to initiate analog-to-digital conversions in the parallel interface and to tim
sampling rates in the accumulator and velocity modules.   

Figure 5: State Transition Diagrams for the Parallel Interface 
Module. The module outputs data conversion signals to the ADC 
and reads data when the ADC signals data_ready_bar low. 

else

div_convst == 1

counter == 
DATAREADY_TIME

!data_ready_bar

counter == 
BLANK_TIM E

RESET
BLANK

else

else

CONVERTINGDONE

WAIT_ACTIVE
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3.3 Calibration 
 
 Because each device has different zero gravity bias and sensitivity levels (ranging from 1.2 

 1.8 V), it is necessary to calibrate those values specific for each device each time the bit file is 
 

e 

ee Figure 3 for axis). This ensures that 

 

s 
nly 

e ModelSim and the logic analyzer. It was very 
portant to debug each component individually and test for all scenarios before implementing 

ources 
as 

 two 

V. VE

e from 
e accelerometer readings, the 

ccumu
C 

 

ith four 

to
programmed onto the FPGA. The stored values can only be reset with calib_reset (button1) and the
values of zero-g bias can only be changed if the user enters calibration mode (switch[0] = 1). Onc
in the calibration mode, the user must perform a sequence of events to calibrate zero-g values, from 
which a sensitivity can also be calculated. The typical values of 1.66V for zero-g bias (every axis) 
and 33mV sensitivity are set as default on calibration reset. 
 After the user enters calibration mode, to calibrate the zero-g bias in the X- and Y-axis, lay 
the chip flat on a surface such that its –Z axis points down (s
the gravity does not act on either the X or Y-axes so a zero-g bias value can be measured. Pressing 
button2 (storeXY_sync) stores whatever accX and accY was inputted at the time of the button press 
into the registers zero_gX and zero_gY respectively. At the same time, accZ is stored in a temporary
variable to be used to calculate sensitivity. Next, position the chip vertically such that the +Y axis 
points towards gravity. In this position, the X and Z-axis display zero-g bias. Pressing button3 
(storeZ_sync) places the Z-axis bias into zero_gZ. Lastly, by pressing the enter button, the user tell
the module to calculate sensitivity, given two different Z-axis values. Note that sensitivity can o
be changed if both store buttons are pressed, or else it refers to default. Thus, the final 10-bit outputs 
zero_gX, zero_gY, zero_gZ and sensitivity are calibrated according to the specificities of the chip. 
 
3.4 Testing, Errors, and Debugging 
 
 The main tools for testing used wer
im
together. This saves a great amount of time, especially when the code became long. Some s
of error included connecting the user I/O output as an input. This resulted in zeros being read in 
data. Device errors were another major issue. One of the AD571 chips was converting incorrectly. 
This mistake was found using the logic analyzer. The data had seemingly random 512 values 
inserted in between the 200s, which signaled that either the bits were connected wrong or that the 
device was faulty. Also, throughout the project, a total of 3 accelerometers were used, because
mysteriously stopped functioning, most likely due to static shock. 
 For all ModelSim waveform simulations, please refer to Appendix C. 
 
I LOCITY CALCULATION 
 
4.1 Accumulator  
 
 Due to possible nois
th
a lator module takes in raw 
acceleration inputs from the AD
and calculates an average of four 
acceleration inputs. The key inputs
include the sampling clock 
(div_1khz or div_500hz) and an 
acceleration. This is done w
10-bit registers. Each time the 

 
Figure 6: Accumulator Shift Registers Used to Take an  
Average of Four Acceleration Points 
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sampling clock goes high, it indicates that data is available and the module shifts all the values t
the next register. The beauty of choosing only four registers is that to take an average, all that needs 
to be done is to shift 2 bits to the right and sign extend the most significant bit. Thus, at any time, 
the 10-bit output acc_avg is used in the other modules. This module is instantiated three times, on
for each of the axes.  

o 

e 

 

illiseconds), 
ity, 

ule is 

olds the output velocity at 

e 
e 

 
 

 
4.2 Velocity Calculation       
 
 By playing with the accelerometer and looking at the outputted oscilloscope waveforms, it 
can be assumed that at the time of release, the velocities should be traveling at it peak. This is 
equivalent to taking the area under the acceleration curve until a maximum or minimum velocity is 
reached. For example in Figure 7, this corresponds to the time the blue curve falls below its starting 
baseline to the time it returns back to the baseline. The remaining waveform is simply the 
accelerometer decelerating and can be ignored.  

 For the velocity module takes as inputs 
the sampling clock, a delta time (in m
the averaged acceleration, a reference veloc
sensitivity, and a start signal. It outputs a final 
26-bit signed velocity in mm/sec. This mod
equivalent to an integration module. 
 The module h
zero until it receives a start signal from the Toss 
module. This signals that the player is ready to 
shoot, so the module can start computing the 
velocity. It looks at the input acc_avg and 
compares the value to acc_ref. If the averag
acceleration is above the reference, then add th
difference to the final velocity, else it subtracts 
the difference (equivalent to negative velocity). 
This output has units of mV. In order to calculate

the velocity, CoreGen multipliers and dividers were generated to divide the velocity in mV by the
sensitivity (mV/g) and to multiply by time and gravity constants to convert velocity in 
understandable units. 

Figure 7: Oscilloscope Waveform of Hand 
Toss Starting with the Hands Backwards. 
The Z-axis is blue, and the Y-axis is yellow 

 
4.3 Toss Finite State Machine  
 
 This module is used to start the game. Based on the input acceleration, it determines which 
starting position the player’s hands are in by comparing the input acceleration to a reference 
velocity. If the player holds his/her hands steady for one second at the reference acceleration (plus 
or minus some offset to account for minor hand movements), then an led light comes on to tell the 
player that he/she can begin the toss and a start signal gets sent to the velocity module to begin 
integrating velocity. There are currently three possible starting positions. The player can start with 
1) hands parallel to the ground, 2) vertical to the ground (as if pushing a wall), or 3) flipped back as 
if about to throw. These are simplified start modes so we can test the velocity component. 
 Due to mismatching accelerometer axis to real axis, it is necessary to hard code the different 
scenarios. If the player’s hands are in start position (1), then the velocity reading from the Y-axis 
should be assigned the release_velY. If in position (2), then the release_velY is now the Z-axis 
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reading from the accelerometer. Finally, the last position tries to integrate both a release_velY and 
release_velZ by using velocity readings from the Z-axis alone. Unfortunately, this mode never quite 
worked as expected. The reason these axis must be adjusted is because once the accelerometer is 
attached the hand, so as the hand rotates, so do the accelerometer axis relative to the real axis that is 
used in the display module. It quickly became very confusing. 
 
4.4 Conversion  
 
 The conversion module is simple. It takes as inputs clk, reset, and a 15-bit input_vel 
(measured in mm/s) and converts the input velocity to a 10-bit output velocity in pixels per frame 
clock.  Doing some back-of-the-envelop conversions with the conversions in Table 1, the math 
simplifies to dividing the input by 800 to obtain an output in pixels per frame. Using CoreGen to 
generate a divider with a 15-bit dividend and a 10-bit divisor (all unsigned), a 15-bit quotient is 
produced of which the last 10 bits are used as the final output since the output velocity is on the 
order of 2 to 8 pixels per frame. 
 

Table 1: Conversions: mm/sec to pixels/ frame 
1 inch 25.4 = 25 + 2/5 mm 
80 pixels  42 inches 
1 second 60 frame clocks 

 
4.5 Testing, Errors, and Debugging 
 
 The main method of debugging is with the logic analyzer. Some errors encountered included 
not correctly converting a signed two’s complement number to a non-signed number. This resulted 
in velocity outputs many magnitudes larger than expected. 
 To test if the velocities make sense,  the release velocity was approximated to be 7 m/s at an 
angle of 60 degrees. A break down of the velocity into x and y components show that Vx = 3.5 m/s 
and Vy = 6 m/s. Using this as a general guideline, I can look at my velocity outcome to determine if 
it makes sense or not. The outputs on the analyzer should display something in the order of 2000 to 
7000 mm/s. 
 
V. GAME DISPLAY 
 

The goal of the Game Display block is to take the 3D initial positions and velocities of the 
virtual basketball as input, and display the cartoon version of a beaver (MIT’s mascot) shooting a 
basketball with it’s tail at the free throw line on VGA. A score box is also displayed to record the 
player’s score (Figure 8).  
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Figure 8: proposed ideal Game Display screen shoot 

 
Similar to the Pong Game that was implemented in lab 4, the Game Display block consists of 

the following internal modules (figure 9): DCM; Debuncer; VGA controller; a Game Logic; 
Display Field. The VGA display for this project is 640x480, 60 Hz. Because the DCM, Debuncer, 
and VGA controller modules are the same as in lab 4, the modules that are discussed in this paper 
are Game Logic and Display Field. 

Debouncer/ 
Synchronizer

Game Logic

Display Field

DCM

VGA 

Controller

pixel_clock
To All

Reset

Replay

reset_sync

replay_sync

Initial positions

10 x 3 10 x 3

Initial speeds

10 x 3 10 x 3

Ball x, y, z
Positions

Shadow
Positions

labkit_clock

pixel_count 10 

line_count 10 

24   rgb_signal1 x 4  VGA signals
 

Figure 9: Overview of Game Display block 
 

5.1 Game Logic 
 

To display the basketball, Game Logic first computes where the ball is supposed to be in 3D at 
each frame. It then converts that 3D position into 2D. Figure 10 shows an overview of the 
GameLogic. 
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Shadow_x’,y’,z’

Get Ball position

(FSM)

Get Shadow Position

Status

Initial Positions 10 x 3

Initial speeds 10 x 3

ball_x,y

status2

10 x 3

10 x 3

3D to 2D 
conversion

Shadow_x,y

ball_x’,y’,z’

10 x 2

10 x 2

 
Figure 10: Overview of Game Logic 

 
Once in the air, the ball may have a few different situations. For example, it may keep going; it 

may hit the rim, the backboard, the pole, or the floor; it may also go out of bounds; or it may go 
through the hoop and scores. A module getStatus is implemented using finite state machine (FSM) 
to check whether the ball hits any thing when transitions from the location in current frame to the 
one in next frame. This FSM always starts in the idle state (0) and stays there unless it gets a start 
signal, in which case it goes to the getIntersectStatus state (Appendix E.1). When in the 
getIntersectStatus state, the FSM checks to see if there is a potential of hitting anything and sets the 
control bits, such as intersectWithRimPlane to either high or low. Then the FSM transitions to the 
proper state according to those control bits. Take the expected path of the ball into consideration, 
the states from 2 to 5 (corresponds to the situations of hitting the rim, plane, pole, and floor) are 
treated with priority from high to low. In states 2 to 5, getStatus calls a minor FSM (Appendix E.2) 
getIntersection to check whether the ball indeed hit the desired object. Once the desired object is 
hit, the FSM sets the output status to the proper value and goes to the getStatus1 (state 6); if the 
desired object is not hit, the FSM goes to a higher numbered state until it goes through all the rest 
states. The purpose of having the ostensibly extra states setStatus1 and ssetStatus2 are adding delay 
to wait for the upper level module to turn off the start signal. Otherwise, the FSM continues to loop 
indefinitely. 

Po

R1

Y=Y1

R2

Y

X

Y2

Y1

X1 X2X0

Y0

RRy

Rx

      
 (a)       (b) 

Figure 11:  Graphic example of calculating the intersection of a line and plane  
 

Team #3: Virtual Basketball   11 



So, what does state 2 to 5 do? How does the getIntersection module determine if the ball is 
hitting any object? Take the situation of hitting the backboard as anexample. Suppose the backboard 
is in the plane Y = Y1, as shown in figure 11 (a). Because the board is not infinitely large, simply 
checking the Y-axis values of the ball is insufficient. The x and z-axis values also matter. A solution 
to this problem is to simplify this 3D problem into a 2D problem. First, getStatus finds where the 
ball will intersect with the plane that the board is in, which is Y=Y1 because the board is parallel to 
the plane Y=0. With known Y0, Y1, Y2, X0, X2, Z0, Z2, the X, Z-axis intersection coordinate values 
X1 and Z2 can be easily computed due to the geometry shown in figure 4 (b). Last, getStatus checks 
whether the X, Z-intersections are within the range of the board by checking whether the X-
intersection value is in between the X values of the board and whether Z-intersection value is in 
between the Z values of the board. Other obstructions in the court, other than the rim, are checked 
using the same method. However, because the rim is round rather than square, the algorithm for the 
rim is different from the others, if the vector length of the rim to the center of the ball is smaller 
than the radius of the rim minus the radius of the ball, the ball is inside of the rim; if the vector 
length of the rim to the center of the ball is bigger than the radius of the rim plus the radius of the 
ball, the ball is outside of the rim; otherwise, the ball hits the rim. (Fig. 12). 

 

 
Figure 12: Relationship between the center of the rim and the center of the ball  

 
With the information for the ball position, the top level FSM, getBallPosition, computes the 

position of the ball in the next frame. The logic for the getBallPosition is not complicated(Appendix 
E.3). The getBallPosition stays in idle state until start signal goes high. According to the 
information from the getStatus module, getBallPosition either goes to the keepGoing state directly, 
or go through a collision state to update the velocity. For the basic version, a few assumptions about 
collision are made to simplify the calculation. The first assumption is that energy is conserved at all 
times. Other assumptions are the ball is not spinning and there is no friction. With this 
simplification, in order to change the velocity of the ball, the only thing needs be changed is the 
direction in proper axis. .Ideally, it would be more realistic if there is less assumptions; 
unfortunately, there was not enough time to do such extensive calculations. 

In addition, a simple module getShadowPosition is created to get the positions of the shadow. 
Again, it is assumed that the shadow has the same X, Y-axis values as the ball, but the Z-axis values 
is 0, which means the ball is vertically projected onto the floor. 

So far, the positions are calculated in 3D. These positions need to be converted to 2D in order 
to display onto the VGA. From the 3D and 2D coordinate’s relationship diagram (figure 13), the 
following converting equations holds:  

 
Based on those questions, calculateFor2D is created. The sine and cosine values are stored as fixed 
parameters in this module base on the angle of my court image. This module is implemented by 
instantiating the Xilinx built-in IP divider and multiplier. Because the divider takes M (about the 
order of the size of the dividend, which is 20 bit here) clock cycles to output the quotient, a FSM 
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with a counter is created to make sure that the module waits long enough to output the signal. The 
FSM transitions in a fairly simple manner; therefore, it is not explained. 

(235, 479)

ab
Y’

Z’

X’

X

Y

(0, 0)

 
Figure 13: 3D and 2D coordinate set up 
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Figure 14: Overview of the Display Field Block 

 
5.2 Display Field 
 

With the computed positions of the moving objects (basketball and its shadow), the Display 
Field draws the images onto VGA screen. The process of displaying each image is about the same. 
An overview of the display field with draw ball as an example is shown in figure 14.In the 
beginning image information needs to be stored into a BROM. The address counter for ROM then 
computes from which memory address to read at each pixel that is being drawn. With the correct 
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color address, the BROM gives a 4-bit color index, which then goes through a color mapping 
module to be converted into a 24-bit RGB signal to specify the true color.  

There are various ways to store an image onto a BROM. The best image format is BMP, which 
consists of header and color information. A 24-bit BMP file stores the exact RBG value for that 
pixel, which is exactly what is needed for this project. However, there are two problems are 
associated with this. First, the BROM is not big enough to store a 24-bit 640x480 image as the 
background. This 24-bit color image needs to be converted into a 4-bit 640x480 image，which 
takes 75 out of 144 available ROM blocks to store. Instead of the reading the color signal directly 
from the ROM, a 4-bit color index is read from the ROM. This is why the color mapping module is 
needed. Second, the color information is stored starting from the bottom right corner, which means 
the image is stored up side down. After researching the different methods, I determined that the best 
way is to use Matlab to read the convert the image into numbers; Matlab already has a built-in 
function to take out the header and store the image color information from top to the bottom into a 
big matrix. For this project, a solid model of the court is created using SolidWorks. A solid model 
of the court is needed for accuracy, can rotate freely, meaning that it allows viewing the court from 
another angle without further extensive math calculations. Then a JPEQ image of the solide model 
at a certain angle is created and converted into a 16-color (4bit) BMP image. For a better display 
quality, this image is edited in Photoshop and Paint. Finally, this edited image is read into Matlab as 
a big matrix. A script in Matlab is written and executed to read each element of the matrix and to 
convert that element into the correct format for the .coe file with the color index corresponding to 
each pixel on the screen. 

After the image is successfully read into the BROM, the next task is to read the information out 
of the BROM, which means the BROM address needs to be computed for each pixel. For most of 
the images that are displayed in this project, the BROM address value is incremented if the pixel 
location on the screen is in range of that object. Otherwise the address stays the same until it gets 
reset at the end of each frame. The only module that uses a different algorism is for displaying the 
score. A screen shoot is shown in figure 15, where 010 is the total shoots made and 011 is the total 
shoots attempt. Draw numbers is interconnected with getStatus discussed earlier in the previous 
section. If the status is score, then the total shoots made and attempt are incremented; if the status is 
miss, only the total shoots attempt is incremented; other wise both total shoots made and attempt 
stays the same. In order to save BROM space, a single BROM is created with information for 
numbers from 0 to 9. To display 6 digits onto the score box, 6 address pointers are generated. For 
each number, 3 digits are controlled separately. Once the less significant digit transitions from 9 to 
0, which is indicated by the BROM address pointer for that digit reaches the end and resets to 0, the 
next less significant digit increments, which is indicated by adding 96 (each digit is a 8x12 image) 
to the BROM address pointer for that digit. This method avoids complicated binary to decimal 
conversion. 

010 011

 
(a)                                    (b) 

Figure 15: Score box without number (a) and score box with scores (b) 
 

Because there are multiple images to be drawn on the VGA, along with the RGB signal for the 
basketball, there is also RGB signals for the court, the beaver, and the scoring box. How does the 
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VGA know which signals to draw? How does the VGA know that whether it is drawing a ball or a 
court, at a particular pixel on the VGA screen? The module rgbController is created to over lay the 
images properly. When an image is created as BMP file, it is saved as a square image. However, not 
all the objects are in rectangle shape; the ball, for example, is round. The rgbController needs a way 
to recognize the transparent area and soa color that is treated as “transparent” (pink for this project) 
is set aside. Transparent color is used to indicate that area should not be drawn. The module 
rgbController has priority over the ball, the beaver, and then finally the court. First rgbController 
checks to see at the pixel is currently being drawn on the screen (specifies by the signals 
pixel_count and line_count gives the location of the pixel that), whether the ball’s color is 
“transparent”. If it is not, the RGB color is draw for the current frame; if its color is “transparent”, 
meaning a ball is not presented at that pixel, rgbController goes on to check whether the color of 
the beaver is transparent for the current pixel; lastly, if nothing else is present at the pixel location, 
the color of the court is drawn.  

 
5.3 Testing 
 
 The modules in game logic are mainly calculations. The way I try to debug those modules 
were do simulations in ModelSim with sets of representative inputs. The outputs according to the 
inputs then were checked against the outputting wave form (Appendix D) from ModelSim. The 
resulting wave forms are attached in the appendix. Most of the results match my expect values. The 
part that needs further debugging for logic is the getStatus module. There are a lot more conditions 
to check, especially when the ball is around the rim area.  
 VGA take a lot longer to test, because it has to go through generating the lab kit every time. 
I also found that displaying the background court takes extra 15 minutes. To speed up the 
generation speed, I turned down drawBackground module, so that it doesn’t have to go through the 
big BROM. There are still some error consists in the VGA display. A thing I noticed but never get 
the time to fix was that the VGA delay unit needs to be adjusted according to the speed of the other 
modules, especially the ones instantiates a divider.  
 To simulate at the top level, each block was instantiated in the labkit.v file. I found errors 
from the modules that seem to work individually. Unfortunately there wasn’t enough time to debug 
all the errors.  
 
5.4 Results 
 

An ideal fully integrated system should be able to respond to the player’s hand motion, detect, 
and compute the initial positions and velocities. With those initial values, the system then should 
compute the 2D displaying trajectory of the basketball and display the ball travel along the 
calculated path. Unfortunately, with the limited time, the integration of the game display unit wasn’t 
quite done yet.  

So far, most of the individual parts in game logic were working in ModelSim, and gives the 
right results. Figure 16 is a series of VGA display screen shoots of the game display documents the 
progress of the project. As you can see, figure 9 (b) shows that the VGA display was able to draw 
an object with a given coordinates. Figure 9 (a) through (b) shows that the Display Fields 
successfully overlaid the different images together with pre-defined “transparent” color. Figure 9 (f) 
is generated with a different color mapping definition, which includes color that is not defined in a 
16 colored BMP file that was created by Paint. The file with new color mapping definition looks 
better than the 16 colored version. We are confident that with more time, we will be able to 
implement a fully integrated system. 
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(a) (c)(b)

(e) (f)(d)  
Figure 16: Screen shoots of the VGA display 

 
 
CONCLUSION 
  
 Virtual Basketball aimed to produce a new, simple game similar to ones on the Nintendo 
Wii gaming console. The modular system involved designing and implementing two very different 
components. The system involved integrating acceleration readings from an accelerometer to get 
release velocities from which a ball’s projectile motion can be calculated. 
 The end system had a working interface to obtain digital signals from analog acceleration 
inputs from the accelerometer and a functional velocity calculator. Given time, the velocity 
calculator could be improved to obtain more precise measurements of the actual velocity. The 
system could also successfully display all components of the game display like the background, 
ball, score box and a beaver player by reading the stored images from the ROM. Unfortunately, the 
final integrated system could not come together at the end. 
 For the future, it would be better to tackle the project in smaller, more manageable chunks 
such that there is a simple functioning model at the end. However, we still have many great ideas 
for how we can expand our project, such as adding gyroscopes to better measure the rotation of the 
hand or a wireless transmit/receiver system. 
 We would like to thank Gim, Javier, and the rest of the staff for their encouragement and 
technical help. Special thanks go to Howard Samuels of Analog Devices for helping us obtain the 
ADXL330 accelerometers. We learned a great deal about design, timing, time-budgeting, hardware 
interfacing, integrating, video display, and more, and greatly enjoyed working on the project! 
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